Advertisement

Space Science Reviews

, Volume 212, Issue 1–2, pp 925–984 | Cite as

OSIRIS-REx: Sample Return from Asteroid (101955) Bennu

  • D. S. Lauretta
  • S. S. Balram-Knutson
  • E. Beshore
  • W. V. Boynton
  • C. Drouet d’Aubigny
  • D. N. DellaGiustina
  • H. L. Enos
  • D. R. Golish
  • C. W. Hergenrother
  • E. S. Howell
  • C. A. Bennett
  • E. T. Morton
  • M. C. Nolan
  • B. Rizk
  • H. L. Roper
  • A. E. Bartels
  • B. J. Bos
  • J. P. Dworkin
  • D. E. Highsmith
  • D. A. Lorenz
  • L. F. Lim
  • R. Mink
  • M. C. Moreau
  • J. A. Nuth
  • D. C. Reuter
  • A. A. Simon
  • E. B. Bierhaus
  • B. H. Bryan
  • R. Ballouz
  • O. S. Barnouin
  • R. P. Binzel
  • W. F. Bottke
  • V. E. Hamilton
  • K. J. Walsh
  • S. R. Chesley
  • P. R. Christensen
  • B. E. Clark
  • H. C. Connolly
  • M. K. Crombie
  • M. G. Daly
  • J. P. Emery
  • T. J. McCoy
  • J. W. McMahon
  • D. J. Scheeres
  • S. Messenger
  • K. Nakamura-Messenger
  • K. Righter
  • S. A. Sandford
Article
Part of the following topical collections:
  1. OSIRIS-REx

Abstract

In May of 2011, NASA selected the Origins, Spectral Interpretation, Resource Identification, and Security–Regolith Explorer (OSIRIS-REx) asteroid sample return mission as the third mission in the New Frontiers program. The other two New Frontiers missions are New Horizons, which explored Pluto during a flyby in July 2015 and is on its way for a flyby of Kuiper Belt object 2014 MU69 on January 1, 2019, and Juno, an orbiting mission that is studying the origin, evolution, and internal structure of Jupiter. The spacecraft departed for near-Earth asteroid (101955) Bennu aboard an United Launch Alliance Atlas V 411 evolved expendable launch vehicle at 7:05 p.m. EDT on September 8, 2016, on a seven-year journey to return samples from Bennu. The spacecraft is on an outbound-cruise trajectory that will result in a rendezvous with Bennu in November 2018. The science instruments on the spacecraft will survey Bennu to measure its physical, geological, and chemical properties, and the team will use these data to select a site on the surface to collect at least 60 g of asteroid regolith. The team will also analyze the remote-sensing data to perform a detailed study of the sample site for context, assess Bennu’s resource potential, refine estimates of its impact probability with Earth, and provide ground-truth data for the extensive astronomical data set collected on this asteroid. The spacecraft will leave Bennu in 2021 and return the sample to the Utah Test and Training Range (UTTR) on September 24, 2023.

Keywords

OSIRIS-REx Bennu Asteroid Sample return 

Acronyms

AAM

Asteroid Approach Maneuver

APID

Application Process Identifier Definition

ASIST

Advanced System for Integration and Spacecraft Test

ATLO

Assembly, Test, and Launch Operations

AU

Astronomical Unit: the average distance between the Earth and the Sun

C3

Characteristic energy of launch

Delta-DOR

Delta-Differential One-way Ranging

DLA

Declination of the Launch Asymptote

DRA

Design Reference Asteroid

DRM

Design Reference Mission

DSM

Deep Space Maneuver

DSN

Deep Space Network

ECAS

Eight-Color Asteroid Survey

EGA

Earth gravity assist

FDS

Flight Dynamics System

FEDS

Front End Data System

FOB

Flight Operations Bucket

GM

universal coefficient of gravity (G) multiplied by the mass of a planetary object (M)

GN&C

Guidance, Navigation, and Control

GRAIL

Gravity Recovery and Interior Laboratory mission

I/F

Ratio of reflected energy to incoming energy (i.e. irradiance/solar flux)

IEST

Institute of Environmental Sciences and Technology

ISO

International Organization for Standardization

ISVM

Integrated Global Science Value Map

JPL

Jet Propulsion Laboratory

JSC

NASA Johnson Space Center

LIDAR

Light Detection and Ranging

LINEAR

Lincoln Near-Earth Asteroid Research survey

MAVEN

Mars Atmosphere and Volatile EvolutioN mission

MIC

Microparticle Impact Collection

MRO

Mars Reconnaissance Orbiter

MSA

Mission Support Area

MSL

Mean Sea Level

NASA

National Aeronautics and Space Administration

NEA

Near-Earth asteroid

NEAR

Near-Earth Asteroid Rendezvous mission

NFT

Natural Feature Tracking

OCAMS

OSIRIS-REx Camera Suite

OLA

OSIRIS-REx Laser Altimeter

OSIRIS-REx

Origins, Spectral Interpretation, Resource Identification, and Security–Regolith Explorer

OTES

OSIRIS-REx Thermal Emission Spectrometer

OVIRS

OSIRIS-REx Visible and Infrared Spectrometer

PDS

Planetary Data System

PET

Preliminary-examination Team

PSFD

Particle Size Frequency Distribution

REXIS

Regolith X-ray Imaging Spectrometer

RGB

Red, Green, Blue

RLA

Right Ascension of the Launch Asymptote

ROI

Region of Interest

SAP

Sample Analysis Plan

SARA

Sample Acquisition and Return Assembly

SPC

stereophotoclinometry

SPICE

S—Spacecraft ephemeris; P—Planet, satellite, comet, or asteroid ephemerides; I—Instrument description kernel; C—Pointing kernel; E—Events kernel

SPK

Spacecraft and Planet Kernel

SPOC

Science Processing and Operations Center

SRC

Sample Return Capsule

TAG

Touch and Go

TAGCAMS

Touch and Go Camera System

TAGSAM

Touch and Go Sample Acquisition Mechanism

UTTR

Utah Test and Training Range

Vis-NIR

Visible and Near-Infrared

YORP

Yarkovsky–O’Keefe–Radzievskii–Paddack effect

Notes

Acknowledgements

The launch of OSIRIS-REx was the culmination of over a decade of hard work by thousands of people across the globe. This event marked the beginning of one of the greatest scientific expeditions of all time—sample return from asteroid Bennu. We thank the multitude of team members and their families for the dedication and support of this mission. This material is based upon work supported by NASA under Contracts NNM10AA11C, NNG12FD66C, and NNG13FC02C issued through the New Frontiers Program. Copy editing and indexing provided by Mamassian Editorial Services.

References

  1. C. Allen, J. Allton, G. Lofgren, K. Righter, M. Zolensky, Curating NASA’s extraterrestrial samples—past, present, and future. Chem. Erde-Geochem. 71(1), 1–20 (2011) ADSCrossRefGoogle Scholar
  2. R.-L. Ballouz, Numerical Simulations of Granular Physics in the Solar System (University of Maryland, College Park, 2017), Doctoral dissertation Google Scholar
  3. O.S. Barnouin-Jha, A.F. Cheng, T. Mukai, S. Abe, N. Hirata, R. Nakamura, R.W. Gaskell, J. Saito, B.E. Clark, Small-scale topography of 25143 Itokawa from the Hayabusa laser altimeter. Icarus 198(1), 108–124 (2008) ADSCrossRefGoogle Scholar
  4. K. Berry, B. Sutter, A. May, K. Williams, B.W. Barbee, M. Beckman, B. Williams, Osiris-rex touch-and-go (tag) mission design and analysis. Adv. Astronaut. Sci. 149, 667–678 (2013) Google Scholar
  5. Bierhaus et al., The OSIRIS-REx touch-and-go sample acquisition mechanism (TAGSAM) and flight system. Space Sci. Rev. (2017) Google Scholar
  6. R.P. Binzel, F.E. DeMeo, B.J. Burt, E.A. Cloutis, B. Rozitis, T.H. Burbine, H. Campins et al., Spectral slope variations for OSIRIS-REx target asteroid (101955) Bennu: possible evidence for a fine-grained regolith equatorial ridge. Icarus 256, 22–29 (2015) ADSCrossRefGoogle Scholar
  7. N. Borson, IEST-STD-CC1246D: Product Cleanliness Levels and Contamination Control Program. Clean Rooms (PennWell Corporation, Tulsa, 2005) Google Scholar
  8. Bos et al., Touch and go camera system (TAGCAMS) for the OSIRIS-REx asteroid sample return mission. Space Sci. Rev. (2017) Google Scholar
  9. W.F. Bottke Jr., D. Vokrouhlický, D.P. Rubincam, D. Nesvorný, The Yarkovsky and YORP effects: implications for asteroid dynamics. Annu. Rev. Earth Planet. Sci. 34, 157–191 (2006) ADSCrossRefGoogle Scholar
  10. W.F. Bottke, D. Vokrouhlický, K.J. Walsh, M. Delbo, P. Michel, D.S. Lauretta, H. Campins, H.C. Connolly, D.J. Scheeres, S.R. Chelsey, In search of the source of asteroid (101955) Bennu: applications of the stochastic YORP model. Icarus 247, 191–217 (2015) ADSCrossRefGoogle Scholar
  11. H. Campins, A. Morbidelli, K. Tsiganis, J. De Leon, J. Licandro, D. Lauretta, The origin of asteroid 101955 (1999 RQ36). Astrophys. J. Lett. 721(1), L53 (2010) ADSCrossRefGoogle Scholar
  12. C.R. Chapman, S-type asteroids, ordinary chondrites, and space weathering: the evidence from Galileo’s fly-bys of Gaspra and Ida. Meteorit. Planet. Sci. 31(6), 699–725 (1996) ADSCrossRefGoogle Scholar
  13. A.F. Cheng, O. Barnouin-Jha, L. Prockter, M.T. Zuber, G. Neumann, D.E. Smith, J. Garvin, M. Robinson, J. Veverka, P. Thomas, Small-scale topography of 433 Eros from laser altimetry and imaging. Icarus 155(1), 51–74 (2002) ADSCrossRefGoogle Scholar
  14. S.R. Chesley, D. Farnocchia, M.C. Nolan, D. Vokrouhlický, P.W. Chodas, A. Milani, F. Spoto et al., Orbit and bulk density of the OSIRIS-REx target asteroid (101955) Bennu. Icarus 235, 5–22 (2014) ADSCrossRefGoogle Scholar
  15. Christensen et al., The OSIRIS-REx thermal emission spectrometer (OTES) instrument. Space Sci. Rev. (2017) Google Scholar
  16. B.E. Clark, R.P. Binzel, E.S. Howell, E.A. Cloutis, M. Ockert-Bell, P. Christensen, M.A. Barucci et al., Asteroid (101955) 1999 RQ36: spectroscopy from 0.4 to 2.4 \(\upmu\)m and meteorite analogs. Icarus 216(2), 462–475 (2011) ADSCrossRefGoogle Scholar
  17. Daly et al., The OSIRIS-REx laser altimeter (OLA) investigation and instrument. Space Sci. Rev. (2017). doi: 10.1007/s11214-017-0375-3 Google Scholar
  18. W.A. Delamere, L.L. Tornabene, A.S. McEwen, K. Becker, J.W. Bergstrom, N.T. Bridges, E.M. Eliason et al., Color imaging of Mars by the high resolution imaging science experiment (HiRISE). Icarus 205(1), 38–52 (2010) ADSCrossRefGoogle Scholar
  19. M. Delbo, P. Michel, Temperature history and dynamical evolution of (101955) 1999 RQ 36: a potential target for sample return from a primitive asteroid. Astrophys. J. Lett. 728(2), L42 (2011) ADSCrossRefGoogle Scholar
  20. Dworkin et al., OSIRIS-REx contamination control strategy and implementation. Space Sci. Rev. (2017) Google Scholar
  21. J.P. Emery, Y.R. Fernández, M.S.P. Kelley, K.T. Warden, C. Hergenrother, D.S. Lauretta, M.J. Drake, H. Campins, J. Ziffer, Thermal infrared observations and thermophysical characterization of OSIRIS-REx target asteroid (101955) Bennu. Icarus 234, 17–35 (2014) ADSCrossRefGoogle Scholar
  22. C.N. Foley, L.R. Nittler, T.J. McCoy, L.F. Lim, M.R.M. Brown, R.D. Starr, J.I. Trombka, Minor element evidence that asteroid 433 Eros is a space-weathered ordinary chondrite parent body. Icarus 184(2), 338–343 (2006) ADSCrossRefGoogle Scholar
  23. R.W. Gaskell, O.S. Barnouin-Jha, D.J. Scheeres, A.S. Konopliv, T. Mukai, S. Abe, J. Saito et al., Characterizing and navigating small bodies with imaging data. Meteorit. Planet. Sci. 43(6), 1049–1061 (2008) ADSCrossRefGoogle Scholar
  24. B. Gundlach, J. Blum, A new method to determine the grain size of planetary regolith. Icarus 223(1), 479–492 (2013) ADSCrossRefGoogle Scholar
  25. C.W. Hergenrother, M.C. Nolan, R.P. Binzel, E.A. Cloutis, M.A. Barucci, P. Michel, D.J. Scheeres et al., Lightcurve, color and phase function photometry of the OSIRIS-REx target asteroid (101955) Bennu. Icarus 226(1), 663–670 (2013) ADSCrossRefGoogle Scholar
  26. C.W. Hergenrother, M.A. Barucci, O. Barnouin, B. Bierhaus, R.P. Binzel, W.F. Bottke, S. Chesley et al., The design reference asteroid for the OSIRIS-REx mission target (101955) Bennu. arXiv:1409.4704 (2014)
  27. R. Jaumann, K. Stephan, K. Krohn, K.D. Matz, K. Otto, W. Neumann et al., Age-dependent morphological and compositional variations on Ceres. Lunar Planet. Sci. Conf. Abstr. 47, 455 (2016) Google Scholar
  28. T.V. Johnson, F.P. Fanale, Optical properties of carbonaceous chondrites and their relationship to asteroids. J. Geophys. Res. 78(35), 8507–8518 (1973) ADSCrossRefGoogle Scholar
  29. L. Jorda, P.L. Lamy, R.W. Gaskell, M. Kaasalainen, O. Groussin, S. Besse, G. Faury, Asteroid (2867) Steins: shape, topography and global physical properties from OSIRIS observations. Icarus 221(2), 1089–1100 (2012) ADSCrossRefGoogle Scholar
  30. T.V. King, R.N. Clark, Spectral characteristics of chlorites and Mg-serpentines using high-resolution reflectance spectroscopy. J. Geophys. Res., Solid Earth 94(B10), 13997–14008 (1989) CrossRefGoogle Scholar
  31. D.S. Lauretta, A.E. Bartels, M.A. Barucci, E.B. Bierhaus, R.P. Binzel, W.F. Bottke, H. Campins et al., The OSIRIS-REx target asteroid (101955) Bennu: constraints on its physical, geological, and dynamical nature from astronomical observations. Meteorit. Planet. Sci. 50(4), 834–849 (2015) ADSCrossRefGoogle Scholar
  32. D.S. Lauretta, H.Y. McSween (eds.), Meteorites and the Early Solar System II (Univ. of Arizona Press, Tucson, 2006) Google Scholar
  33. L. Le Corre, V. Reddy, N. Schmedemann, K.J. Becker, D.P. O’Brien, N. Yamashita, P.N. Peplowski et al., Olivine or impact melt: nature of the “orange” material on Vesta from Dawn. Icarus 226(2), 1568–1594 (2013) ADSCrossRefGoogle Scholar
  34. S. Marchi, C.R. Chapman, O.S. Barnouin, J.E. Richardson, J.B. Vincent, Cratering on Asteroids, in Asteroids IV, ed. by P. Michel, F.E. DeMeo, W.F. Bottke (University of Arizona Press, Tucson, 2015), pp. 725–744 Google Scholar
  35. C. Mario, C. Debrunner, Robustness and performance impacts of optical-based feature tracking to OSIRIS-REx asteroid sample collection mission, in 39th Annual AAS Guidance and Control Conference, Breckenridge, CO, February 6–February 10 (2016) Google Scholar
  36. Masterson et al., Regolith X-ray imaging spectrometer (REXIS) aboard the OSIRIS-REx asteroid sample return mission. Space Sci. Rev. (2017) Google Scholar
  37. A. May, B. Sutter, T. Linn, B. Bierhaus, K. Berry, R. Mink, OSIRIS-REx touch-and-go (TAG) mission design for asteroid sample collection, in 65th International Astronautical Congress, IAC-14-A3.4.8 (2014) Google Scholar
  38. S. Mazrouei, M.G. Daly, O.S. Barnouin, C.M. Ernst, I. DeSouza, Block distributions on Itokawa. Icarus 229, 181–189 (2014) ADSCrossRefGoogle Scholar
  39. T.J. McCoy, M.S. Robinson, L.R. Nittler, T.H. Burbine, The Near Earth Asteroid Rendezvous Mission to asteroid 433 Eros: a milestone in the study of asteroids and their relationship to meteorites. Chem. Erde-Geochem. 62(2), 89–121 (2002) ADSCrossRefGoogle Scholar
  40. McMahon et al., The OSIRIS-REx radio science experiment at Bennu. Space Sci. Rev. (2017) Google Scholar
  41. J. Miller, P. Antreasian, R. Gaskell, J. Giorgini, C. Helfrich, W. Owen, B. Williams, D. Yeomans, Determination of Eros physical parameters for near earth asteroid rendezvous orbit phase navigation. Icarus (1999). doi: 10.1006/icar.2001.6753 Google Scholar
  42. H. Miyamoto, H. Yano, D.J. Scheeres, S. Abe, O. Barnouin-Jha, A.F. Cheng, H. Demura, R.W. Gaskell, N. Hirata, M. Ishiguro, T. Michikami, Regolith migration and sorting on asteroid Itokawa. Science 316(5827), 1011–1014 (2007) ADSCrossRefGoogle Scholar
  43. T.G. Müller, L. O’Rourke, A.M. Barucci, A. Pál, C. Kiss, P. Zeidler, B. Altieri, B.M. González-García, M. Küppers, Physical properties of OSIRIS-REx target asteroid (101955) 1999 RQ36: derived from Herschel, VLT/VISIR, and Spitzer observations. Astron. Astrophys. 548, A36 (2012) CrossRefGoogle Scholar
  44. T. Nakamura, T. Noguchi, M. Tanaka, M.E. Zolensky, M. Kimura, A. Tsuchiyama, A. Nakato et al., Itokawa dust particles: a direct link between S-type asteroids and ordinary chondrites. Science 333(6046), 1113–1116 (2011) ADSCrossRefGoogle Scholar
  45. K. Nakamura-Messenger, H.C. Connolly Jr., D.S. Lauretta, Strategy for ranking the science value of the surface of asteroid 101955 Bennu for sample site selection for OSIRIS-REx, in 45th Lunar and Planetary Science Conference. LPI Contribution, vol. 1777 (2014), p. 2023 Google Scholar
  46. M.C. Nolan, C. Magri, E.S. Howell, L.A.M. Benner, J.D. Giorgini, C.W. Hergenrother, R.S. Hudson et al., Shape model and surface properties of the OSIRIS-REx target asteroid (101955) Bennu from radar and lightcurve observations. Icarus 226(1), 629–640 (2013) ADSCrossRefGoogle Scholar
  47. R. Olds, A. May, C. Mario, R. Hamilton, C. Debrunner, K. Anderson, The application of optical based feature tracking to OSIRIS-REx asteroid sample collection, in American Astronautical Society Meeting, contribution 15-114 (2015) Google Scholar
  48. W.M. Owen Jr., T.C. Wang, A. Harch, M. Bell, C. Peterson, NEAR Optical Navigation at Eros (2001) Google Scholar
  49. Reuter et al., The OSIRIS-REx visible and infrared spectrometer (OVIRS): spectral maps of the asteroid Bennu. Space Sci. Rev. (2017) Google Scholar
  50. Rizk et al., OCAMS: the OSIRIS-REx camera suite. Space Sci. Rev. (2017) Google Scholar
  51. B. Rozitis, E. MacLennan, J.P. Emery, Cohesive forces prevent the rotational breakup of rubble-pile asteroid (29075) 1950 DA. Nature 512(7513), 174–176 (2014) ADSCrossRefGoogle Scholar
  52. S.W. Ruff, P.R. Christensen, Bright and dark regions on Mars: particle size and mineralogical characteristics based on thermal emission spectrometer data. J. Geophys. Res., Planets 107, E12 (2002) CrossRefGoogle Scholar
  53. P. Sánchez, D.J. Scheeres, The strength of regolith and rubble pile asteroids. Meteorit. Planet. Sci. 49(5), 788–811 (2014) ADSCrossRefGoogle Scholar
  54. D.J. Scheeres, S.G. Hesar, S. Tardivel, M. Hirabayashi, D. Farnocchia, J.W. McMahon, S.R. Chesley, O. Barnouin, R.P. Binzel, W.F. Bottke, M.G. Daly, The geophysical environment of Bennu. Icarus 276, 116–140 (2016) ADSCrossRefGoogle Scholar
  55. H. Sierks, P. Lamy, C. Barbieri, D. Koschny, H. Rickman, R. Rodrigo, M.F. A’Hearn, F. Angrilli, M.A. Barucci, J.L. Bertaux, I. Bertini, Images of asteroid 21 Lutetia: a remnant planetesimal from the early solar system. Science 334(6055), 487–490 (2011) ADSCrossRefGoogle Scholar
  56. T.S. Statler, Obliquities of “top-shaped” asteroids may not imply reshaping by YORP spin-up. Icarus 248, 313–317 (2015) ADSCrossRefGoogle Scholar
  57. G.H. Stokes, J.B. Evans, H.E.M. Viggh, F.C. Shelly, E.C. Pearce, Lincoln near-Earth asteroid program (LINEAR). Icarus 148(1), 21–28 (2000) ADSCrossRefGoogle Scholar
  58. D. Takir, B.E. Clark, C. Drouet d’Aubigny, C.W. Hergenrother, J.-Y. Li, D.S. Lauretta, R.P. Binzel, Photometric models of disk-integrated observations of the OSIRIS-REx target asteroid (101955) Bennu. Icarus 252, 393–399 (2015) ADSCrossRefGoogle Scholar
  59. F. Vilas, A cheaper, faster, better way to detect water of hydration on Solar System bodies. Icarus 111(2), 456–467 (1994) ADSCrossRefGoogle Scholar
  60. D. Vokrouhlický, W.F. Bottke, S.R. Chesley, D.J. Scheeres, T.S. Statler, in Asteroids IV, ed. by P. Michel, F.E. DeMeo, W.F. Bottke (Univ. of Arizona Press, Tucson, 2015), pp. 509–531. ISBN 978-0-816-53213-1 Google Scholar
  61. K.J. Walsh, D.C. Richardson, Binary near-Earth asteroid formation: rubble pile model of tidal disruptions. Icarus 180(1), 201–216 (2006) ADSCrossRefGoogle Scholar
  62. K.J. Walsh, D.C. Richardson, P. Michel, Spin-up of rubble-pile asteroids: disruption, satellite formation, and equilibrium shapes. Icarus 220(2), 514–529 (2012) ADSCrossRefGoogle Scholar
  63. K.J. Walsh, M. Delbó, W.F. Bottke, D. Vokrouhlický, D.S. Lauretta, Introducing the Eulalia and new Polana asteroid families: re-assessing primitive asteroid families in the inner Main Belt. Icarus 225(1), 283–297 (2013) ADSCrossRefGoogle Scholar
  64. G.V. Williams, 1999 RQ36. Minor planet electronic circular 1999-R44 (1999) Google Scholar
  65. Williams et al., OSIRIS-REx flight dynamics and navigation design. Space Sci. Rev. (2017) Google Scholar
  66. D.K. Yeomans, P.G. Antreasian, A. Cheng, D.W. Dunham, R.W. Farquhar, R.W. Gaskell, J.D. Giorgini et al., Estimating the mass of asteroid 433 Eros during the NEAR spacecraft flyby. Science 285(5427), 560–561 (1999) ADSCrossRefGoogle Scholar
  67. L. Yu, J. Ji, Surface thermophysical properties determination of OSIRIS-REx target asteroid (101955) Bennu. Mon. Not. R. Astron. Soc. 452(1), 368–375 (2015) ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • D. S. Lauretta
    • 1
  • S. S. Balram-Knutson
    • 1
  • E. Beshore
    • 1
  • W. V. Boynton
    • 1
  • C. Drouet d’Aubigny
    • 1
  • D. N. DellaGiustina
    • 1
  • H. L. Enos
    • 1
  • D. R. Golish
    • 1
  • C. W. Hergenrother
    • 1
  • E. S. Howell
    • 1
  • C. A. Bennett
    • 1
  • E. T. Morton
    • 1
  • M. C. Nolan
    • 1
  • B. Rizk
    • 1
  • H. L. Roper
    • 1
  • A. E. Bartels
    • 2
  • B. J. Bos
    • 2
  • J. P. Dworkin
    • 2
  • D. E. Highsmith
    • 2
  • D. A. Lorenz
    • 2
  • L. F. Lim
    • 2
  • R. Mink
    • 2
  • M. C. Moreau
    • 2
  • J. A. Nuth
    • 2
  • D. C. Reuter
    • 2
  • A. A. Simon
    • 2
  • E. B. Bierhaus
    • 3
  • B. H. Bryan
    • 3
  • R. Ballouz
    • 4
  • O. S. Barnouin
    • 5
  • R. P. Binzel
    • 6
  • W. F. Bottke
    • 7
  • V. E. Hamilton
    • 7
  • K. J. Walsh
    • 7
  • S. R. Chesley
    • 8
  • P. R. Christensen
    • 9
  • B. E. Clark
    • 10
  • H. C. Connolly
    • 11
  • M. K. Crombie
    • 12
  • M. G. Daly
    • 13
  • J. P. Emery
    • 14
  • T. J. McCoy
    • 15
  • J. W. McMahon
    • 16
  • D. J. Scheeres
    • 16
  • S. Messenger
    • 17
  • K. Nakamura-Messenger
    • 17
  • K. Righter
    • 17
  • S. A. Sandford
    • 18
  1. 1.Lunar and Planetary LaboratoryUniversity of ArizonaTucsonUSA
  2. 2.NASA Goddard Space Flight CenterGreenbeltUSA
  3. 3.Lockheed Martin Space SystemsLittletonUSA
  4. 4.Department of AstronomyUniversity of MarylandCollege ParkUSA
  5. 5.Applied Physics LaboratoryThe Johns Hopkins UniversityLaurelUSA
  6. 6.Massachusetts Institute of TechnologyCambridgeUSA
  7. 7.Southwest Research InstituteBoulderUSA
  8. 8.Jet Propulsion LaboratoryPasadenaUSA
  9. 9.Arizona State UniversityTempeUSA
  10. 10.Ithaca CollegeIthacaUSA
  11. 11.Rowan UniversityGlassboroUSA
  12. 12.Indigo Information ServicesTucsonUSA
  13. 13.Centre for Research in Earth and Space ScienceYork UniversityTorontoCanada
  14. 14.University of TennesseeKnoxvilleUSA
  15. 15.Smithsonian National Museum of Natural HistoryWashingtonUSA
  16. 16.University of ColoradoBoulderUSA
  17. 17.NASA Johnson Space CenterHoustonUSA
  18. 18.NASA Ames Research CenterMoffett FieldUSA

Personalised recommendations