Advertisement

Space Science Reviews

, Volume 212, Issue 3–4, pp 1687–1703 | Cite as

The TUS Detector of Extreme Energy Cosmic Rays on Board the Lomonosov Satellite

  • P. A. KlimovEmail author
  • M. I. Panasyuk
  • B. A. Khrenov
  • G. K. Garipov
  • N. N. Kalmykov
  • V. L. Petrov
  • S. A. Sharakin
  • A. V. Shirokov
  • I. V. Yashin
  • M. Y. Zotov
  • S. V. Biktemerova
  • A. A. Grinyuk
  • V. M. Grebenyuk
  • M. V. Lavrova
  • L. G. Tkachev
  • A. V. Tkachenko
  • I. H. ParkEmail author
  • J. Lee
  • S. Jeong
  • O. Martinez
  • H. Salazar
  • E. Ponce
  • O. A. Saprykin
  • A. A. Botvinko
  • A. N. Senkovsky
  • A. E. Puchkov
Article
Part of the following topical collections:
  1. The Lomonosov Mission

Abstract

The origin and nature of extreme energy cosmic rays (EECRs), which have energies above the \(5\cdot10^{19}~\mbox{eV}\)—the Greisen-Zatsepin-Kuzmin (GZK) energy limit, is one of the most interesting and complicated problems in modern cosmic-ray physics. Existing ground-based detectors have helped to obtain remarkable results in studying cosmic rays before and after the GZK limit, but have also produced some contradictions in our understanding of cosmic ray mass composition. Moreover, each of these detectors covers only a part of the celestial sphere, which poses problems for studying the arrival directions of EECRs and identifying their sources. As a new generation of EECR space detectors, TUS (Tracking Ultraviolet Set-up), KLYPVE and JEM-EUSO, are intended to study the most energetic cosmic-ray particles, providing larger, uniform exposures of the entire celestial sphere. The TUS detector, launched on board the Lomonosov satellite on April 28, 2016 from Vostochny Cosmodrome in Russia, is the first of these. It employs a single-mirror optical system and a photomultiplier tube matrix as a photo-detector and will test the fluorescent method of measuring EECRs from space. Utilizing the Earth’s atmosphere as a huge calorimeter, it is expected to detect EECRs with energies above \(10^{20}~\mbox{eV}\).

It will also be able to register slower atmospheric transient events: atmospheric fluorescence in electrical discharges of various types including precipitating electrons escaping the magnetosphere and from the radiation of meteors passing through the atmosphere. We describe the design of the TUS detector and present results of different ground-based tests and simulations.

Keywords

Extreme energy cosmic rays Transient atmospheric events Space fluorescence detectors 

Notes

Acknowledgements

The work was partially supported by M.V. Lomonosov Moscow State University through its “Prospects for Development” program (“Perspektivnye Napravleniya Razvitiya”), by ROSCOSMOS grants and by RFFI grants No. 16-29-13065 and No. 15-35-21038. I.H. Park was supported by the National Research Foundation grant funded by MSIP of Korea (No. 2015R1A2A1A01006870).

References

  1. J. Abraham, P. Abreu, M. Aglietta et al. (Pierre Auger Collaboration), Trigger and aperture of the surface detector array of the Pierre Auger Observatory. Nucl. Instrum. Methods A 613, 29–39 (2010) ADSCrossRefGoogle Scholar
  2. V. Abrashkin, V. Alexandrov, Y. Arakcheev et al., Space detector TUS for extreme energy cosmic ray study. Nucl. Phys. B, Proc. Suppl. 166(0), 68–71 (2007) ADSCrossRefGoogle Scholar
  3. V.V. Aleksandrov, D.I. Bugrov, G.K. Garipov et al., A project of investigating the most energetic cosmic rays on the Russian segment of the International Space Station. Moscow Univ. Phys. Bull. 55(6), 44 (2000) Google Scholar
  4. R. Benson, J. Linsley, Satellite observation of cosmic ray air showers, in International Cosmic Ray Conference, 17th, Paris, France, July 13–25. Conference Papers, vol. 8 (1981) Google Scholar
  5. F. Fenu, T. Mernik, A. Santangelo et al., ICRC-32, Beijing (2011) Google Scholar
  6. G.K. Garipov, L.A. Gorshkov, B.A. Khrenov et al., AIP Conf. Proc. 433, 403–417 (1998) ADSGoogle Scholar
  7. G.K. Garipov, B.A. Khrenov, P.A. Klimov et al., Global transients in ultraviolet and red-infrared ranges from data of Universitetsky-Tatiana-2 satellite. J. Geophys. Res. 118(2), 370–379 (2013) Google Scholar
  8. A.A. Grinyuk, A.V. Tkachenko, L.G. Tkachev (TUS Collaboration), The TUS orbital detector optical system and trigger simulation. J. Phys. Conf. Ser. 409(1), 012105 (2013) CrossRefGoogle Scholar
  9. A.V. Gurevich, K.P. Zybin, Runaway breakdown and electric discharges in thunderstorms. Phys. Usp. 44(11), 1119–1140 (2001) ADSCrossRefGoogle Scholar
  10. B.A. Khrenov, M.I. Panasyuk, V.V. Alexandrov et al., Space program KOSMOTEPETL (projects KLYPVE and TUS) for the study of extremely high energy cosmic rays. AIP Conf. Proc. 566, 57 (2001) ADSCrossRefGoogle Scholar
  11. B.A. Khrenov, V.P. Stulov, Detection of meteors and sub-relativistic dust grains by the fluorescence detectors of ultra high energy cosmic rays. Adv. Space Res. 37(10), 1868–1875 (2006) ADSCrossRefGoogle Scholar
  12. J.F. Krizmanic, J.W. Mitchell, R.S. Streitmatter (OWL Collaboration), Optimization of the Orbiting Wide-angle Light collectors (OWL) mission for charged-particle and neutrino astronomy, in Proc. 33rd ICRC, Rio de Janeiro, Brazil (2013). Paper No. 1085 Google Scholar
  13. P.A. Klimov PhD Thesis, SINP MSU (2009) (in Russian) Google Scholar
  14. P.A. Klimov, M.Yu. Zotov, N.P. Chirskaya et al., Preliminary results from the TUS ultra-high energy cosmic ray orbital telescope: registration of low-energy particles passing through the photodetector. Bull. Russ. Acad. Sci., Phys. 81(4), 407–409 (2017) CrossRefGoogle Scholar
  15. V.S. Morozenko PhD Thesis, SINP MSU (2014) (in Russian) Google Scholar
  16. M.I. Panasyuk, M. Casolino, G.K. Garipov et al., The current status of orbital experiments for UHECR studies. J. Phys. Conf. Ser. 632(1), 012097 (2015) CrossRefGoogle Scholar
  17. M.I. Panasyuk, S.I. Svertilov, V.V. Bogomolov et al., RELEC mission: relativistic electron precipitation and TLE study on-board small spacecraft. Adv. Space Res. 57(3), 835–849 (2016) ADSCrossRefGoogle Scholar
  18. V.P. Pasko, Y. Yair, C.-L. Kuo, Lightning related transient luminous events at high altitude in the Earth’s atmosphere: phenomenology, mechanisms and effects. Space Sci. Rev. 168(1), 475–516 (2012) ADSCrossRefGoogle Scholar
  19. V.A. Sadovnichy, M.I. Panasyuk, I.V. Yashin et al., Investigations of the space environment aboard the Universitetsky-Tat’yana and Universitetsky-Tat’yana-2 microsatellites. Sol. Syst. Res. 45(1), 3–29 (2011) ADSCrossRefGoogle Scholar
  20. L. Scarsi, Extreme Universe Space Observatory (EUSO), in Proc. First Airwatch Symposium, Catania. AIP CP, vol. 433, (1997), p. 42 Google Scholar
  21. F.W. Stecker, J.F. Krizmanic, L.M. Barbier et al., Observing the ultrahigh energy universe with OWL eyes. Nucl. Phys. B, Proc. Suppl. 136, 433–438 (2004) ADSCrossRefGoogle Scholar
  22. Y. Takahashi et al., The JEM-EUSO mission. New J. Phys. 11, 065009 (2009) ADSCrossRefGoogle Scholar
  23. N.N. Vedenkin, G.K. Garipov, P.A. Klimov et al., Atmospheric ultraviolet and red-infrared flashes from Universitetsky-Tatiana-2 satellite data. J. Exp. Theor. Phys. 113(5), 781–790 (2011) ADSCrossRefGoogle Scholar
  24. H.D. Voss, M. Walt, W.L. Imhof, J. Mobilia, U.S. Inan, Satellite observations of lightning-induced electron precipitation. J. Geophys. Res. 103(A6), 11725 (1998) ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • P. A. Klimov
    • 1
    Email author
  • M. I. Panasyuk
    • 1
  • B. A. Khrenov
    • 1
  • G. K. Garipov
    • 1
  • N. N. Kalmykov
    • 1
  • V. L. Petrov
    • 1
  • S. A. Sharakin
    • 1
  • A. V. Shirokov
    • 1
  • I. V. Yashin
    • 1
  • M. Y. Zotov
    • 1
  • S. V. Biktemerova
    • 2
  • A. A. Grinyuk
    • 2
  • V. M. Grebenyuk
    • 2
    • 3
  • M. V. Lavrova
    • 2
  • L. G. Tkachev
    • 2
    • 3
  • A. V. Tkachenko
    • 2
    • 4
  • I. H. Park
    • 5
    Email author
  • J. Lee
    • 5
  • S. Jeong
    • 5
  • O. Martinez
    • 6
  • H. Salazar
    • 6
  • E. Ponce
    • 6
  • O. A. Saprykin
    • 7
  • A. A. Botvinko
    • 7
  • A. N. Senkovsky
    • 7
  • A. E. Puchkov
    • 7
  1. 1.Skobeltsyn Institute of Nuclear PhysicsLomonosov Moscow State UniversityMoscowRussia
  2. 2.Joint Institute for Nuclear ResearchDubnaRussia
  3. 3.Dubna State UniversityDubnaRussia
  4. 4.Bogolyubov Insitute for Theoretical PhysicsKievUkraine
  5. 5.Department of PhysicsSungkyunkwan UniversitySuwonsiKorea
  6. 6.Autonomous University of PueblaPueblaMexico
  7. 7.Space Regatta ConsortiumKorolevRussia

Personalised recommendations