Space Science Reviews

, Volume 212, Issue 3–4, pp 1743–1785 | Cite as

Toward an Internally Consistent Astronomical Distance Scale

  • Richard de GrijsEmail author
  • Frédéric Courbin
  • Clara E. Martínez-Vázquez
  • Matteo Monelli
  • Masamune Oguri
  • Sherry H. Suyu
Part of the following topical collections:
  1. Astronomical Distance Determination in the Space Age


Accurate astronomical distance determination is crucial for all fields in astrophysics, from Galactic to cosmological scales. Despite, or perhaps because of, significant efforts to determine accurate distances, using a wide range of methods, tracers, and techniques, an internally consistent astronomical distance framework has not yet been established. We review current efforts to homogenize the Local Group’s distance framework, with particular emphasis on the potential of RR Lyrae stars as distance indicators, and attempt to extend this in an internally consistent manner to cosmological distances. Calibration based on Type Ia supernovae and distance determinations based on gravitational lensing represent particularly promising approaches. We provide a positive outlook to improvements to the status quo expected from future surveys, missions, and facilities. Astronomical distance determination has clearly reached maturity and near-consistency.


Gravitational lensing: strong Stars: distances Stars: variables: RR Lyrae Galaxy: center Galaxy: fundamental parameters Galaxies: distances and redshifts Local Group Magellanic Clouds Distance scale 



This research was partially supported by the National Natural Science Foundation of China (NSFC; grants U1631102, 11373010, and 11633005 to R.d.G.), the Spanish Ministry of Economy and Competitiveness (MINECO; grant AYA2014-56795-P to M.M. and C.E.M.-V.), the Max Planck Society through the Max Planck Research Group (S.H.S.), and the Swiss National Science Foundation (SNSF; F.C.). We thank ISSI-BJ for hospitality and an engaging workshop. We also acknowledge both referees for their constructive reviews.


  1. B.P. Abbott et al. (LIGO Scientific Collaboration Virgo Collaboration), Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett. 116, 061102 (2016). doi: 10.1103/PhysRevLett.116.061102 ADSMathSciNetCrossRefGoogle Scholar
  2. A. Agnello, T. Treu, STRIDES: galaxy evolution over cosmic time from new samples of gravitationally lensed quasars, in Int’l Astron. Union General Assembly, vol. 29 (2015), p. 57367 Google Scholar
  3. A. Agnello, B.C. Kelly, T. Treu, P.J. Marshall, Data mining for gravitationally lensed quasars. Mon. Not. R. Astron. Soc. 448, 1446–1462 (2015a). doi: 10.1093/mnras/stv037 ADSCrossRefGoogle Scholar
  4. A. Agnello, T. Treu, F. Ostrovski, P.L. Schechter, E.J. Buckley-Geer, H. Lin, M.W. Auger, F. Courbin, C.D. Fassnacht, J. Frieman, N. Kuropatkin, P.J. Marshall, R.G. McMahon, G. Meylan, A. More, S.H. Suyu, C.E. Rusu, D. Finley, T. Abbott, F.B. Abdalla, S. Allam, J. Annis, M. Banerji, A. Benoit-Lévy, E. Bertin, D. Brooks, D.L. Burke, A.C. Rosell, M.C. Kind, J. Carretero, C.E. Cunha, C.B. D’Andrea, L.N. da Costa, S. Desai, H.T. Diehl, J.P. Dietrich, P. Doel, T.F. Eifler, J. Estrada, A.F. Neto, B. Flaugher, P. Fosalba, D.W. Gerdes, D. Gruen, G. Gutierrez, K. Honscheid, D.J. James, K. Kuehn, O. Lahav, M. Lima, M.A.G. Maia, M. March, J.L. Marshall, P. Martini, P. Melchior, C.J. Miller, R. Miquel, R.C. Nichol, R. Ogando, A.A. Plazas, K. Reil, A.K. Romer, A. Roodman, M. Sako, E. Sanchez, B. Santiago, V. Scarpine, M. Schubnell, I. Sevilla-Noarbe, R.C. Smith, M. Soares-Santos, F. Sobreira, E. Suchyta, M.E.C. Swanson, G. Tarle, J. Thaler, D. Tucker, A.R. Walker, R.H. Wechsler, Y. Zhang, Discovery of two gravitationally lensed quasars in the dark energy survey. Mon. Not. R. Astron. Soc. 454, 1260–1265 (2015b). doi: 10.1093/mnras/stv2171 ADSCrossRefGoogle Scholar
  5. H. Aihara, R. Armstrong, S. Bickerton et al., First data release of the Hyper Suprime-Cam Subaru Strategic Program. Publ. Astron. Soc. Jpn. (2017, submitted). arXiv:1702.08449
  6. C. Alcock, R.A. Allsman, D.R. Alves, T.S. Axelrod, A. Basu, A.C. Becker, D.P. Bennett, K.H. Cook, A.J. Drake, K.C. Freeman, M. Geha, K. Griest, L. King, M.J. Lehner, S.L. Marshall, D. Minniti, C.A. Nelson, B.A. Peterson, P. Popowski, M.R. Pratt, P.J. Quinn, C.W. Stubbs, W. Sutherland, A.B. Tomaney, T. Vandehei, D.L. Welch, The MACHO project 9 million star color-magnitude diagram of the Large Magellanic Cloud. Astron. J. 119, 2194–2213 (2000). doi: 10.1086/301326 ADSCrossRefGoogle Scholar
  7. M. Barnabè, L.V.E. Koopmans, A unifying framework for self-consistent gravitational lensing and stellar dynamics analyses of early-type galaxies. Astrophys. J. 666, 726–746 (2007). doi: 10.1086/520495 ADSCrossRefGoogle Scholar
  8. M. Barnabè, O. Czoske, L.V.E. Koopmans, T. Treu, A.S. Bolton, Two-dimensional kinematics of SLACS lenses—III. Mass structure and dynamics of early-type lens galaxies beyond \(z \sim 0.1\). Mon. Not. R. Astron. Soc. 415, 2215–2232 (2011). doi: 10.1111/j.1365-2966.2011.18842.x ADSCrossRefGoogle Scholar
  9. L.R. Bedin, G. Piotto, J. Anderson, S. Cassisi, I.R. King, Y. Momany, G. Carraro, \(\omega \) Centauri: the population puzzle goes deeper. Astrophys. J. Lett. 605, L125–L128 (2004). doi: 10.1086/420847 ADSCrossRefGoogle Scholar
  10. M. Bellazzini, F.R. Ferraro, E. Pancino, Multiple stellar populations in the sextans dwarf spheroidal galaxy? Mon. Not. R. Astron. Soc. 327, L15–L20 (2001). doi: 10.1046/j.1365-8711.2001.04889.x ADSCrossRefGoogle Scholar
  11. M. Bellazzini, R.A. Ibata, S.C. Chapman, A.D. Mackey, L. Monaco, M.J. Irwin, N.F. Martin, G.F. Lewis, E. Dalessandro, The nucleus of the Sagittarius Dsph galaxy and M54: a window on the process of galaxy nucleation. Astron. J. 136, 1147–1170 (2008). doi: 10.1088/0004-6256/136/3/1147 ADSCrossRefGoogle Scholar
  12. M. Bellazzini, G. Beccari, T.A. Oosterloo, S. Galleti, A. Sollima, M. Correnti, V. Testa, L. Mayer, M. Cignoni, F. Fraternali, S. Gallozzi, An optical and Hi study of the dwarf local group galaxy VV124 = UGC4879. A gas-poor dwarf with a stellar disk? Astron. Astrophys. 527, A58 (2011). doi: 10.1051/0004-6361/201016159 ADSCrossRefGoogle Scholar
  13. E.J. Bernard, C. Gallart, M. Monelli, A. Aparicio, S. Cassisi, E.D. Skillman, P.B. Stetson, A.A. Cole, I. Drozdovsky, S.L. Hidalgo, M. Mateo, E. Tolstoy, The ACS LCID project: RR Lyrae stars as tracers of old population gradients in the isolated dwarf spheroidal galaxy Tucana. Astrophys. J. Lett. 678, L21–L24 (2008). doi: 10.1086/588285 ADSCrossRefGoogle Scholar
  14. E.J. Bernard, M. Monelli, C. Gallart, I. Drozdovsky, P.B. Stetson, A. Aparicio, S. Cassisi, L. Mayer, A.A. Cole, S.L. Hidalgo, E.D. Skillman, E. Tolstoy, The ACS LCID project. I. Short-period variables in the isolated dwarf spheroidal galaxies Cetus and Tucana. Astrophys. J. 699, 1742–1764 (2009). doi: 10.1088/0004-637X/699/2/1742 ADSCrossRefGoogle Scholar
  15. E.J. Bernard, M. Monelli, C. Gallart, A. Aparicio, S. Cassisi, I. Drozdovsky, S.L. Hidalgo, E.D. Skillman, P.B. Stetson, The ACS LCID project. II. Faint variable stars in the isolated dwarf irregular galaxy IC 1613. Astrophys. J. 712, 1259–1276 (2010). doi: 10.1088/0004-637X/712/2/1259 ADSCrossRefGoogle Scholar
  16. E.J. Bernard, M. Monelli, C. Gallart, G. Fiorentino, S. Cassisi, A. Aparicio, A.A. Cole, I. Drozdovsky, S.L. Hidalgo, E.D. Skillman, P.B. Stetson, E. Tolstoy, The ACS LCID project—VIII. The short-period Cepheids of Leo A. Mon. Not. R. Astron. Soc. 432, 3047–3061 (2013). doi: 10.1093/mnras/stt655 ADSCrossRefGoogle Scholar
  17. S. Birrer, A. Amara, A. Refregier, Gravitational lens modeling with basis sets. Astrophys. J. 813, 102 (2015). doi: 10.1088/0004-637X/813/2/102 ADSCrossRefGoogle Scholar
  18. S. Birrer, A. Amara, A. Refregier, The mass-sheet degeneracy and time-delay cosmography: analysis of the strong lens RXJ1131-1231. J. Cosmol. Astropart. Phys. 8, 020 (2016). doi: 10.1088/1475-7516/2016/08/020 ADSCrossRefGoogle Scholar
  19. J.S. Bolton, M.G. Haehnelt, M. Viel, R.F. Carswell, Spatial fluctuations in the spectral shape of the ultraviolet background at \(2 < z < 3\) and the reionization of helium. Mon. Not. R. Astron. Soc. 366, 1378–1390 (2006). doi: 10.1111/j.1365-2966.2006.09927.x ADSCrossRefGoogle Scholar
  20. M. Bonamente, M.K. Joy, S.J. LaRoque, J.E. Carlstrom, E.D. Reese, K.S. Dawson, Determination of the cosmic distance scale from Sunyaev–Zel’dovich effect and Chandra X-ray measurements of high-redshift galaxy clusters. Astrophys. J. 647, 25–54 (2006). doi: 10.1086/505291 ADSCrossRefGoogle Scholar
  21. G. Bono, F. Caputo, V. Castellani, M. Marconi, J. Storm, Theoretical insights into the RR Lyrae K-band period-luminosity relation. Mon. Not. R. Astron. Soc. 326, 1183–1190 (2001). doi: 10.1046/j.1365-8711.2001.04655.x ADSCrossRefGoogle Scholar
  22. G. Bono, F. Caputo, V. Castellani, M. Marconi, J. Storm, S. Degl’Innocenti, A pulsational approach to near-infrared and visual magnitudes of RR Lyr stars. Mon. Not. R. Astron. Soc. 344, 1097–1106 (2003). doi: 10.1046/j.1365-8711.2003.06878.x ADSCrossRefGoogle Scholar
  23. G. Bono, F. Caputo, M. Di Criscienzo, RR Lyrae stars in galactic globular clusters. VI. The period-amplitude relation. Astron. Astrophys. 476, 779–790 (2007). doi: 10.1051/0004-6361:20078206 ADSCrossRefGoogle Scholar
  24. V. Bonvin, F. Courbin, S.H. Suyu, P.J. Marshall, C.E. Rusu, D. Sluse, M. Tewes, K.C. Wong, T. Collett, C.D. Fassnacht, T. Treu, M.W. Auger, S. Hilbert, L.V.E. Koopmans, G. Meylan, N. Rumbaugh, A. Sonnenfeld, C. Spiniello, H0LiCOW V. New COSMOGRAIL time delays of HE0435-1223: \(H\_0\) to 3.8% precision from strong lensing in a flat \(\Lambda \mbox{CDM}\) model. Mon. Not. R. Astron. Soc. 465, 4914–4930 (2017). doi: 10.1093/mnras/stw3006 ADSCrossRefGoogle Scholar
  25. C. Bot, N. Ysard, D. Paradis, J.P. Bernard, G. Lagache, F.P. Israel, W.F. Wall, Submillimeter to centimeter excess emission from the Magellanic clouds. II. On the nature of the excess. Astron. Astrophys. 523, A20 (2010). doi: 10.1051/0004-6361/201014986 ADSCrossRefGoogle Scholar
  26. J.A. Braatz, M.J. Reid, E.M.L. Humphreys, C. Henkel, J.J. Condon, K.Y. Lo, The Megamaser Cosmology Project. II. The angular-diameter distance to UGC 3789. Astrophys. J. 718, 657–665 (2010). doi: 10.1088/0004-637X/718/2/657 ADSCrossRefGoogle Scholar
  27. R.S. Bussmann, D. Riechers, A. Fialkov, J. Scudder, C.C. Hayward, W.I. Cowley, J. Bock, J. Calanog, S.C. Chapman, A. Cooray, F. De Bernardis, D. Farrah, H. Fu, R. Gavazzi, R. Hopwood, R.J. Ivison, M. Jarvis, C. Lacey, A. Loeb, S.J. Oliver, I. Pérez-Fournon, D. Rigopoulou, I.G. Roseboom, D. Scott, A.J. Smith, L. Vieira, J.D. Wang, J. Wardlow, HerMES: ALMA imaging of Herschel-selected dusty star-forming galaxies. Astrophys. J. 812, 43 (2015). doi: 10.1088/0004-637X/812/1/43 ADSCrossRefGoogle Scholar
  28. C. Cacciari, G. Clementini, Globular cluster distances from RR Lyrae stars, in Stellar Candles for the Extragalactic Distance Scale, ed. by D. Alloin, W. Gieren. Lect. Notes Phys., vol. 635 (Springer, Berlin, 2003), pp. 105–122. doi: 10.1007/978-3-540-39882-0_6 CrossRefGoogle Scholar
  29. J.A.R. Caldwell, I.M. Coulson, The geometry and distance of the Magellanic clouds from Cepheid variables. Mon. Not. R. Astron. Soc. 218, 223–246 (1986). doi: 10.1093/mnras/218.2.223 ADSCrossRefGoogle Scholar
  30. F. Caputo, V. Castellani, M. Marconi, V. Ripepi, Pulsational \(M_{V}\) versus [Fe/H] relation(s) for globular cluster RR Lyrae variables. Mon. Not. R. Astron. Soc. 316, 819–826 (2000). doi: 10.1046/j.1365-8711.2000.03591.x ADSCrossRefGoogle Scholar
  31. E. Carretta, R.G. Gratton, G. Clementini, F. Fusi Pecci, Distances, ages, and epoch of formation of globular clusters. Astrophys. J. 533, 215–235 (2000). doi: 10.1086/308629 ADSCrossRefGoogle Scholar
  32. E. Carretta, A. Bragaglia, R. Gratton, V. D’Orazi, S. Lucatello, Intrinsic iron spread and a new metallicity scale for globular clusters. Astron. Astrophys. 508, 695–706 (2009). doi: 10.1051/0004-6361/200913003 ADSCrossRefGoogle Scholar
  33. S. Cassisi, M. Salaris, Old Stellar Populations: How to Study the Fossil Record of Galaxy Formation (Wiley, New York, 2013) CrossRefGoogle Scholar
  34. M. Catelan, B.J. Pritzl, H.A. Smith, The RR Lyrae period–luminosity relation. I. Theoretical calibration. Astrophys. J. Suppl. Ser. 154, 633–649 (2004). doi: 10.1086/422916 ADSCrossRefGoogle Scholar
  35. M. Catelan, H.A. Smith, Pulsating Stars (Wiley, New York, 2015) CrossRefGoogle Scholar
  36. B. Chaboyer, Globular cluster distance determinations, in Post-Hipparcos Cosmic Candles. Astrophys. Space Sci. Libr., vol. 237 (1999), pp. 111–124. doi: 10.1007/978-94-011-4734-7_7 CrossRefGoogle Scholar
  37. J.H.H. Chan, S.H. Suyu, T. Chiueh, A. More, P.J. Marshall, J. Coupon, M. Oguri, P. Price, Chitah: strong-gravitational-lens hunter in imaging surveys. Astrophys. J. 807, 138 (2015). doi: 10.1088/0004-637X/807/2/138 ADSCrossRefGoogle Scholar
  38. G.C.F. Chen, S.H. Suyu, K.C. Wong, C.D. Fassnacht, T. Chiueh, A. Halkola, I. Hu, M.W. Auger, L.V.E. Koopmans, D.J. Lagattuta, J.P. McKean, S. Vegetti, SHARP—III: first use of adaptive optics imaging to constrain cosmology with gravitational lens time delays. Mon. Not. R. Astron. Soc. 462, 3457–3475 (2016). doi: 10.1093/mnras/stw991 ADSCrossRefGoogle Scholar
  39. M. Cignoni, A.A. Cole, M. Tosi, J.S. Gallagher, E. Sabbi, J. Anderson, E.K. Grebel, A. Nota, Mean age gradient and asymmetry in the star formation history of the Small Magellanic Cloud. Astrophys. J. 775, 83 (2013). doi: 10.1088/0004-637X/775/2/83 ADSCrossRefGoogle Scholar
  40. M.-R.L. Cioni, G. Clementini, L. Girardi, R. Guandalini, M. Gullieuszik, B. Miszalski, M.-I. Moretti, V. Ripepi, S. Rubele, G. Bagheri, K. Bekki, N. Cross, W.J.G. de Blok, R. de Grijs, J.P. Emerson, C.J. Evans, B. Gibson, E. Gonzales-Solares, M.A.T. Groenewegen, M. Irwin, V.D. Ivanov, J. Lewis, M. Marconi, J.-B. Marquette, C. Mastropietro, B. Moore, R. Napiwotzki, T. Naylor, J.M. Oliveira, M. Read, E. Sutorius, J.T. van Loon, M.I. Wilkinson, P.R. Wood, Astron. Astrophys. 527, A116 (2011). doi: 10.1051/0004-6361/201016137 CrossRefGoogle Scholar
  41. G. Clementini, L. Federici, C. Corsi, C. Cacciari, M. Bellazzini, H.A. Smith, RR Lyrae variables in the globular clusters of M31: a first detection of likely candidates. Astrophys. J. Lett. 559, L109–L112 (2001). doi: 10.1086/323973 ADSCrossRefGoogle Scholar
  42. G. Clementini, R. Gratton, A. Bragaglia, E. Carretta, L. Di Fabrizio, M. Maio, Distance to the Large Magellanic Cloud: the RR Lyrae stars. Astron. J. 125, 1309–1329 (2003). doi: 10.1086/367773 ADSCrossRefGoogle Scholar
  43. G. Clementini, M. Cignoni, R. Contreras Ramos, L. Federici, V. Ripepi, M. Marconi, M. Tosi, I. Musella, Variability and star formation in Leo T, the lowest luminosity star-forming galaxy known today. Astrophys. J. 756, 108 (2012). doi: 10.1088/0004-637X/756/2/108 ADSCrossRefGoogle Scholar
  44. A.A. Cole, E.D. Skillman, E. Tolstoy, J.S. Gallagher iii, A. Aparicio, A.E. Dolphin, C. Gallart, S.L. Hidalgo, A. Saha, P.B. Stetson, D.R. Weisz, A. Leo, A late-blooming survivor of the epoch of reionization in the local group. Astrophys. J. Lett. 659, L17–L20 (2007). doi: 10.1086/516711 ADSCrossRefGoogle Scholar
  45. A.A. Cole, D.R. Weisz, A.E. Dolphin, E.D. Skillman, A.W. McConnachie, A.M. Brooks, R. Leaman, Delayed star formation in isolated dwarf galaxies: Hubble space telescope star formation history of the Aquarius dwarf irregular. Astrophys. J. 795, 54 (2014). doi: 10.1088/0004-637X/795/1/54 ADSCrossRefGoogle Scholar
  46. T.E. Collett, M.W. Auger, Cosmological constraints from the double source plane lens SDSSJ0946+1006. Mon. Not. R. Astron. Soc. 443, 969–976 (2014). doi: 10.1093/mnras/stu1190 ADSCrossRefGoogle Scholar
  47. T.E. Collett, P.J. Marshall, M.W. Auger, S. Hilbert, S.H. Suyu, Z. Greene, T. Treu, C.D. Fassnacht, L.V.E. Koopmans, M. Bradač, R.D. Blandford, Reconstructing the lensing mass in the Universe from photometric catalogue data. Mon. Not. R. Astron. Soc. 432, 679–692 (2013). doi: 10.1093/mnras/stt504 ADSCrossRefGoogle Scholar
  48. M.L.M. Collins, S.C. Chapman, R.M. Rich, R.A. Ibata, N.F. Martin, M.J. Irwin, N.F. Bate, G.F. Lewis, J. Peñarrubia, N. Arimoto, C.M. Casey, A.M.N. Ferguson, A. Koch, A.W. McConnachie, N. Tanvir, A kinematic study of the Andromeda dwarf spheroidal system. Astrophys. J. 768, 172 (2013). doi: 10.1088/0004-637X/768/2/172 ADSCrossRefGoogle Scholar
  49. M.L.M. Collins, N.F. Martin, R.M. Rich, R.A. Ibata, S.C. Chapman, A.W. McConnachie, A.M. Ferguson, M.J. Irwin, G.F. Lewis, Comparing the observable properties of dwarf galaxies on and off the Andromeda plane. Astrophys. J. Lett. 799, L13 (2015). doi: 10.1088/2041-8205/799/1/L13 ADSCrossRefGoogle Scholar
  50. A.R. Conn, R.A. Ibata, G.F. Lewis, Q.A. Parker, D.B. Zucker, N.F. Martin, A.W. McConnachie, M.J. Irwin, N. Tanvir, M.A. Fardal, A.M.N. Ferguson, S.C. Chapman, D. Valls-Gabaud, A Bayesian approach to locating the red giant branch tip magnitude. II. Distances to the satellites of M31. Astrophys. J. 758, 11 (2012). doi: 10.1088/0004-637X/758/1/11 ADSCrossRefGoogle Scholar
  51. G. Coppola, M. Marconi, P.B. Stetson, G. Bono, V.F. Braga, V. Ripepi, M. Dall’Ora, I. Musella, R. Buonanno, M. Fabrizio, I. Ferraro, G. Fiorentino, G. Iannicola, M. Monelli, M. Nonino, F. Thévenin, A.R. Walker, The Carina project IX: on hydrogen and helium burning variables. Astrophys. J. 814, 71 (2015). doi: 10.1088/0004-637X/814/1/71 ADSCrossRefGoogle Scholar
  52. F. Courbin, P. Magain, M. Kirkove, S. Sohy, A method for spatial deconvolution of spectra. Astrophys. J. 529, 1136–1144 (2000). doi: 10.1086/308291 ADSCrossRefGoogle Scholar
  53. F. Courbin, A. Eigenbrod, C. Vuissoz, G. Meylan, P. Magain, COSMOGRAIL: the COSmological MOnitoring of GRAvItational Lenses, in Gravitational Lensing Impact on Cosmology, ed. by Y. Mellier, G. Meylan. Int’l Astron. Union Symp., vol. 225 (2005), pp. 297–303. doi: 10.1017/S1743921305002097 Google Scholar
  54. F. Courbin, V. Chantry, Y. Revaz, D. Sluse, C. Faure, M. Tewes, E. Eulaers, M. Koleva, I. Asfandiyarov, S. Dye, P. Magain, H. van Winckel, J. Coles, P. Saha, M. Ibrahimov, G. Meylan, COSMOGRAIL: the COSmological MOnitoring of GRAvItational Lenses. IX. Time delays, lens dynamics and baryonic fraction in HE 0435-1223. Astron. Astrophys. 536, A53 (2011). doi: 10.1051/0004-6361/201015709 ADSCrossRefGoogle Scholar
  55. S. Crandall, B. Ratra, Non-Gaussian error distributions of LMC distance moduli measurements. Astrophys. J. 815, 87 (2015). doi: 10.1088/0004-637X/815/2/87 ADSCrossRefGoogle Scholar
  56. H.H. Crowl, A. Sarajedini, A.E. Piatti, D. Geisler, E. Bica, J.J. Clariá, J.F.C. Santos Jr., The line-of-sight depth of populous clusters in the Small Magellanic Cloud. Astron. J. 122, 220–231 (2001). doi: 10.1086/321128 ADSCrossRefGoogle Scholar
  57. F. Cusano, G. Clementini, A. Garofalo, M. Cignoni, L. Federici, M. Marconi, I. Musella, V. Ripepi, K. Boutsia, M. Fumana, S. Gallozzi, V. Testa, Dwarf spheroidal satellites of M31. I. Variable stars and stellar populations in Andromeda XIX. Astrophys. J. 779, 7 (2013). doi: 10.1088/0004-637X/779/1/7 ADSCrossRefGoogle Scholar
  58. F. Cusano, A. Garofalo, G. Clementini, M. Cignoni, L. Federici, M. Marconi, I. Musella, V. Ripepi, R. Speziali, E. Sani, R. Merighi, Variable stars and stellar populations in Andromeda XXI. II. Another merged galaxy satellite of M31? Astrophys. J. 806, 200 (2015). doi: 10.1088/0004-637X/806/2/200 ADSCrossRefGoogle Scholar
  59. G.S. Da Costa, T.E. Armandroff, Standard globular cluster giant branches in the (\(M_{I}, V-I_{0}\)) plane. Astron. J. 100, 162–181 (1990). doi: 10.1086/115500 ADSCrossRefGoogle Scholar
  60. G.S. Da Costa, T.E. Armandroff, N. Caldwell, P. Seitzer, The dwarf spheroidal companions to M31: WFPC2 observations of Andromeda I. Astron. J. 112, 2576–2595 (1996). doi: 10.1086/118204 ADSCrossRefGoogle Scholar
  61. G.S. Da Costa, T.E. Armandroff, N. Caldwell, P. Seitzer, The dwarf spheroidal companions to M31: WFPC2 observations of Andromeda II. Astron. J. 119, 705–726 (2000). doi: 10.1086/301223 ADSCrossRefGoogle Scholar
  62. G.S. Da Costa, T.E. Armandroff, N. Caldwell, The dwarf spheroidal companions to M31: WFPC2 observations of Andromeda III. Astron. J. 124, 332–348 (2002). doi: 10.1086/340965 ADSCrossRefGoogle Scholar
  63. G.S. Da Costa, M. Rejkuba, H. Jerjen, E.K. Grebel, Ancient stars beyond the local group: RR Lyrae variables and blue horizontal branch stars in sculptor group dwarf galaxies. Astrophys. J. Lett. 708, L121–L125 (2010). doi: 10.1088/2041-8205/708/2/L121 ADSCrossRefGoogle Scholar
  64. N. Dalal, D.E. Holz, S.A. Hughes, B. Jain, Short GRB and binary black hole standard sirens as a probe of dark energy. Phys. Rev. D 74, 063006 (2006). doi: 10.1103/PhysRevD.74.063006 ADSCrossRefGoogle Scholar
  65. T. Abbott, F.B. Abdalla, J. Aleksić, S. Allam, A. Amara, D. Bacon, E. Balbinot, M. Banerji, K. Bechtol, A. Benoit-Lévy, G.M. Bernstein, E. Bertin, J. Blazek, C. Bonnett, S. Bridle, D. Brooks, R.J. Brunner, E. Buckley-Geer, D.L. Burke, G.B. Caminha, D. Capozzi, J. Carlsen, A. Carnero-Rosell, M. Carollo, M. Carrasco-Kind, J. Carretero, F.J. Castander, L. Clerkin, T. Collett, C. Conselice, M. Crocce, C.E. Cunha, C.B. D’Andrea, L.N. da Costa, T.M. Davis, S. Desai, H.T. Diehl, J.P. Dietrich, S. Dodelson, P. Doel, A. Drlica-Wagner, J. Estrada, J. Etherington, A.E. Evrard, J. Fabbri, D.A. Finley, B. Flaugher, R.J. Foley, P. Fosalba, J. Frieman, J. García-Bellido, E. Gaztanaga, D.W. Gerdes, T. Giannantonio, D.A. Goldstein, D. Gruen, R.A. Gruendl, P. Guarnieri, G. Gutierrez, W. Hartley, K. Honscheid, B. Jain, D.J. James, T. Jeltema, S. Jouvel, R. Kessler, A. King, D. Kirk, R. Kron, K. Kuehn, N. Kuropatkin, O. Lahav, T.S. Li, M. Lima, H. Lin, M.A.G. Maia, M. Makler, M. Manera, C. Maraston, J.L. Marshall, P. Martini, R.G. McMahon, P. Melchior, A. Merson, C.J. Miller, R. Miquel, J.J. Mohr, X. Morice-Atkinson, K. Naidoo, E. Neilsen, R.C. Nichol, B. Nord, R. Ogando, F. Ostrovski, A. Palmese, A. Papadopoulos, H.V. Peiris, J. Peoples, W.J. Percival, A.A. Plazas, S.L. Reed, A. Refregier, A.K. Romer, A. Roodman, A. Ross, E. Rozo, E.S. Rykoff, I. Sadeh, M. Sako, C. Sánchez, E. Sanchez, B. Santiago, V. Scarpine, M. Schubnell, I. Sevilla-Noarbe, E. Sheldon, M. Smith, R.C. Smith, M. Soares-Santos, F. Sobreira, M. Soumagnac, E. Suchyta, M. Sullivan, M. Swanson, G. Tarle, J. Thaler, D. Thomas, R.C. Thomas, D. Tucker, J.D. Vieira, V. Vikram, A.R. Walker, R.H. Wechsler, J. Weller, W. Wester, L. Whiteway, H. Wilcox, B. Yanny, Y. Zhang, J. Zuntz (Dark Energy Survey Collaboration), The dark energy survey: more than dark energy—an overview. Mon. Not. R. Astron. Soc. 460, 1270–1299 (2016). doi: 10.1093/mnras/stw641 ADSCrossRefGoogle Scholar
  66. T.J.L. de Boer, E. Tolstoy, V. Hill, A. Saha, K. Olsen, E. Starkenburg, B. Lemasle, M.J. Irwin, G. Battaglia, The star formation and chemical evolution history of the sculptor dwarf spheroidal galaxy. Astron. Astrophys. 539, A103 (2012). doi: 10.1051/0004-6361/201118378 CrossRefGoogle Scholar
  67. R. de Grijs, An Introduction to Distance Measurement in Astronomy (Wiley, New York, 2011) CrossRefGoogle Scholar
  68. R. de Grijs, Advancing the physics of cosmic distances: conference summary, in Advancing the Physics of Cosmic Distances. Int’l Astron. Union Symp., vol. 289 (2013), pp. 351–360. doi: 10.1017/S1743921312021709 Google Scholar
  69. R. de Grijs, J.E. Wicker, G. Bono, Clustering of local group distances: publication bias or correlated measurements? I. The Large Magellanic Cloud. Astron. J. 147, 122 (2014). doi: 10.1088/0004-6256/147/5/122 ADSCrossRefGoogle Scholar
  70. R. de Grijs, G. Bono, Clustering of local group distances: publication bias or correlated measurements? II. M31 and beyond. Astron. J. 148, 117 (2014). doi: 10.1088/0004-6256/148/1/17 CrossRefGoogle Scholar
  71. R. de Grijs, G. Bono, Clustering of local group distances: publication bias or correlated measurements? III. The Small Magellanic Cloud. Astron. J. 149, 179 (2015). doi: 10.1088/0004-6256/149/6/179 ADSCrossRefGoogle Scholar
  72. R. de Grijs, G. Bono, Clustering of local group distances: publication bias or correlated measurements? IV. The galactic center. Astrophys. J. Suppl. Ser. 227, 5 (2016). doi: 10.3847/0067-0049/227/1/5 ADSCrossRefGoogle Scholar
  73. K. Dobashi, J.-P. Bernard, A. Kawamura, F. Egusa, A. Hughes, D. Paradis, C. Bot, W.T. Reach, Extinction map of the Small Magellanic Cloud based on the SIRIUS and 6X 2MASS point source catalogs. Astron. J. 137, 5099–5109 (2009). doi: 10.1088/0004-6256/137/6/5099 ADSCrossRefGoogle Scholar
  74. E. D’Onghia, G. Besla, T.J. Cox, L. Hernquist, Resonant stripping as the origin of dwarf spheroidal galaxies. Nature 460, 605–607 (2009). doi: 10.1038/nature08215 ADSCrossRefGoogle Scholar
  75. S. Dye, S.J. Warren, Decomposition of the visible and dark matter in the Einstein ring 0047-2808 by semilinear inversion. Astrophys. J. 623, 31–41 (2005). doi: 10.1086/428340 ADSCrossRefGoogle Scholar
  76. A. Eigenbrod, F. Courbin, C. Vuissoz, G. Meylan, P. Saha, S. Dye, COSMOGRAIL: the COSmological MOnitoring of GRAvItational Lenses. I. How to sample the light curves of gravitationally lensed quasars to measure accurate time delays. Astron. Astrophys. 436, 25–35 (2005). doi: 10.1051/0004-6361:20042422 ADSCrossRefGoogle Scholar
  77. A. Eigenbrod, F. Courbin, G. Meylan, C. Vuissoz, P. Magain, COSMOGRAIL: the COSmological MOnitoring of GRAvItational Lenses. III. Redshift of the lensing galaxy in eight gravitationally lensed quasars. Astron. Astrophys. 451, 759–766 (2006). doi: 10.1051/0004-6361:20054454 ADSCrossRefGoogle Scholar
  78. A. Eigenbrod, F. Courbin, G. Meylan, COSMOGRAIL: the COSmological MOnitoring of GRAvItational Lenses. VI. Redshift of the lensing galaxy in seven gravitationally lensed quasars. Astron. Astrophys. 465, 51–56 (2007). doi: 10.1051/0004-6361:20066939 ADSCrossRefGoogle Scholar
  79. J.D. Ellithorpe, C.S. Kochanek, J.N. Hewitt, Visibility LensClean and the reliability of deconvolved radio images. Astrophys. J. 464, 556–567 (1996). doi: 10.1086/177346 ADSCrossRefGoogle Scholar
  80. R. Fadely, C.R. Keeton, R. Nakajima, G.M. Bernstein, Improved constraints on the gravitational lens Q0957+561. II. Strong lensing. Astrophys. J. 711, 246–267 (2010). doi: 10.1088/0004-637X/711/1/246 ADSCrossRefGoogle Scholar
  81. E.E. Falco, M.V. Gorenstein, I.I. Shapiro, On model-dependent bounds on \(H_{0}\) from gravitational images application of Q0957+561A,B. Astrophys. J. Lett. 289, L1–L4 (1985). doi: 10.1086/184422 ADSCrossRefGoogle Scholar
  82. C.D. Fassnacht, L.V.E. Koopmans, K.C. Wong, Galaxy number counts and implications for strong lensing. Mon. Not. R. Astron. Soc. 410, 2167–2179 (2011). doi: 10.1111/j.1365-2966.2010.17591.x ADSCrossRefGoogle Scholar
  83. A.M.N. Ferguson, A.D. Mackey, Substructure and tidal streams in the Andromeda galaxy and its satellites, in Astrophys. Space Sci. Libr., vol. 420, ed. by H.J. Newberg, J.L. Carlin (2016), pp. 191–217. doi: 10.1007/978-3-319-19336-6_8 Google Scholar
  84. L. Ferrarese, J.R. Mould, R.C. Kennicutt Jr., J. Huchra, H.C. Ford, W.L. Freedman, P.B. Stetson, B.F. Madore, S. Sakai, B.K. Gibson, J.A. Graham, S.M. Hughes, G.D. Illingworth, D.D. Kelson, L. Macri, K. Sebo, N.A. Silbermann, The Hubble space telescope key project on the extragalactic distance scale. XXVI. The calibration of population II secondary distance indicators and the value of the Hubble constant. Astrophys. J. 529, 745–767 (2000). doi: 10.1086/308309 ADSCrossRefGoogle Scholar
  85. G. Fiorentino, M. Limongi, F. Caputo, M. Marconi, Synthetic properties of bright metal-poor variables. I. ‘Anomalous’ Cepheids. Astron. Astrophys. 460, 155–166 (2006). doi: 10.1051/0004-6361:20065349 ADSCrossRefGoogle Scholar
  86. G. Fiorentino, A. Monachesi, S.C. Trager, T.R. Lauer, A. Saha, K.J. Mighell, W. Freedman, A. Dressler, C. Grillmair, E. Tolstoy, RR Lyrae variables in M32 and the disk of M31. Astrophys. J. 708, 817–833 (2010). doi: 10.1088/0004-637X/708/1/817 ADSCrossRefGoogle Scholar
  87. G. Fiorentino, R. Contreras Ramos, E. Tolstoy, G. Clementini, A. Saha, The ancient stellar population of M32: RR Lyrae variable stars confirmed. Astron. Astrophys. 539, A138 (2012a). doi: 10.1051/0004-6361/201117434 ADSCrossRefGoogle Scholar
  88. G. Fiorentino, P.B. Stetson, M. Monelli, G. Bono, E.J. Bernard, A. Pietrinferni, On the central helium-burning variable stars of the LeoI dwarf spheroidal galaxy. Astrophys. J. Lett. 759, L12 (2012b). doi: 10.1088/2041-8205/759/1/L12 ADSCrossRefGoogle Scholar
  89. G. Fiorentino, G. Bono, M. Monelli, P.B. Stetson, E. Tolstoy, C. Gallart, M. Salaris, C.E. Martínez-Vásquez, E.J. Bernard, Weak galactic halo-dwarf spheroidal connection from RR Lyrae stars. Astrophys. J. Lett. 798, L12 (2015). doi: 10.1088/2041-8205/798/1/L12 ADSCrossRefGoogle Scholar
  90. B. Flaugher, H.T. Diehl, K. Honscheid, T.M.C. Abbott, O. Alvarez, R. Angstadt, J.T. Annis, M. Antonik, O. Ballester, L. Beaufore, G.M. Bernstein, R.A. Bernstein, B. Bigelow, M. Bonati, D. Boprie, D. Brooks, E.J. Buckley-Geer, J. Campa, L. Cardiel-Sas, F.J. Castander, J. Castilla, H. Cease, J.M. Cela-Ruiz, S. Chappa, E. Chi, C. Cooper, L.N. da Costa, E. Dede, G. Derylo, D.L. DePoy, J. de Vicente, P. Doel, A. Drlica-Wagner, J. Eiting, A.E. Elliott, J. Emes, J. Estrada, A. Fausti Neto, D.A. Finley, R. Flores, J. Frieman, D. Gerdes, M.D. Gladders, B. Gregory, G.R. Gutierrez, J. Hao, S.E. Holland, S. Holm, D. Huffman, C. Jackson, D.J. James, M. Jonas, A. Karcher, I. Karliner, S. Kent, R. Kessler, M. Kozlovsky, R.G. Kron, D. Kubik, K. Kuehn, S. Kuhlmann, K. Kuk, O. Lahav, A. Lathrop, J. Lee, M.E. Levi, P. Lewis, T.S. Li, I. Mandrichenko, J.L. Marshall, G. Martinez, K.W. Merritt, R. Miquel, F. Muñoz, E.H. Neilsen, R.C. Nichol, B. Nord, R. Ogando, J. Olsen, N. Palaio, K. Patton, J. Peoples, A.A. Plazas, J. Rauch, K. Reil, J.P. Rheault, N.A. Roe, H. Rogers, A. Roodman, E. Sanchez, V. Scarpine, R.H. Schindler, R. Schmidt, R. Schmitt, M. Schubnell, K. Schultz, P. Schurter, L. Scott, S. Serrano, T.M. Shaw, R.C. Smith, M. Soares-Santos, A. Stefanik, W. Stuermer, E. Suchyta, A. Sypniewski, G. Tarle, J. Thaler, R. Tighe, C. Tran, D. Tucker, A.R. Walker, G. Wang, M. Watson, C. Weaverdyck, W. Wester, R. Woods, B. Yanny (DES Collaboration), The dark energy camera. Astron. J. 150, 150 (2015). doi: 10.1088/0004-6256/150/5/150 ADSCrossRefGoogle Scholar
  91. T. Foster, B. Cooper, Structure and dynamics of the Milky Way: the evolving picture, in The Dynamic Interstellar Medium: A Celebration of the Canadian Galactic Plane Survey, ed. by R. Kothes, T.L. Landecker, A.G. Willis. Astron. Soc. Pac. Conf. Proc., vol. 438 (2010), pp. 16–30 Google Scholar
  92. C. Francis, E. Anderson, Two estimates of the distance to the galactic centre. Mon. Not. R. Astron. Soc. 441, 1105–1114 (2014). doi: 10.1093/mnras/stu631 ADSCrossRefGoogle Scholar
  93. F. Fraternali, E. Tolstoy, M.J. Irwin, A.A. Cole, Life at the periphery of the local group: the kinematics of the Tucana dwarf galaxy. Astron. Astrophys. 499, 121–128 (2009). doi: 10.1051/0004-6361/200810830 ADSCrossRefGoogle Scholar
  94. W.L. Freedman, B.F. Madore, B.K. Gibson, L. Ferrarese, D.D. Kelson, S. Sakai, J.R. Mould, R.C. Kennicutt Jr., H.C. Ford, J.A. Graham, J.P. Huchra, S.M.G. Hughes, G.D. Illingworth, L.M. Macri, P.B. Stetson, Final results from the Hubble space telescope key project to measure the Hubble constant. Astrophys. J. 553, 47–72 (2001). doi: 10.1086/320638 ADSCrossRefGoogle Scholar
  95. W.L. Freedman, B.F. Madore, V. Scowcroft, C. Burns, A. Monson, S.E. Persson, M. Seibert, J. Rigby, Carnegie Hubble program: a mid-infrared calibration of the Hubble constant. Astrophys. J. 758, 24 (2012). doi: 10.1088/0004-637X/758/1/24 ADSCrossRefGoogle Scholar
  96. C. Gallart, A. Aparicio, W.L. Freedman, B.F. Madore, D. Martínez-Delgado, P.B. Stetson, The variable-star population in Phoenix: coexistence of anomalous and short-period classical Cepheids and detection of RR Lyrae variables. Astron. J. 127, 1486–1501 (2004). doi: 10.1086/381955 ADSCrossRefGoogle Scholar
  97. C. Gallart, M. Monelli, L. Mayer, A. Aparicio, G. Battaglia, E.J. Bernard, S. Cassisi, A.A. Cole, A.E. Dolphin, I. Drozdovsky, S.L. Hidalgo, J.F. Navarro, S. Salvadori, E.D. Skillman, P.B. Stetson, D.R. Weisz, The ACS LCID project: on the origin of dwarf galaxy types—a manifestation of the halo assembly bias? Astrophys. J. Lett. 811, L18 (2015). doi: 10.1088/2041-8205/811/2/L18 ADSCrossRefGoogle Scholar
  98. R. Gavazzi, P.J. Marshall, T. Treu, A. Sonnenfeld, RINGFINDER: automated detection of galaxy-scale gravitational lenses in ground-based multi-filter imaging data. Astrophys. J. 785, 144 (2014). doi: 10.1088/0004-637X/785/2/144 ADSCrossRefGoogle Scholar
  99. M.V. Gorenstein, I.I. Shapiro, E.E. Falco, Degeneracies in parameter estimates for models of gravitational lens systems. Astrophys. J. 327, 693–711 (1988). doi: 10.1086/166226 ADSCrossRefGoogle Scholar
  100. D. Graczyk, G. Pietrzyński, I.B. Thompson, W. Gieren, B. Pilecki, P. Konorski, A. Udalski, I. Soszyński, S. Villanova, M. Górski, K. Suchomska, P. Karczmarek, R.-P. Kudritzki, F. Bresolin, A. Gallenne, The Araucaria Project. The distance to the Small Magellanic Cloud from late-type eclipsing binaries. Astrophys. J. 780, 59 (2014). doi: 10.1088/0004-637X/780/1/59 ADSCrossRefGoogle Scholar
  101. R.G. Gratton, A. Bragaglia, G. Clementini, E. Carretta, L. Di Fabrizio, M. Maio, E. Taribello, Metal abundances of RR Lyrae stars in the bar of the Large Magellanic Cloud. Astron. Astrophys. 421, 937–952 (2004). doi: 10.1051/0004-6361:20035840 ADSCrossRefGoogle Scholar
  102. Z.S. Greene, S.H. Suyu, T. Treu, S. Hilbert, M.W. Auger, T.E. Collett, P.J. Marshall, C.D. Fassnacht, R.D. Blandford, M. Bradač, L.V.E. Koopmans, Improving the precision of time-delay cosmography with observations of galaxies along the line of sight. Astrophys. J. 768, 39 (2013). doi: 10.1088/0004-637X/768/1/39 ADSCrossRefGoogle Scholar
  103. M.A.T. Groenewegen, LMC and SMC Cepheids: combining OGLE with DENIS and 2MASS infrared data. Astron. Astrophys. 363, 901–916 (2000) ADSGoogle Scholar
  104. R. Haschke, E.K. Grebel, S. Duffau, Three-dimensional maps of the Magellanic clouds using RR Lyrae stars and Cepheids. II. The Small Magellanic Cloud. Astron. J. 144, 107 (2012). doi: 10.1088/0004-6256/144/4/107 ADSCrossRefGoogle Scholar
  105. D. Hatt, R.L. Beaton, W.L. Freedman, B.F. Madore, I.S. Jang, T.J. Hoyt, M.G. Lee, A.J. Monson, J.A. Rich, V. Scowcroft, M. Seibert, The Carnegie–Chicago Hubble Program. II. The Distance to IC 1613: The Tip of the Red Giant Branch and RR Lyrae Period–Luminosity Relations. Astrophys. J. (2017, submitted). arXiv:1703.06468
  106. J.R. Herrnstein, J.M. Moran, L.J. Greenhill, P.J. Diamond, M. Inoue, N. Nakai, M. Miyoshi, C. Henkel, A. Riess, A geometric distance to the galaxy NGC4258 from orbital motions in a nuclear gas disk. Nature 400, 539–541 (1999). doi: 10.1038/22972 ADSCrossRefGoogle Scholar
  107. Y.D. Hezaveh, D.P. Marrone, C.D. Fassnacht, J.S. Spilker, J.D. Vieira, J.E. Aguirre, K.A. Aird, M. Aravena, M.L.N. Ashby, M. Bayliss, B.A. Benson, L.E. Bleem, M. Bothwell, M. Brodwin, J.E. Carlstrom, C.L. Chang, S.C. Chapman, T.M. Crawford, A.T. Crites, C. De Breuck, T. de Haan, M.A. Dobbs, E.B. Fomalont, E.M. George, M.D. Gladders, A.H. Gonzalez, T.R. Greve, N.W. Halverson, F.W. High, G.P. Holder, W.L. Holzapfel, S. Hoover, J.D. Hrubes, K. Husband, T.R. Hunter, R. Keisler, A.T. Lee, E.M. Leitch, M. Lueker, D. Luong-Van, M. Malkan, V. McIntyre, J.J. McMahon, J. Mehl, K.M. Menten, S.S. Meyer, L.M. Mocanu, E.J. Murphy, T. Natoli, S. Padin, T. Plagge, C.L. Reichardt, A. Rest, J. Ruel, J.E. Ruhl, K. Sharon, K.K. Schaffer, L. Shaw, E. Shirokoff, B. Stalder, Z. Staniszewski, A.A. Stark, K. Story, K. Vanderlinde, A. Weiß, N. Welikala, R. Williamson, ALMA observations of SPT-discovered, strongly lensed, dusty, star-forming galaxies. Astrophys. J. 767, 132 (2013). doi: 10.1088/0004-637X/767/2/132 ADSCrossRefGoogle Scholar
  108. Y.D. Hezaveh, N. Dalal, D.P. Marrone, Y.Y. Mao, W. Morningstar, D. Wen, R.D. Blandford, J.E. Carlstrom, C.D. Fassnacht, G.P. Holder, A. Kemball, P.J. Marshall, N. Murray, L. Perreault Levasseur, J.D. Vieira, R.H. Wechsler, Detection of lensing substructure using ALMA observations of the dusty galaxy SDP.81. Astrophys. J. 823, 37 (2016). doi: 10.3847/0004-637X/823/1/37 ADSCrossRefGoogle Scholar
  109. S.L. Hidalgo, A. Aparicio, D. Martínez-Delgado, C. Gallart, On the extended structure of the Phoenix dwarf galaxy. Astrophys. J. 705, 704–716 (2009). doi: 10.1088/0004-637X/705/1/704 ADSCrossRefGoogle Scholar
  110. S. Hilbert, S.D.M. White, J. Hartlap, P. Schneider, Strong lensing optical depths in a \(\Lambda \mbox{CDM}\) universe. Mon. Not. R. Astron. Soc. 382, 121–132 (2007). doi: 10.1111/j.1365-2966.2007.12391.x ADSCrossRefGoogle Scholar
  111. S. Hilbert, J. Hartlap, S.D.M. White, P. Schneider, Ray-tracing through the millennium simulation: born corrections and lens-lens coupling in cosmic shear and galaxy-galaxy lensing. Astron. Astrophys. 499, 31–43 (2009). doi: 10.1051/0004-6361/200811054 ADSCrossRefGoogle Scholar
  112. F. Aharonian et al. (Hitomi Collaboration), The quiescent intracluster medium in the core of the Perseus cluster. Nature 535, 117–121 (2016). doi: 10.1038/nature18627 ADSCrossRefGoogle Scholar
  113. N. Ho, M. Geha, R.R. Munoz, P. Guhathakurta, J. Kalirai, K.M. Gilbert, E. Tollerud, J. Bullock, R.L. Beaton, S.R. Majewski, Stellar kinematics of the Andromeda II dwarf spheroidal galaxy. Astrophys. J. 758, 124 (2012). doi: 10.1088/0004-637X/758/2/124 ADSCrossRefGoogle Scholar
  114. N. Ho, M. Geha, E.J. Tollerud, R. Zinn, P. Guhathakurta, L.C. Vargas, Metallicity evolution of the six most luminous M31 dwarf satellites. Astrophys. J. 798, 77 (2015). doi: 10.1088/0004-637X/798/2/77 ADSCrossRefGoogle Scholar
  115. D.E. Holz, S.A. Hughes, Using gravitational-wave standard sirens. Astrophys. J. 629, 15–22 (2005). doi: 10.1086/431341 ADSCrossRefGoogle Scholar
  116. R. Ibata, M. Irwin, G. Lewis, A.M.N. Ferguson, N. Tanvir, A giant stream of metal-rich stars in the halo of the galaxy M31. Nature 412, 49–52 (2001) ADSCrossRefGoogle Scholar
  117. N. Inada, M. Oguri, M.S. Shin, I. Kayo, M.A. Strauss, T. Morokuma, C.E. Rusu, M. Fukugita, C.S. Kochanek, G.T. Richards, D.P. Schneider, D.G. York, N.A. Bahcall, J.A. Frieman, P.B. Hall, R.L. White, The sloan digital sky survey quasar lens search. V. Final catalog from the seventh data release. Astron. J. 143, 119 (2012). doi: 10.1088/0004-6256/143/5/119 ADSCrossRefGoogle Scholar
  118. L. Inno, N. Matsunaga, G. Bono, F. Caputo, R. Buonanno, K. Genovali, C.D. Laney, M. Marconi, A.M. Piersimoni, F. Primas, M. Romaniello, On the distance of the Magellanic clouds using Cepheid NIR and optical–NIR period–Wesenheit relations. Astrophys. J. 764, 84 (2013). doi: 10.1088/0004-637X/764/1/84 ADSCrossRefGoogle Scholar
  119. L. Inno, G. Bono, N. Matsunaga, G. Fiorentino, M. Marconi, B. Lemasle, R. da Silva, I. Soszyński, A. Udalski, M. Romaniello, H.-W. Rix, The panchromatic view of the Magellanic clouds from classical Cepheids. I. Distance, reddening, and geometry of the Large Magellanic Cloud disk. Astrophys. J. 832, 176 (2016). doi: 10.3847/0004-637X/832/2/176 ADSCrossRefGoogle Scholar
  120. N. Jackson, H. Rampadarath, E.O. Ofek, M. Oguri, M.S. Shin, New lensed quasars from the MUSCLES survey. Mon. Not. R. Astron. Soc. 419, 2014–2024 (2012). doi: 10.1111/j.1365-2966.2011.19857.x ADSCrossRefGoogle Scholar
  121. I. Jee, E. Komatsu, S.H. Suyu, Measuring angular diameter distances of strong gravitational lenses. J. Cosmol. Astropart. Phys. 2015(11), 033 (2015). doi: 10.1088/1475-7516/2015/11/033 CrossRefGoogle Scholar
  122. I. Jee, E. Komatsu, S.H. Suyu, D. Huterer, Time-delay cosmography: increased leverage with angular diameter distances. J. Cosmol. Astropart. Phys. 2016(04), 031 (2016). doi: 10.1088/1475-7516/2016/04/031 CrossRefGoogle Scholar
  123. E.J. Jeffery, E. Smith, T.M. Brown, A.V. Sweigart, J.S. Kalirai, H.C. Ferguson, P. Guhathakurta, A. Renzini, R.M. Rich, HST/ACS observations of RR Lyrae stars in six ultra-deep fields of M31. Astron. J. 141, 171 (2011). doi: 10.1088/0004-6256/141/5/171 ADSCrossRefGoogle Scholar
  124. R. Jimenez, A. Loeb, Constraining cosmological parameters based on relative galaxy ages. Astrophys. J. 573, 37–42 (2002). doi: 10.1086/340549 ADSCrossRefGoogle Scholar
  125. R. Jimenez, L. Verde, T. Treu, D. Stern, Constraints on the equation of state of dark energy and the Hubble constant from stellar ages and the cosmic microwave background. Astrophys. J. 593, 622–629 (2003). doi: 10.1086/376595 ADSCrossRefGoogle Scholar
  126. R. Joseph, F. Courbin, R.B. Metcalf, C. Giocoli, P. Hartley, N. Jackson, F. Bellagamba, J.P. Kneib, L. Koopmans, G. Lemson, M. Meneghetti, G. Meylan, M. Petkova, S. Pires, A PCA-based automated finder for galaxy-scale strong lenses. Astron. Astrophys. 566, A63 (2014). doi: 10.1051/0004-6361/201423365 CrossRefGoogle Scholar
  127. E. Jullo, J.P. Kneib, Multiscale cluster lens mass mapping—I. Strong lensing modelling. Mon. Not. R. Astron. Soc. 395, 1319–1332 (2009). doi: 10.1111/j.1365-2966.2009.14654.x ADSCrossRefGoogle Scholar
  128. E. Jullo, J. Kneib, M. Limousin, Á. Elíasdóttir, P.J. Marshall, T. Verdugo, A Bayesian approach to strong lensing modelling of galaxy clusters. New J. Phys. 9, 447 (2007). doi: 10.1088/1367-2630/9/12/447 ADSCrossRefGoogle Scholar
  129. J.S. Kalirai, R.L. Beaton, M.C. Geha, K.M. Gilbert, P. Guhathakurta, E.N. Kirby, S.R. Majewski, J.C. Ostheimer, R.J. Patterson, J. Wolf, The SPLASH survey: internal kinematics, chemical abundances, and masses of the Andromeda I, II, III, VII, X, and XIV dwarf spheroidal galaxies. Astrophys. J. 711, 671–692 (2010). doi: 10.1088/0004-637X/711/2/671 ADSCrossRefGoogle Scholar
  130. J.S. Kalirai, J. Anderson, A. Dotter, H.B. Richer, G.G. Fahlman, B.M.S. Hansen, J. Hurley, I.N. Reid, R.M. Rich, M.M. Shara, Ultra-deep Hubble space telescope imaging of the Small Magellanic Cloud: the initial mass function of stars with \(M \lesssim 1 M_{\odot }\). Astrophys. J. 763, 110 (2013). doi: 10.1088/0004-637X/763/2/110 ADSCrossRefGoogle Scholar
  131. E. Kapakos, D. Hatzidimitriou, RR Lyrae variables in the Small Magellanic Cloud—II. The extended area: chemical and structural analysis. Mon. Not. R. Astron. Soc. 426, 2063–2077 (2012). doi: 10.1111/j.1365-2966.2012.21834.x ADSCrossRefGoogle Scholar
  132. H. Kawahara, T. Kitayama, S. Sasaki, Y. Suto, Systematic errors in the Hubble constant measurement from the Sunyaev-Zel’dovich effect. Astrophys. J. 674, 11–21 (2008). doi: 10.1086/524132 ADSCrossRefGoogle Scholar
  133. I. Kayo, N. Inada, M. Oguri, T. Morokuma, P.B. Hall, C.S. Kochanek, D.P. Schneider, Eight new quasar lenses from the sloan digital sky survey quasar lens search. Astron. J. 139, 1614–1621 (2010). doi: 10.1088/0004-6256/139/4/1614 ADSCrossRefGoogle Scholar
  134. K. Kinemuchi, H.C. Harris, H.A. Smith, N.A. Silbermann, L.A. Snyder, A.P. La Cluyzé, C.L. Clark, The variable stars of the draco dwarf spheroidal galaxy: revisited. Astron. J. 136, 1921–1939 (2008). doi: 10.1088/0004-6256/136/5/1921 ADSCrossRefGoogle Scholar
  135. J.P. Kneib, J.G. Cohen, J. Hjorth, RX J0911+05: a massive cluster lens at \(z=0.769\). Astrophys. J. Lett. 544, L35–L39 (2000). doi: 10.1086/317285 ADSCrossRefGoogle Scholar
  136. C.S. Kochanek, R. Narayan, LensClean: an algorithm for inverting extended, gravitationally lensed images with application to the radio ring lens PKS 1830-211. Astrophys. J. 401, 461–473 (1992). doi: 10.1086/172078 ADSCrossRefGoogle Scholar
  137. C.S. Kochanek, C.R. Keeton, B.A. McLeod, The importance of Einstein rings. Astrophys. J. 547, 50–59 (2001). doi: 10.1086/318350 ADSCrossRefGoogle Scholar
  138. C.S. Kochanek, B. Mochejska, N.D. Morgan, K.Z. Stanek, A simple method to find all lensed quasars. Astrophys. J. Lett. 637, L73–L76 (2006). doi: 10.1086/500559 ADSCrossRefGoogle Scholar
  139. C.H.B. Koenig, J.M. Nemec, J.R. Mould, G.G. Fahlman, Color-magnitude diagram for the Andromeda II dwarf galaxy. Astron. J. 106, 1819–1825 (1993). doi: 10.1086/116767 ADSCrossRefGoogle Scholar
  140. L.V.E. Koopmans, T. Treu, C.D. Fassnacht, R.D. Blandford, G. Surpi, The Hubble constant from the gravitational lens B1608+656. Astrophys. J. 599, 70–85 (2003). doi: 10.1086/379226 ADSCrossRefGoogle Scholar
  141. K. Kuijken, C. Heymans, H. Hildebrandt, R. Nakajima, T. Erben, J.T.A. de Jong, M. Viola, A. Choi, H. Hoekstra, L. Miller, E. van Uitert, A. Amon, C. Blake, M. Brouwer, A. Buddendiek, I.F. Conti, M. Eriksen, A. Grado, J. Harnois-Déraps, E. Helmich, R. Herbonnet, N. Irisarri, T. Kitching, D. Klaes, F. La Barbera, N. Napolitano, M. Radovich, P. Schneider, C. Sifón, G. Sikkema, P. Simon, A. Tudorica, E. Valentijn, G. Verdoes Kleijn, L. van Waerbeke, Gravitational lensing analysis of the kilo-degree survey. Mon. Not. R. Astron. Soc. 454, 3500–3532 (2015). doi: 10.1093/mnras/stv2140 ADSCrossRefGoogle Scholar
  142. C.Y. Kuo, J.A. Braatz, M.J. Reid, K.Y. Lo, J.J. Condon, C.M.V. Impellizzeri, C. Henkel, The megamaser cosmology project. V. An angular-diameter distance to NGC 6264 at 140 Mpc. Astrophys. J. 767, 155 (2013). doi: 10.1088/0004-637X/767/2/155 ADSCrossRefGoogle Scholar
  143. C.D. Laney, R.S. Stobie, Infrared photometry of Magellanic cloud Cepheids—intrinsic properties of Cepheids and the spatial structure of clouds. Mon. Not. R. Astron. Soc. 222, 449–472 (1986). doi: 10.1093/mnras/222.3.449 ADSCrossRefGoogle Scholar
  144. R. Laureijs, J. Amiaux, S. Arduini, J. Auguères, J. Brinchmann, R. Cole, M. Cropper, C. Dabin, L. Duvet, A. Ealet et al. Euclid Definition Study Report (2011). arXiv:1110.3193
  145. M.G. Lee, W.L. Freedman, B.F. Madore, The tip of the red giant branch as a distance indicator for resolved galaxies. Astrophys. J. 417, 553–559 (1993). doi: 10.1086/173334 ADSCrossRefGoogle Scholar
  146. Y.W. Lee, On the Sandage period shift effect among field RR Lyrae stars. Astrophys. J. 363, 159–167 (1990). doi: 10.1086/169326 ADSCrossRefGoogle Scholar
  147. B. Letarte, S.C. Chapman, M. Collins, R.A. Ibata, M.J. Irwin, A.M.N. Ferguson, G.F. Lewis, N. Martin, A. McConnachie, N. Tanvir, A Keck/DEIMOS spectroscopic survey of the faint M31 satellites And XV and And XVI. Mon. Not. R. Astron. Soc. 400, 1472–1478 (2009). doi: 10.1111/j.1365-2966.2009.15546.x ADSCrossRefGoogle Scholar
  148. K. Liao, T. Treu, P. Marshall, C.D. Fassnacht, N. Rumbaugh, G. Dobler, A. Aghamousa, V. Bonvin, F. Courbin, A. Hojjati, N. Jackson, V. Kashyap, S. Rathna Kumar, E. Linder, K. Mandel, X.L. Meng, G. Meylan, L.A. Moustakas, T.P. Prabhu, A. Romero-Wolf, A. Shafieloo, A. Siemiginowska, C.S. Stalin, H. Tak, M. Tewes, D. van Dyk, Strong lens time delay challenge. II. Results of TDC1. Astrophys. J. 800, 11 (2015). doi: 10.1088/0004-637X/800/1/11 ADSCrossRefGoogle Scholar
  149. B.F. Madore, W.L. Freedman, The tip of the red giant branch as a distance indicator for resolved galaxies. II: Computer simulations. Astron. J. 109, 1645–1652 (1995). doi: 10.1086/117391 ADSCrossRefGoogle Scholar
  150. Z. Malkin, Statistical analysis of the determinations of the Sun’s Galactocentric distance, in Advancing the Physics of Cosmic Distances, ed. by R. de Grijs. Int’l Astron. Union Symp., vol. 289 (2013a), pp. 406–409. doi: 10.1017/S1743921312021825 Google Scholar
  151. Z.M. Malkin, Analysis of determinations of the distance between the sun and the galactic center. Astron. Rep. 47, 128–133 (2013b). doi: 10.1134/S1063772913020078 ADSCrossRefGoogle Scholar
  152. M. Marconi, G. Coppola, G. Bono, V. Braga, A. Pietrinferni, R. Buonanno, M. Castellani, I. Musella, V. Ripepi, R.F. Stellingwerf, On a new theoretical framework for RR Lyrae stars. I. The metallicity dependence. Astrophys. J. 808, 50 (2015). doi: 10.1088/0004-637X/808/1/50 ADSCrossRefGoogle Scholar
  153. P.J. Marshall, D.W. Hogg, L.A. Moustakas, C.D. Fassnacht, M. Bradač, T. Schrabback, R.D. Blandford, Automated detection of galaxy-scale gravitational lenses in high-resolution imaging data. Astrophys. J. 694, 924–942 (2009). doi: 10.1088/0004-637X/694/2/924 ADSCrossRefGoogle Scholar
  154. P.J. Marshall, A. Verma, A. More, C.P. Davis, S. More, A. Kapadia, M. Parrish, C. Snyder, J. Wilcox, E. Baeten, C. Macmillan, C. Cornen, M. Baumer, E. Simpson, C.J. Lintott, D. Miller, E. Paget, R. Simpson, A.M. Smith, R. Küng, P. Saha, T.E. Collett, SPACE WARPS—I. Crowdsourcing the discovery of gravitational lenses. Mon. Not. R. Astron. Soc. 455, 1171–1190 (2016). doi: 10.1093/mnras/stv2009 ADSCrossRefGoogle Scholar
  155. N.F. Martin, D.L. Nidever, G. Besla, K. Olsen, A.R. Walker, A.K. Vivas, R.A. Gruendl, C.C. Kaleida, R.R. Muñoz, R.D. Blum, A. Saha, B.C. Conn, E.F. Bell, Y.H. Chu, M.-R.L. Cioni, T.J.L. de Boer, C. Gallart, S. Jin, A. Kunder, S.R. Majewski, D. Martínez-Delgado, A. Monachesi, M. Monelli, L. Monteagudo, N.E.D. Noël, E.W. Olszewski, G.S. Stringfellow, R.P. van der Marel, D. Zaritsky, Hydra II: a faint and compact Milky Way dwarf galaxy found in the survey of the Magellanic stellar history. Astrophys. J. 804, L5 (2015). doi: 10.1088/2041-8205/804/1/L5 ADSCrossRefGoogle Scholar
  156. C.E. Martínez-Vázquez, M. Monelli, G. Bono, P.B. Stetson, I. Ferraro, E.J. Bernard, C. Gallart, G. Fiorentino, G. Iannicola, A. Udalski, Variable stars in local group galaxies—I. Tracing the early chemical enrichment and radial gradients in the Sculptor dSph with RR Lyrae stars. Mon. Not. R. Astron. Soc. 454, 1509–1516 (2015). doi: 10.1093/mnras/stv2014 ADSCrossRefGoogle Scholar
  157. C.E. Martínez-Vázquez, P.B. Stetson, M. Monelli, E.J. Bernard, G. Fiorentino, C. Gallart, G. Bono, S. Cassisi, M. Dall’Ora, I. Ferraro, G. Iannicola, A.R. Walker, Variable stars in local group galaxies—II. Sculptor dSph. Mon. Not. R. Astron. Soc. 462, 4349–4370 (2016). doi: 10.1093/mnras/stw1895 ADSCrossRefGoogle Scholar
  158. M.L. Mateo, Dwarf galaxies of the local group. Annu. Rev. Astron. Astrophys. 36, 435–506 (1998). doi: 10.1146/annurev.astro.36.1.435 ADSCrossRefGoogle Scholar
  159. A.W. McConnachie, The observed properties of dwarf galaxies in and around the local group. Astron. J. 144, 4 (2012). doi: 10.1088/0004-6256/144/1/4 ADSCrossRefGoogle Scholar
  160. A.W. McConnachie, M.J. Irwin, A.M.N. Ferguson, R.A. Ibata, G.F. Lewis, N. Tanvir, Determining the location of the tip of the red giant branch in old stellar populations: M33, Andromeda I and II. Mon. Not. R. Astron. Soc. 350, 243–252 (2004). doi: 10.1111/j.1365-2966.2004.07637.x ADSCrossRefGoogle Scholar
  161. A.W. McConnachie, M.J. Irwin, A.M.N. Ferguson, R.A. Ibata, G.F. Lewis, N. Tanvir, Distances and metallicities for 17 local group galaxies. Mon. Not. R. Astron. Soc. 356, 979–997 (2005). doi: 10.1111/j.1365-2966.2004.08514.x ADSCrossRefGoogle Scholar
  162. A.W. McConnachie, M.J. Irwin, R.A. Ibata, J. Dubinski, L.M. Widrow, N.F. Martin, P. Côté, A.L. Dotter, J.F. Navarro, A.M.N. Ferguson, T.H. Puzia, G.F. Lewis, A. Babul, P. Barmby, O. Bienaymé, S.C. Chapman, R. Cockcroft, M.L.M. Collins, M.A. Fardal, W.E. Harris, A. Huxor, A.D. Mackey, J. Peñarrubia, R.M. Rich, H.B. Richer, A. Siebert, N. Tanvir, D. Valls-Gabaud, K.A. Venn, The remnants of galaxy formation from a panoramic survey of the region around M31. Nature 461, 66–69 (2009). doi: 10.1038/nature08327 ADSCrossRefGoogle Scholar
  163. A.W. McConnachie, The observed properties of dwarf galaxies in and around the local group. Astron. J. 144, 4 (2012). doi: 10.1088/0004-6256/144/1/4 ADSCrossRefGoogle Scholar
  164. C. McCully, C.R. Keeton, K.C. Wong, A.I. Zabludoff, A new hybrid framework to efficiently model lines of sight to gravitational lenses. Mon. Not. R. Astron. Soc. 443, 3631–3642 (2014). doi: 10.1093/mnras/stu1316 ADSCrossRefGoogle Scholar
  165. C. McCully, C.R. Keeton, K.C. Wong, A.I. Zabludoff, Quantifying environmental and line-of-sight effects in models of strong gravitational lens systems. Astrophys. J. 836, 141 (2017). doi: 10.3847/1538-4357/836/1/141 ADSCrossRefGoogle Scholar
  166. K.B.W. McQuinn, E.D. Skillman, A. Dolphin, J.M. Cannon, J.J. Salzer, K.L. Rhode, E.A.K. Adams, D. Berg, R. Giovanelli, L. Girardi, M.P. Haynes, P. Leo, An unquenched very low-mass galaxy. Astrophys. J. 812, 158 (2015). doi: 10.1088/0004-637X/812/2/158 ADSCrossRefGoogle Scholar
  167. X.L. Meng, T. Treu, A. Agnello, M.W. Auger, K. Liao, P.J. Marshall, Precision cosmology with time delay lenses: high resolution imaging requirements. J. Cosmol. Astropart. Phys. 2015(09), 059 (2015). doi: 10.1088/1475-7516/2015/09/059 CrossRefGoogle Scholar
  168. S. Miyazaki, Y. Komiyama, H. Nakaya, Y. Kamata, Y. Doi, T. Hamana, H. Karoji, H. Furusawa, S. Kawanomoto, T. Morokuma, Y. Ishizuka, K. Nariai, Y. Tanaka, F. Uraguchi, Y. Utsumi, Y. Obuchi, Y. Okura, M. Oguri, T. Takata, D. Tomono, T. Kurakami, K. Namikawa, T. Usuda, H. Yamanoi, T. Terai, H. Uekiyo, Y. Yamada, M. Koike, H. Aihara, Y. Fujimori, S. Mineo, H. Miyatake, N. Yasuda, J. Nishizawa, T. Saito, M. Tanaka, T. Uchida, N. Katayama, S.Y. Wang, H.Y. Chen, R. Lupton, C. Loomis, S. Bickerton, P. Price, J. Gunn, H. Suzuki, Y. Miyazaki, M. Muramatsu, K. Yamamoto, M. Endo, Y. Ezaki, N. Itoh, Y. Miwa, H. Yokota, T. Matsuda, R. Ebinuma, K. Takeshi, Hyper Suprime-Cam, in Ground-Based and Airborne Instrumentation for Astronomy IV. SPIE Conf. Ser., vol. 8446 (2012), p. 84460Z. doi: 10.1117/12.926844 CrossRefGoogle Scholar
  169. M. Monelli, C. Gallart, S.L. Hidalgo, A. Aparicio, E.D. Skillman, A.A. Cole, D.R. Weisz, L. Mayer, E.J. Bernard, S. Cassisi, A.E. Dolphin, I. Drozdovsky, P.B. Stetson, The ACS LCID project. VI. The star formation history of the Tucana dSph and the relative ages of the isolated dSph galaxies. Astrophys. J. 722, 1864–1878 (2010a). doi: 10.1088/0004-637X/722/2/1864 ADSCrossRefGoogle Scholar
  170. M. Monelli, S.L. Hidalgo, P.B. Stetson, A. Aparicio, C. Gallart, A.E. Dolphin, A.A. Cole, D.R. Weisz, E.D. Skillman, E.J. Bernard, L. Mayer, J.F. Navarro, S. Cassisi, I. Drozdovsky, E. Tolstoy, The ACS LCID Project. III. The star formation history of the Cetus dSph galaxy: a post-reionization fossil. Astrophys. J. 720, 1225–1245 (2010b). doi: 10.1088/0004-637X/720/2/1225 ADSCrossRefGoogle Scholar
  171. M. Monelli, E.J. Bernard, C. Gallart, G. Fiorentino, I. Drozdovsky, A. Aparicio, G. Bono, S. Cassisi, E.D. Skillman, P.B. Stetson, Variable stars in the Cetus dwarf spheroidal galaxy: population gradients and connections with the star formation history. Mon. Not. R. Astron. Soc. 422, 89–105 (2012). doi: 10.1111/j.1365-2966.2012.20539.x ADSCrossRefGoogle Scholar
  172. M. Monelli, C.E. Martínez-Vázquez, E.J. Bernard, C. Gallart, E.D. Skillman, D.R. Weisz, A.E. Dolphin, S.L. Hidalgo, A.A. Cole, N.F. Martin, A. Aparicio, S. Cassisi, M. Boylan-Kolchin, L. Mayer, A. McConnachie, K.B.W. McQuinn, J.F. Navarro, The ISLANDS project. I. Andromeda XVI, an extremely low mass galaxy not quenched by reionization. Astrophys. J. 819, 147 (2016). doi: 10.3847/0004-637X/819/2/147 ADSCrossRefGoogle Scholar
  173. A. More, M. Oguri, I. Kayo, J. Zinn, M.A. Strauss, B.X. Santiago, A.M. Mosquera, N. Inada, C.S. Kochanek, C.E. Rusu, J.R. Brownstein, L.N. da Costa, J.P. Kneib, M.A.G. Maia, R.M. Quimby, D.P. Schneider, A. Streblyanska, D.G. York, The SDSS-III BOSS quasar lens survey: discovery of 13 gravitationally lensed quasars. Mon. Not. R. Astron. Soc. 456, 1595–1606 (2016a). doi: 10.1093/mnras/stv2813 ADSCrossRefGoogle Scholar
  174. A. More, A. Verma, P.J. Marshall, S. More, E. Baeten, J. Wilcox, C. Macmillan, C. Cornen, A. Kapadia, M. Parrish, C. Snyder, C.P. Davis, R. Gavazzi, C.J. Lintott, R. Simpson, D. Miller, A.M. Smith, E. Paget, P. Saha, R. Küng, T.E. Collett, SPACE WARPS—II. New gravitational lens candidates from the CFHTLS discovered through citizen science. Mon. Not. R. Astron. Soc. 455, 1191–1210 (2016b). doi: 10.1093/mnras/stv1965 ADSCrossRefGoogle Scholar
  175. J. Mould, J. Kristian, The dwarf spheroidal galaxy Andromeda I. Astrophys. J. 354, 438–445 (1990). doi: 10.1086/168706 ADSCrossRefGoogle Scholar
  176. R.F. Mushotzky, R. Edelson, W. Baumgartner, P. Gandhi, Kepler observations of rapid optical variability in active galactic nuclei. Astrophys. J. Lett. 743, L12 (2011). doi: 10.1088/2041-8205/743/1/L12 ADSCrossRefGoogle Scholar
  177. S.T. Myers, N.J. Jackson, I.W.A. Browne, A.G. de Bruyn, T.J. Pearson, A.C.S. Readhead, P.N. Wilkinson, A.D. Biggs, R.D. Blandford, C.D. Fassnacht, L.V.E. Koopmans, D.R. Marlow, J.P. McKean, M.A. Norbury, P.M. Phillips, D. Rusin, M.C. Shepherd, C.M. Sykes, The cosmic lens all-sky survey—I. Source selection and observations. Mon. Not. R. Astron. Soc. 341, 1–12 (2003). doi: 10.1046/j.1365-8711.2003.06256.x ADSCrossRefGoogle Scholar
  178. N.R. Napolitano, G. Covone, N. Roy, C. Tortora, F. La Barbera, M. Radovich, F. Getman, M. Capaccioli, A. Colonna, M. Paolillo, G.A. Verdoes Kleijn, L.V.E. Koopmans (KiDS collaboration), Strong lens search in the ESO public survey KiDS, in The Universe of Digital Sky Surveys. Astrophys. Space Sci. Proc., vol. 42 (2016), pp. 129–134. doi: 10.1007/978-3-319-19330-4_20 Google Scholar
  179. D.L. Nidever, A. Monachesi, E.F. Bell, S.R. Majewski, R.R. Muñoz, R.L. Beaton, A tidally stripped stellar component of the Magellanic bridge. Astrophys. J. 779, 145 (2013). doi: 10.1088/0004-637X/779/2/145 ADSCrossRefGoogle Scholar
  180. J.W. Nightingale, S. Dye, Adaptive semi-linear inversion of strong gravitational lens imaging. Mon. Not. R. Astron. Soc. 452, 2940–2959 (2015). doi: 10.1093/mnras/stv1455 ADSCrossRefGoogle Scholar
  181. I. Nikiforov, The distance to the center of the galaxy: the current state-of-the-art in measuring \(R_{0}\), in Order and Chaos in Stellar and Planetary Systems, ed. by G.G. Byrd, K.V. Kholshevnikov, A.A. Myllri, I.I. Nikiforov, V.V. Orlov. Astron. Soc. Pac. Conf. Proc., vol. 316 (2004), pp. 199–208 Google Scholar
  182. M. Oguri, The mass distribution of SDSS J1004+4112 revisited. Publ. Astron. Soc. Jpn. 62, 1017–1024 (2010). doi: 10.1093/pasj/62.4.1017 ADSCrossRefGoogle Scholar
  183. M. Oguri, Measuring the distance-redshift relation with the cross-correlation of gravitational wave standard sirens and galaxies. Phys. Rev. D 93, 083511 (2016). doi: 10.1103/PhysRevD.93.083511 ADSMathSciNetCrossRefGoogle Scholar
  184. M. Oguri, P.J. Marshall, Gravitationally lensed quasars and supernovae in future wide-field optical imaging surveys. Mon. Not. R. Astron. Soc. 405, 2579–2593 (2010). doi: 10.1111/j.1365-2966.2010.16639.x ADSGoogle Scholar
  185. M. Oguri, N. Inada, B. Pindor, M.A. Strauss, G.T. Richards, J.F. Hennawi, E.L. Turner, R.H. Lupton, D.P. Schneider, M. Fukugita, J. Brinkmann, The sloan digital sky survey quasar lens search. I. Candidate selection algorithm. Astron. J. 132, 999–1013 (2006). doi: 10.1086/506019 ADSCrossRefGoogle Scholar
  186. M. Oguri, N. Inada, M.A. Strauss, C.S. Kochanek, I. Kayo, M.S. Shin, T. Morokuma, G.T. Richards, C.E. Rusu, J.A. Frieman, M. Fukugita, D.P. Schneider, D.G. York, N.A. Bahcall, R.L. White, The sloan digital sky survey quasar lens search. VI. Constraints on dark energy and the evolution of massive galaxies. Astron. J. 143, 120 (2012). doi: 10.1088/0004-6256/143/5/120 ADSCrossRefGoogle Scholar
  187. A.J. Ordoñez, A. Sarajedini, Population effects on the metallicity distribution function derived from the red giant branch. Astron. J. 149, 201 (2015). doi: 10.1088/0004-6256/149/6/201 ADSCrossRefGoogle Scholar
  188. A.J. Ordoñez, A. Sarajedini, The pulsating variable star population in DDO210. Mon. Not. R. Astron. Soc. 455, 2163–2177 (2016). doi: 10.1093/mnras/stv2494 ADSCrossRefGoogle Scholar
  189. A.J. Ordoñez, S.C. Yang, A. Sarajedini, The RR Lyrae variable population in the Phoenix dwarf galaxy. Astrophys. J. 786, 147 (2014). doi: 10.1088/0004-637X/786/2/147 ADSCrossRefGoogle Scholar
  190. F. Ostrovski, R.G. McMahon, A.J. Connolly, C.A. Lemon, M.W. Auger, M. Banerji, J.M. Hung, S.E. Koposov, C.E. Lidman, S.L. Reed, S. Allam, A. Benoit-Lévy, E. Bertin, D. Brooks, E. Buckley-Geer, A. Carnero Rosell, M. Carrasco Kind, J. Carretero, C.E. Cunha, L.N. da Costa, S. Desai, H.T. Diehl, J.P. Dietrich, A.E. Evrard, D.A. Finley, B. Flaugher, P. Fosalba, J. Frieman, D.W. Gerdes, D.A. Goldstein, D. Gruen, R.A. Gruendl, G. Gutierrez, K. Honscheid, D.J. James, K. Kuehn, N. Kuropatkin, M. Lima, H. Lin, M.A.G. Maia, J.L. Marshall, P. Martini, P. Melchior, R. Miquel, R. Ogando, A. Plazas Malagón, K. Reil, K. Romer, E. Sanchez, B. Santiago, V. Scarpine, I. Sevilla-Noarbe, M. Soares-Santos, F. Sobreira, E. Suchyta, G. Tarle, D. Thomas, D.L. Tucker, A.R. Walker, VDES J2325-5229 a \(z=2.7\) gravitationally lensed quasar discovered using morphology independent supervised machine learning. Mon. Not. R. Astron. Soc. 465, 4325–4334 (2017). doi: 10.1093/mnras/stw2958 ADSCrossRefGoogle Scholar
  191. D. Paraficz, J. Hjorth, Gravitational lenses as cosmic rulers: \(\Omega _{ m}\), \(\Omega _{\Lambda }\) from time delays and velocity dispersions. Astron. Astrophys. 507, L49–L52 (2009). doi: 10.1051/0004-6361/200913307 ADSCrossRefGoogle Scholar
  192. D. Paraficz, F. Courbin, A. Tramacere, R. Joseph, R.B. Metcalf, J.P. Kneib, P. Dubath, D. Droz, F. Filleul, D. Ringeisen, C. Schäfer, The PCA lens-finder: application to CFHTLS. Astron. Astrophys. 592, A75 (2016). doi: 10.1051/0004-6361/201527971 CrossRefGoogle Scholar
  193. A. Pietrinferni, S. Cassisi, M. Salaris, F. Castelli, A large stellar evolution database for population synthesis studies. I. Scaled solar models and isochrones. Astrophys. J. 612, 168–190 (2004). doi: 10.1086/422498 ADSCrossRefGoogle Scholar
  194. G. Pietrzyński, D. Graczyk, W. Gieren, I.B. Thompson, B. Pilecki, A. Udalski, I. Soszyński, S. Kozłowski, P. Konorski, K. Suchomska, G. Bono, P.G.P. Moroni, S. Villanova, N. Nardetto, F. Bresolin, R.P. Kudritzki, J. Storm, A. Gallenne, R. Smolec, D. Minniti, M. Kubiak, M.K. Szymański, R. Poleski, Ł. Wyrzykowski, K. Ulaczyk, P. Pietrukowicz, M. Górski, P. Karczmarek, An eclipsing-binary distance to the Large Magellanic Cloud accurate to two per cent. Nature 495, 76–79 (2013). doi: 10.1038/nature11878 ADSCrossRefGoogle Scholar
  195. C.J. Pritchet, S. van den Bergh, Observations of RR Lyrae stars in the halo of M31. Astrophys. J. 316, 517–529 (1987). doi: 10.1086/165223 ADSCrossRefGoogle Scholar
  196. B.J. Pritzl, T.E. Armandroff, G.H. Jacoby, G.S. Da Costa, The dwarf spheroidal companions to M31: variable stars in Andromeda VI. Astron. J. 124, 1464–1485 (2002a). doi: 10.1086/341823 ADSCrossRefGoogle Scholar
  197. B.J. Pritzl, H.A. Smith, M. Catelan, A.V. Sweigart, Variable stars in the unusual, metal-rich globular cluster NGC 6388. Astron. J. 124, 949–976 (2002b). doi: 10.1086/341381 ADSCrossRefGoogle Scholar
  198. B.J. Pritzl, T.E. Armandroff, G.H. Jacoby, G.S. Da Costa, The dwarf spheroidal companions to M31: variable stars in Andromeda II. Astron. J. 127, 318–333 (2004). doi: 10.1086/380613 ADSCrossRefGoogle Scholar
  199. B.J. Pritzl, T.E. Armandroff, G.H. Jacoby, G.S. Da Costa, The dwarf spheroidal companions to M31: variable stars in Andromeda I and Andromeda III. Astron. J. 129, 2232–2256 (2005a). doi: 10.1086/428372 ADSCrossRefGoogle Scholar
  200. B.J. Pritzl, K.A. Venn, M. Irwin, A comparison of elemental abundance ratios in globular clusters, field stars, and dwarf spheroidal galaxies. Astron. J. 130, 2140–2165 (2005b). doi: 10.1086/432911 ADSCrossRefGoogle Scholar
  201. E.D. Reese, J.E. Carlstrom, M. Joy, J.J. Mohr, L. Grego, W.L. Holzapfel, Determining the cosmic distance scale from interferometric measurements of the Sunyaev–Zel’dovich effect. Astrophys. J. 581, 53–85 (2002). doi: 10.1086/344137 ADSCrossRefGoogle Scholar
  202. S. Refsdal, On the possibility of determining Hubble’s parameter and the masses of galaxies from the gravitational lens effect. Mon. Not. R. Astron. Soc. 128, 307–310 (1964). doi: 10.1093/mnras/128.4.307 ADSMathSciNetzbMATHCrossRefGoogle Scholar
  203. M.J. Reid, The distance to the galactic center: \(R_{0}\), in The Center of the Galaxy, ed. by M. Morris. Int’l Astron. Union Symp., vol. 136 (1989), pp. 37–46 CrossRefGoogle Scholar
  204. M.J. Reid, The distance to the center of the galaxy. Annu. Rev. Astron. Astrophys. 31, 345–372 (1993). doi: 10.1146/annurev.aa.31.090193.002021 ADSCrossRefGoogle Scholar
  205. M.J. Reid, J.A. Braatz, J.J. Condon, L.J. Greenhill, C. Henkel, K.Y. Lo, The megamaser cosmology project. I. Very long baseline interferometric observations of UGC 3789. Astrophys. J. 695, 287–291 (2009). doi: 10.1088/0004-637X/695/1/287 ADSCrossRefGoogle Scholar
  206. M.J. Reid, J.A. Braatz, J.J. Condon, K.Y. Lo, C.Y. Kuo, C.M.V. Impellizzeri, C. Henkel, The megamaser cosmology project. IV. A direct measurement of the Hubble constant from UGC 3789. Astrophys. J. 767, 154 (2013). doi: 10.1088/0004-637X/767/2/154 ADSCrossRefGoogle Scholar
  207. J.A. Rich, S.E. Persson, W.L. Freedman, B.F. Madore, A.J. Monson, V. Scowcroft, M. Seibert, A new Cepheid distance measurement and method for NGC 6822. Astrophys. J. 794, 107 (2014). doi: 10.1088/0004-637X/794/2/107 ADSCrossRefGoogle Scholar
  208. A.G. Riess, L.M. Macri, S.L. Hoffmann, D. Scolnic, S. Casertano, A.V. Filippenko, B.E. Tucker, M.J. Reid, D.O. Jones, J.M. Silverman, R. Chornock, P. Challis, W. Yuan, P.J. Brown, R.J. Foley, A 2.4% determination of the local value of the Hubble constant. Astrophys. J. 826, 56 (2016). doi: 10.3847/0004-637X/826/1/56 ADSCrossRefGoogle Scholar
  209. V. Ripepi, M.I. Moretti, M. Marconi, G. Clementini, M.-R.L. Cioni, J.B. Marquette, L. Girardi, S. Rubele, M.A.T. Groenewegen, R. de Grijs, B.K. Gibson, J.M. Oliveira, J.T. van Loon, J.P. Emerson, The VMC survey—V. First results for classical Cepheids. Mon. Not. R. Astron. Soc. 424, 1807–1816 (2012). doi: 10.1111/j.1365-2966.2012.21274.x ADSCrossRefGoogle Scholar
  210. L. Rizzi, E.V. Held, I. Saviane, R.B. Tully, M. Gullieuszik, The distance to the Fornax dwarf spheroidal galaxy. Mon. Not. R. Astron. Soc. 380, 1255–1260 (2007). doi: 10.1111/j.1365-2966.2007.12196.x ADSCrossRefGoogle Scholar
  211. S. Rubele, L. Kerber, L. Girardi, M.-R. Cioni, P. Marigo, S. Zaggia, K. Bekki, R. de Grijs, J. Emerson, M.A.T. Groenewegen, M. Gullieuszik, V. Ivanov, B. Miszalski, J.M. Oliveira, B. Tatton, J.T. van Loon, The VMC survey. IV. The LMC star formation history and disk geometry from four VMC tiles. Astron. Astrophys. 537, A106 (2012). doi: 10.1051/0004-6361/201117863 CrossRefGoogle Scholar
  212. S. Rubele, L. Girardi, L. Kerber, M.-R.L. Cioni, A.E. Piatti, S. Zaggia, K. Bekki, A. Bressan, G. Clementini, R. de Grijs, J.P. Emerson, M.A.T. Groenewegen, V.D. Ivanov, M. Marconi, P. Marigo, M.-I. Moretti, V. Ripepi, S. Subramanian, B.L. Tatton, J.T. van Loon, The VMC survey—XIV. First results on the look-back time star formation rate tomography of the Small Magellanic Cloud. Mon. Not. R. Astron. Soc. 449, 639–661 (2015). doi: 10.1093/mnras/stv141 ADSCrossRefGoogle Scholar
  213. C.E. Rusu, C.D. Fassnacht, D. Sluse, S. Hilbert, K.C. Wong, K.H. Huang, S.H. Suyu, T.E. Collett, P.J. Marshall, T. Treu, L.V.E. Koopmans, H0LiCOW III. Quantifying the effect of mass along the line of sight to the gravitational lens HE 0435-1223 through weighted galaxy counts. Mon. Not. R. Astron. Soc. 467, 4220–4242 (2017). doi: 10.1093/mnras/stx285 ADSCrossRefGoogle Scholar
  214. C.E. Rusu, M. Oguri, Y. Minowa, M. Iye, N. Inada, S. Oya, I. Kayo, Y. Hayano, M. Hattori, Y. Saito, M. Ito, T.S. Pyo, H. Terada, H. Takami, M. Watanabe, Subaru telescope adaptive optics observations of gravitationally lensed quasars in the sloan digital sky survey. Mon. Not. R. Astron. Soc. 458, 2–55 (2016). doi: 10.1093/mnras/stw092 ADSCrossRefGoogle Scholar
  215. M. Rybak, J.P. McKean, S. Vegetti, P. Andreani, S.D.M. White, ALMA imaging of SDP.81—I. A pixelated reconstruction of the far-infrared continuum emission. Mon. Not. R. Astron. Soc. 451, L40–L44 (2015). doi: 10.1093/mnrasl/slv058 ADSCrossRefGoogle Scholar
  216. A. Saha, J.G. Hoessel, RR Lyrae stars in local group galaxies. I—NGC 185. Astron. J. 99, 97–148 (1990). doi: 10.1086/115316 ADSCrossRefGoogle Scholar
  217. A. Saha, J.G. Hoessel, A.E. Mossman, RR Lyrae stars in local group galaxies. II—NGC 147. Astron. J. 100, 108–126 (1990). doi: 10.1086/115495 ADSCrossRefGoogle Scholar
  218. M. Salaris, A. Weiss, Homogeneous age dating of 55 galactic globular clusters. Clues to the galaxy formation mechanisms. Astron. Astrophys. 388, 492–503 (2002). doi: 10.1051/0004-6361:20020554 ADSCrossRefGoogle Scholar
  219. L.V. Sales, J.F. Navarro, M.G. Abadi, M. Steinmetz, Cosmic ménage à trois: the origin of satellite galaxies on extreme orbits. Mon. Not. R. Astron. Soc. 379, 1475–1483 (2007). doi: 10.1111/j.1365-2966.2007.12026.x ADSCrossRefGoogle Scholar
  220. A. Sandage, The Oosterhoff period-metallicity relation for RR Lyrae stars at the blue fundamental edge of the instability strip. Astron. J. 106, 687–702 (1993). doi: 10.1086/116675 ADSCrossRefGoogle Scholar
  221. A. Sarajedini, M.K. Barker, D. Geisler, P. Harding, R. Schommer, RR Lyrae variables in M33. I. Evidence for a field halo population. Astron. J. 132, 1361–1371 (2006). doi: 10.1086/506152 ADSCrossRefGoogle Scholar
  222. A. Sarajedini, S.C. Yang, A. Monachesi, T.R. Lauer, S.C. Trager, An ancient metal-poor population in M32, and halo satellite accretion in M31, identified by RR Lyrae stars. Mon. Not. R. Astron. Soc. 425, 1459–1472 (2012). doi: 10.1111/j.1365-2966.2012.21609.x ADSCrossRefGoogle Scholar
  223. B.E. Schaefer, A problem with the clustering of recent measures of the distance to the Large Magellanic Cloud. Astron. J. 135, 112–119 (2008). doi: 10.1088/0004-6256/135/1/112 ADSCrossRefGoogle Scholar
  224. B.E. Schaefer, An accurate distance to the nearest galaxy. Nature 495, 51–52 (2013). doi: 10.1038/495051a ADSCrossRefGoogle Scholar
  225. P.L. Schechter, N.D. Morgan, B. Chehade, N. Metcalfe, T. Shanks, M. McDonald, First lensed quasar system(s) from the VST-ATLAS survey: one quad and three nearly identical pairs. Astron. J. (2017, in press). arXiv:1607.07476. doi: 10.3847/1538-3881/aa6899
  226. E.F. Schlafly, D.P. Finkbeiner, Measuring reddening with sloan digital sky survey stellar spectra and recalibrating SFD. Astrophys. J. 737, 103 (2011). doi: 10.1088/0004-637X/737/2/103 ADSCrossRefGoogle Scholar
  227. D.J. Schlegel, D.P. Finkbeiner, M. Davis, Maps of dust infrared emission for use in estimation of reddening and cosmic microwave background radiation foregrounds. Astrophys. J. 500, 525–553 (1998). doi: 10.1086/305772 ADSCrossRefGoogle Scholar
  228. P. Schneider, D. Sluse, Mass-sheet degeneracy, power-law models and external convergence: impact on the determination of the Hubble constant from gravitational lensing. Astron. Astrophys. 559, A37 (2013). doi: 10.1051/0004-6361/201321882 ADSCrossRefGoogle Scholar
  229. P. Schneider, D. Sluse, Source-position transformation: an approximate invariance in strong gravitational lensing. Astron. Astrophys. 564, A103 (2014). doi: 10.1051/0004-6361/201322106 ADSCrossRefGoogle Scholar
  230. B.F. Schutz, Determining the Hubble constant from gravitational wave observations. Nature 323, 310–311 (1986). doi: 10.1038/323310a0 ADSCrossRefGoogle Scholar
  231. V. Scowcroft, W.L. Freedman, B.F. Madore, A.J. Monson, S.E. Persson, M. Seibert, J.R. Rigby, J. Melbourne, The Carnegie Hubble program: the infrared leavitt law in IC 1613. Astrophys. J. 773, 106 (2013). doi: 10.1088/0004-637X/773/2/106 ADSCrossRefGoogle Scholar
  232. V. Scowcroft, W.L. Freedman, B.F. Madore, A. Monson, S.E. Persson, J. Rich, M. Seibert, J.R. Rigby, The Carnegie Hubble program: the distance and structure of the SMC as revealed by mid-infrared observations of Cepheids. Astrophys. J. 816, 49 (2016). doi: 10.3847/0004-637X/816/2/49 ADSCrossRefGoogle Scholar
  233. Y. Shu, A.S. Bolton, C.S. Kochanek, M. Oguri, I. Pérez-Fournon, Z. Zheng, S. Mao, A.D. Montero-Dorta, J.R. Brownstein, R. Marques-Chaves, B. Ménard, The BOSS emission-line lens survey. III. Strong lensing of \(\mbox{Ly}\alpha \) emitters by individual galaxies. Astrophys. J. 824, 86 (2016). doi: 10.3847/0004-637X/824/2/86 ADSCrossRefGoogle Scholar
  234. J. Silk, S.D.M. White, The determination of \(Q_{0}\) using X-ray and microwave observations of galaxy clusters. Astrophys. J. Lett. 226, L103–L106 (1978). doi: 10.1086/182841 ADSCrossRefGoogle Scholar
  235. M. Sirianni, M.J. Jee, N. Benítez, J.P. Blakeslee, A.R. Martel, G. Meurer, M. Clampin, G. De Marchi, H.C. Ford, R. Gilliland, G.F. Hartig, G.D. Illingworth, J. Mack, W.J. McCann, The photometric performance and calibration of the Hubble space telescope advanced camera for surveys. Publ. Astron. Soc. Pac. 117, 1049–1112 (2005). doi: 10.1086/444553 ADSCrossRefGoogle Scholar
  236. E.D. Skillman, M. Monelli, D.R. Weisz, S.L. Hidalgo, A. Aparicio, E.J. Bernard, M. Boylan-Kolchin, S. Cassisi, A.A. Cole, A.E. Dolphin, H.C. Ferguson, C. Gallart, M.J. Irwin, N.F. Martin, C.E. Martínez-Vázquez, L. Mayer, A.W. McConnachie, K.B.W. McQuinn, J.F. Navarro, P.B. Stetson, The ISLAndS project II: the lifetime star formation histories of six Andromeda dSphs. Astrophys. J. 837, 102 (2017). doi: 10.3847/1538-4357/aa60c5 ADSCrossRefGoogle Scholar
  237. C.T. Slater, E.F. Bell, N.F. Martin, E.J. Tollerud, N. Ho, A deep study of the dwarf satellites Andromeda XXVIII and Andromeda XXIX. Astrophys. J. 806, 230 (2015). doi: 10.1088/0004-637X/806/2/230 ADSCrossRefGoogle Scholar
  238. D. Sluse, A. Sonnenfeld, N. Rumbaugh, C.E. Rusu, C.D. Fassnacht, T. Treu, S.H. Suyu, K.C. Wong, M.W. Auger, V. Bonvin, T. Collett, F. Courbin, S. Hilbert, L.V.E. Koopmans, P.J. Marshall, G. Meylan, C. Spiniello, M. Tewes, H0LiCOW II. Spectroscopic survey and galaxy-group identification of the strong gravitational lens system HE0435-1223. Mon. Not. R. Astron. Soc. (2016, submitted) arXiv:1607.00382
  239. H.A. Smith, RR Lyrae Stars. Cambridge Astrophys. Ser., vol. 27 (Cambridge University Press, Cambridge, 1995) Google Scholar
  240. A. Sonnenfeld, J.H.H. Chan, Y. Shu, A. More, M. Oguri, S.H. Suyu, K.C. Wong, C.-H. Lee, J. Coupon, A. Yonehara, A.S. Bolton, A.T. Jaelani, M. Tanaka, S. Miyazaki, Y. Komiyama, Survey of Gravitationally-lensed Objects in HSC Imaging (SuGOHI). I. Automatic search for galaxy-scale strong lenses. Publ. Astron. Soc. Jpn. (2017, submitted). arXiv:1704.01585
  241. I. Soszyński, A. Udalski, M.K. Szymański, M. Kubiak, G. Pietrzyński, Ł. Wyrzykowski, O. Szewczyk, K. Ulaczyk, R. Poleski, The optical gravitational lensing experiment. The OGLE-III catalog of variable stars. II. Type II Cepheids and anomalous Cepheids in the Large Magellanic Cloud. Acta Astron. 58, 293–312 (2008) ADSGoogle Scholar
  242. I. Soszyński, A. Udalski, M.K. Szymański, Ł. Wyrzykowski, K. Ulaczyk, R. Poleski, P. Pietrukowicz, S. Kozłowski, D.M. Skowron, J. Skowron, P. Mróz, M. Pawlak, The OGLE collection of variable stars. Over 45 000 RR Lyrae stars in the Magellanic system. Acta Astron. 66, 131–147 (2016) ADSGoogle Scholar
  243. P.B. Stetson, Homogeneous photometry for star clusters and resolved galaxies. II. Photometric standard stars. Publ. Astron. Soc. Pac. 112, 925–931 (2000). doi: 10.1086/316595 ADSCrossRefGoogle Scholar
  244. P.B. Stetson, G. Fiorentino, G. Bono, E.J. Bernard, M. Monelli, G. Iannicola, C. Gallart, I. Ferraro, Homogeneous photometry. VI: variable stars in the Leo I dwarf spheroidal galaxy. Publ. Astron. Soc. Pac. 126, 616–641 (2014). doi: 10.1086/677352 ADSCrossRefGoogle Scholar
  245. S. Subramanian, A. Subramaniam, The three-dimensional structure of the Small Magellanic Cloud. Astrophys. J. 744, 128 (2012). doi: 10.1088/0004-637X/744/2/128 ADSCrossRefGoogle Scholar
  246. S. Subramanian, A. Subramaniam, Disk of the Small Magellanic Cloud as traced by Cepheids. Astron. Astrophys. 573, A135 (2015). doi: 10.1051/0004-6361/201424248 ADSCrossRefGoogle Scholar
  247. S.H. Suyu, A. Halkola, The halos of satellite galaxies: the companion of the massive elliptical lens SL2S J08544-0121. Astron. Astrophys. 524, A94 (2010). doi: 10.1051/0004-6361/201015481 ADSCrossRefGoogle Scholar
  248. S.H. Suyu, P.J. Marshall, M.P. Hobson, R.D. Blandford, A Bayesian analysis of regularized source inversions in gravitational lensing. Mon. Not. R. Astron. Soc. 371, 983–998 (2006). doi: 10.1111/j.1365-2966.2006.10733.x ADSCrossRefGoogle Scholar
  249. S.H. Suyu, P.J. Marshall, R.D. Blandford, C.D. Fassnacht, L.V.E. Koopmans, J.P. McKean, T. Treu, Dissecting the gravitational lens B1608+656. I. Lens potential reconstruction. Astrophys. J. 691, 277–298 (2009). doi: 10.1088/0004-637X/691/1/277 ADSCrossRefGoogle Scholar
  250. S.H. Suyu, P.J. Marshall, M.W. Auger, S. Hilbert, R.D. Blandford, L.V.E. Koopmans, C.D. Fassnacht, T. Treu, Dissecting the gravitational lens B1608+656. II. Precision measurements of the Hubble constant, spatial curvature, and the dark energy equation of state. Astrophys. J. 711, 201–221 (2010). doi: 10.1088/0004-637X/711/1/201 ADSCrossRefGoogle Scholar
  251. S.H. Suyu, M.W. Auger, S. Hilbert, P.J. Marshall, M. Tewes, T. Treu, C.D. Fassnacht, L.V.E. Koopmans, D. Sluse, R.D. Blandford, F. Courbin, G. Meylan, Two accurate time-delay distances from strong lensing: implications for cosmology. Astrophys. J. 766, 70 (2013). doi: 10.1088/0004-637X/766/2/70 ADSCrossRefGoogle Scholar
  252. S.H. Suyu, T. Treu, S. Hilbert, A. Sonnenfeld, M.W. Auger, R.D. Blandford, T. Collett, F. Courbin, C.D. Fassnacht, L.V.E. Koopmans, P.J. Marshall, G. Meylan, C. Spiniello, M. Tewes, Cosmology from gravitational lens time delays and Planck data. Astrophys. J. Lett. 788, L35 (2014). doi: 10.1088/2041-8205/788/2/L35 ADSCrossRefGoogle Scholar
  253. S.H. Suyu, V. Bonvin, F. Courbin, C.D. Fassnacht, C.E. Rusu, D. Sluse, T. Treu, K.C. Wong, M.W. Auger, X. Ding, S. Hilbert, P.J. Marshall, N. Rumbaugh, A. Sonnenfeld, M. Tewes, O. Tihhonova, A. Agnello, R.D. Blandford, G.C.F. Chen, T. Collett, L.V.E. Koopmans, K. Liao, G. Meylan, C. Spiniello, H0LiCOW I. \(H_{0}\) lenses in COSMOGRAIL’s Wellspring: program overview. Mon. Not. R. Astron. Soc. (2017, in press). arXiv:1607.00017. doi: 10.1093/mnras/stx483
  254. A.S. Tagore, N. Jackson, On the use of shapelets in modelling resolved, gravitationally lensed images. Mon. Not. R. Astron. Soc. 457, 3066–3075 (2016). doi: 10.1093/mnras/stw057 ADSCrossRefGoogle Scholar
  255. A.S. Tagore, C.R. Keeton, Statistical and systematic uncertainties in pixel-based source reconstruction algorithms for gravitational lensing. Mon. Not. R. Astron. Soc. 445, 694–710 (2014). doi: 10.1093/mnras/stu1671 ADSCrossRefGoogle Scholar
  256. G.A. Tammann, A. Sandage, B. Reindl, The expansion field: the value of \(H_{0}\). Astron. Astrophys. Rev. 15, 289–331 (2008). doi: 10.1007/s00159-008-0012-y ADSCrossRefGoogle Scholar
  257. M. Tewes, F. Courbin, G. Meylan, C.S. Kochanek, E. Eulaers, N. Cantale, A.M. Mosquera, P. Magain, H. Van Winckel, D. Sluse, G. Cataldi, D. Vörös, S. Dye, COSMOGRAIL: the COSmological MOnitoring of GRAvItational lenses. XIII. Time delays and 9-yr optical monitoring of the lensed quasar RX J1131-1231. Astron. Astrophys. 556, A22 (2013). doi: 10.1051/0004-6361/201220352 ADSCrossRefGoogle Scholar
  258. F. Thévenin, M. Falanga, C.Y. Kuo, G. Pietrzyński, M. Yamaguchi, Modern geometric methods of distance determination. Space Sci. Rev. (2017, submitted) Google Scholar
  259. E.L. Turner, R. Cen, J.P. Ostriker, The relation of local measures of Hubble’s constant to its global value. Astron. J. 103, 1427–1437 (1992). doi: 10.1086/116156 ADSCrossRefGoogle Scholar
  260. A. Udalski, Ł. Wyrzykowski, G. Pietrzyński, O. Szewczyk, M. Szymański, M. Kubiak, I. Soszyński, K. Żebrún, The optical gravitational lensing experiment. Cepheids in the galaxy IC 1613: no dependence of the period–luminosity relation on metallicity. Acta Astron. 51, 221–245 (2001) ADSGoogle Scholar
  261. S. van den Bergh, The galaxies of the local group (to be concluded). J. R. Astron. Soc. Can. 62, 145–180 (1968) ADSGoogle Scholar
  262. S. Vegetti, L.V.E. Koopmans, Bayesian strong gravitational-lens modelling on adaptive grids: objective detection of mass substructure in galaxies. Mon. Not. R. Astron. Soc. 392, 945–963 (2009). doi: 10.1111/j.1365-2966.2008.14005.x ADSCrossRefGoogle Scholar
  263. A.K. Vivas, R. Zinn, J. Farmer, S. Duffau, Y. Ping, Disentangling the Virgo overdensity with RR Lyrae stars. Astrophys. J. 831, 165 (2016). doi: 10.3847/0004-637X/831/2/165 ADSCrossRefGoogle Scholar
  264. A.R. Walker, CCD photometry of the RR Lyrae variables in the LMC cluster NGC 2257 and the adjacent field. Astron. J. 98, 2086–2123 (1989). doi: 10.1086/115282 ADSCrossRefGoogle Scholar
  265. A.R. Walker, The Large Magellanic Cloud and the distance scale. Astrophys. Space Sci. 341, 43–49 (2012). doi: 10.1007/s10509-011-0961-x ADSCrossRefGoogle Scholar
  266. S.J. Warren, S. Dye, Semilinear gravitational lens inversion. Astrophys. J. 590, 673–682 (2003). doi: 10.1086/375132 ADSCrossRefGoogle Scholar
  267. D.R. Weisz, E.D. Skillman, S.L. Hidalgo, M. Monelli, A.E. Dolphin, A. McConnachie, E.J. Bernard, C. Gallart, A. Aparicio, M. Boylan-Kolchin, S. Cassisi, A.A. Cole, H.C. Ferguson, M. Irwin, N.F. Martin, L. Mayer, K.B.W. McQuinn, J.F. Navarro, P.B. Stetson, Comparing M31 and Milky Way satellites: the extended star formation histories of Andromeda II and Andromeda XVI. Astrophys. J. 789, 24 (2014). doi: 10.1088/0004-637X/789/1/24 ADSCrossRefGoogle Scholar
  268. B. Willman, M. Masjedi, D.W. Hogg, J.J. Dalcanton, D. Martinez-Delgado, M. Blanton, A.A. West, A. Dotter, B. Chaboyer, Willman 1—A Galactic Satellite at 40 kpc With Multiple Stellar Tails (2006). arXiv:astro-ph/0603486
  269. K.C. Wong, S.H. Suyu, M.W. Auger, V. Bonvin, F. Courbin, C.D. Fassnacht, A. Halkola, C.E. Rusu, D. Sluse, A. Sonnenfeld, T. Treu, T.E. Collett, S. Hilbert, L.V.E. Koopmans, P.J. Marshall, N. Rumbaugh, H0LiCOW IV. Lens mass model of HE 0435-1223 and blind measurement of its time-delay distance for cosmology. Mon. Not. R. Astron. Soc. 465, 4895–4913 (2017). doi: 10.1093/mnras/stw3077 ADSCrossRefGoogle Scholar
  270. P.F. Wu, R.B. Tully, L. Rizzi, A.E. Dolphin, B.A. Jacobs, I.D. Karachentsev, Infrared tip of the red giant branch and distances to the Maffei/IC 342 group. Astron. J. 148, 7 (2014). doi: 10.1088/0004-6256/148/1/7 ADSCrossRefGoogle Scholar
  271. O. Wucknitz, A.D. Biggs, I.W.A. Browne, Models for the lens and source of B0218+357: a LENSCLEAN approach to determine \(H_{0}\). Mon. Not. R. Astron. Soc. 349, 14–30 (2004). doi: 10.1111/j.1365-2966.2004.07514.x ADSCrossRefGoogle Scholar
  272. D. Xu, D. Sluse, P. Schneider, V. Springel, M. Vogelsberger, D. Nelson, L. Hernquist, Lens galaxies in the Illustris simulation: power-law models and the bias of the Hubble constant from time delays. Mon. Not. R. Astron. Soc. 456, 739–755 (2016). doi: 10.1093/mnras/stv2708 ADSCrossRefGoogle Scholar
  273. S.C. Yang, A. Sarajedini, HST/WFPC2 imaging of the dwarf satellites And XI and And XIII: horizontal branch morphology and RR Lyraes. Mon. Not. R. Astron. Soc. 419, 1362–1375 (2012). doi: 10.1111/j.1365-2966.2011.19792.x ADSCrossRefGoogle Scholar
  274. S.C. Yang, R. Wagner-Kaiser, A. Sarajedini, S.C. Kim, J. Kyeong, The early chemical enrichment histories of two sculptor group dwarf galaxies as revealed by RR Lyrae variables. Astrophys. J. 784, 76 (2014). doi: 10.1088/0004-637X/784/1/76 ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Richard de Grijs
    • 1
    • 2
    Email author
  • Frédéric Courbin
    • 3
  • Clara E. Martínez-Vázquez
    • 4
    • 5
  • Matteo Monelli
    • 4
    • 5
  • Masamune Oguri
    • 6
  • Sherry H. Suyu
    • 7
    • 8
    • 9
  1. 1.Kavli Institute for Astronomy & Astrophysics and Department of AstronomyPeking UniversityBeijingChina
  2. 2.International Space Science Institute—BeijingBeijingChina
  3. 3.Institute of Physics, Laboratoire d’Astrophysique, Observatoire de SauvernyEcole Polytechnique Fédérale de Lausanne (EPFL)VersoixSwitzerland
  4. 4.Instituto de Astrofísica de CanariasLa LagunaSpain
  5. 5.Dpto. AstrofísicaUniversidad de La Laguna (ULL)La LagunaSpain
  6. 6.Department of Physics, Graduate School of ScienceUniversity of TokyoBunkyo-kuJapan
  7. 7.Max-Planck-Institut für AstrophysikGarchingGermany
  8. 8.Institute of Astronomy and AstrophysicsAcademia SinicaTaipeiTaiwan
  9. 9.Physik-DepartmentTechnische Universität MünchenGarchingGermany

Personalised recommendations