Advertisement

Space Science Reviews

, Volume 212, Issue 3–4, pp 1541–1616 | Cite as

The Atmospheric Dynamics of Venus

  • Agustín Sánchez-Lavega
  • Sebastien Lebonnois
  • Takeshi Imamura
  • Peter Read
  • David Luz
Article
Part of the following topical collections:
  1. Venus III

Abstract

We review our current knowledge of the atmospheric dynamics of Venus prior to the Akatsuki mission, in the altitude range from the surface to approximately the cloud tops located at about 100 km altitude. The three-dimensional structure of the wind field in this region has been determined with a variety of techniques over a broad range of spatial and temporal scales (from the mesoscale to planetary, from days to years, in daytime and nighttime), spanning a period of about 50 years (from the 1960s to the present). The global panorama is that the mean atmospheric motions are essentially zonal, dominated by the so-called super-rotation (an atmospheric rotation that is 60 to 80 times faster than that of the planetary body). The zonal winds blow westward (in the same direction as the planet rotation) with a nearly constant speed of \(\sim 100~\mathrm{m}\, \mathrm{s}^{-1}\) at the cloud tops (65–70 km altitude) from latitude 50°N to 50°S, then decreasing their speeds monotonically from these latitudes toward the poles. Vertically, the zonal winds decrease with decreasing altitude towards velocities \(\sim 1\text{--}3~\mathrm{m}\,\mathrm{s}^{-1}\) in a layer of thickness \(\sim 10~\text{km}\) close to the surface. Meridional motions with peak speeds of \(\sim 15~\mathrm{m}\,\mathrm{s}^{-1}\) occur within the upper cloud at 65 km altitude and are related to a Hadley cell circulation and to the solar thermal tide. Vertical motions with speeds \(\sim1\text{--}3~\mathrm{m}\, \mathrm{s}^{-1}\) occur in the statically unstable layer between altitudes of \(\sim 50 \text{--} 55~\text{km}\). All these motions are permanent with speed variations of the order of \(\sim10\%\). Various types of wave, from mesoscale gravity waves to Rossby-Kelvin planetary scale waves, have been detected at and above cloud heights, and are considered to be candidates as agents for carrying momentum that drives the super-rotation, although numerical models do not fully reproduce all the observed features. Momentum transport by atmospheric waves and the solar tide is thought to be an indispensable component of the general circulation of the Venus atmosphere. Another conspicuous feature of the atmospheric circulation is the presence of polar vortices. These are present in both hemispheres and are regions of warmer and lower clouds, seen prominently at infrared wavelengths, showing a highly variable morphology and motions. The vortices spin with a period of 2–3 days. The South polar vortex rotates around a geographical point which is itself displaced from the true pole of rotation by \(\sim 3\) degrees. The polar vortex is surrounded and constrained by the cold collar, an infrared-dark region of lower temperatures. We still lack detailed models of the mechanisms underlying the dynamics of these features and how they couple (or not) to the super-rotation. The nature of the super-rotation relates to the angular momentum stored in the atmosphere and how it is transported between the tropics and higher latitudes, and between the deep atmosphere and upper levels. The role of eddy processes is crucial, but likely involves the complex interaction of a variety of different types of eddy, either forced directly by radiative heating and mechanical interactions with the surface or through various forms of instability. Numerical models have achieved some significant recent success in capturing some aspects of the observed super-rotation, consistent with the scenario discussed by Gierasch (J. Atmos. Sci. 32:1038–1044, 1975) and Rossow and Williams (J. Atmos. Sci. 36:377–389, 1979), but many uncertainties remain, especially in the deep atmosphere. The theoretical framework developed to explain the circulation in Venus’s atmosphere is reviewed, as well as the numerical models that have been built to elucidate the super-rotation mechanism. These tools are used to analyze the respective roles of the different waves in the processes driving the observed motions. Their limitations and suggested directions for improvements are discussed.

Keywords

Venus Atmospheric dynamics 

Notes

Acknowledgements

ASL was supported by the Spanish MICIIN AYA2015-65041-P (MINECO/FEDER, UE), Grupos Gobierno Vasco IT765-013. We appreciate the careful and detailed comments provided by two anonymous reviewers. PLR acknowledges support from the UK Science and Technology Facilities Council under grants ST/I001948/1 and ST/K00106X/1.

References

  1. M.J. Alexander, A mechanism for the Venus thermospheric super-rotation. Geophys. Res. Lett. 19, 2207–2210 (1992) ADSCrossRefGoogle Scholar
  2. F. Altieri, A. Migliorini, L. Zasova, A. Shakun, G. Piccioni, G. Bellucci, Modeling VIRTIS/VEX \(\mathrm{O}_{2}(a1\Delta g)\) nightglow profiles affected by the propagation of gravity waves in the Venus upper mesosphere. J. Geophys. Res., Planets 119, 2300–2316 (2014) ADSCrossRefGoogle Scholar
  3. H. Ando, T. Imamura, T. Tsuda, S. Tellmann, M. Pätzold, B. Häusler, Vertical wavenumber spectra of gravity waves in the Venus atmosphere obtained from Venus Express radio occultation data: evidence for saturation. J. Atmos. Sci. 72, 2318–2329 (2015) ADSCrossRefGoogle Scholar
  4. H. Ando, N. Sugimoto, M. Takagi, H. Kashimura, T. Imamura, Y. Matsuda, The puzzling Venusian polar atmospheric structure reproduced by a general circulation model. Nat. Commun. 1, 101038 (2016) Google Scholar
  5. D.G. Andrews, J.R. Holton, C.B. Leovy, Middle Atmosphere Dynamics (Academic Press, New York, 1987). 489 pp Google Scholar
  6. M. Angelats-i-Coll, F. Forget, M.A. López-Valverde, F. Gonzalez-Galindo, The first Mars thermospheric general circulation model: the Martian atmosphere from the ground to 240 km. Geophys. Res. Lett. 32(4), L05201 (2005). doi: 10.1029/2004GL021368 CrossRefGoogle Scholar
  7. J. Apt, R.A. Brown, R.M. Goody, The character of the thermal emission from Venus. J. Geophys. Res. 85, 7934–7940 (1980) ADSCrossRefGoogle Scholar
  8. N. Baker, C.B. Leovy, Zonal winds near Venus’ cloud top level: a model study of the interaction between the zonal mean circulation and the semidiurnal tide. Icarus 69, 202–220 (1987) ADSCrossRefGoogle Scholar
  9. R.D. Baker, G. Schubert, P.W. Jones, Cloud-level penetrative compressible convection in the Venus atmosphere. J. Atmos. Sci. 55, 3–18 (1998) ADSCrossRefGoogle Scholar
  10. R.D. Baker, G. Schubert, P.W. Jones, Convectively generated internal gravity waves in the lower atmosphere of Venus. Part I: no wind shear. J. Atmos. Sci. 57, 184–199 (2000a) ADSCrossRefGoogle Scholar
  11. R.D. Baker, G. Schubert, P.W. Jones, Convectively generated internal gravity waves in the lower atmosphere of Venus. Part II: mean wind shear and wave–mean flow interaction. J. Atmos. Sci. 57, 200–215 (2000b) ADSCrossRefGoogle Scholar
  12. M.P. Baldwin, L.J. Gray, T.J. Dunkerton, K. Hamilton, P.H. Haynes, W.J. Randel, J.R. Holton, M.J. Alexander, I. Hirota, T. Horinouchi, D.B.A. Jones, J.S. Kinnersley, C. Marquardt, K. Sato, M. Takahashi, The quasi-biennial oscillation. Rev. Geophys. 39, 179–229 (2001) ADSCrossRefGoogle Scholar
  13. J.K. Barstow, C.C.C. Tsang, C.F. Wilson, P.G.J. Irwin, F.W. Taylor, K. McGouldrick, P. Drossart, G. Piccioni, S. Tellman, Models of the global cloud structure on Venus derived from Venus Express observations. Icarus 217, 542–560 (2012) ADSCrossRefGoogle Scholar
  14. M.J.S. Belton, G.R. Smith, G. Schubert, A. Del Genio, Cloud patterns, waves and convection in the Venus atmosphere. J. Atmos. Sci. 33, 1394–1417 (1990) ADSCrossRefGoogle Scholar
  15. M.J.S. Belton et al., Images from Galileo of the Venus cloud deck. Science 253, 1531–1536 (1991) ADSCrossRefGoogle Scholar
  16. J.L. Bertaux, I.V. Khatunsev, A. Hauchecorne, W.J. Markiewicz, E. Marq, S. Lebonnois, M. Patsaeva, A. Turin, A. Fedorova, Influence of Venus topography on the zonal wind and UV albedo at cloud top level: the role of stationary gravity waves. J. Geophys. Res., Planets 121, 1087–1101 (2016). doi: 10.1002/2015JE004958 ADSCrossRefGoogle Scholar
  17. J.E. Blamont, R.E. Young, A. Seiff, B. Ragent, R. Sagdeev, V.M. Linkin, V.V. Kerzhanovich, A.P. Ingersoll, D. Crisp, L.S. Elson, R.A. Preston, G.S. Golytsin, V.N. Ivanov, Implications of the VEGA balloon results for Venus atmospheric dynamics. Science 231, 1422–1425 (1986) ADSCrossRefGoogle Scholar
  18. S.W. Bougher, R.E. Dickinson, Mars mesosphere and thermosphere. I—global mean heat budget and thermal structure. J. Geophys. Res. 93, 7325–7337 (1988). doi: 10.1029/JA093iA07p07325 ADSCrossRefGoogle Scholar
  19. S.W. Bougher, R.E. Dickinson, E.C. Ridley, R.G. Roble, A.F. Nagy, T.E. Cravens, Venus mesosphere and thermosphere: II. Global circulation, temperature, and density variations. Icarus 68, 284–312 (1986). doi: 10.1016/0019-1035(86)90025-4 ADSCrossRefGoogle Scholar
  20. S.W. Bougher, R.G.E. Roble, R.E. Dickinson, E.C. Ridley, Venus mesosphere and thermosphere: III. Three-dimensional general circulation with coupled dynamics and composition. Icarus 73, 545–573 (1988). doi: 10.1016/0019-1035(88)90064-4 ADSCrossRefGoogle Scholar
  21. S.W. Bougher, R.G. Roble, E.C. Ridley, R.E. Dickinson, The Mars thermosphere. II—general circulation with coupled dynamics and composition. J. Geophys. Res. 95, 14811–14827 (1990). doi: 10.1029/JB095iB09p14811 ADSCrossRefGoogle Scholar
  22. S.W. Bougher, M.J. Alexander, H.G. Mayer, Upper atmosphere dynamics: global circulation and gravity waves, in Venus II, ed. by S.W. Bougher, D.M. Hunten, R.J. Phillips (University of Arizona Press, Tucson, 1997), pp. 259–291 Google Scholar
  23. A.S. Brecht, S.W. Bougher, Dayside thermal structure of Venus’ upper atmosphere characterized by a global model. J. Geophys. Res. 117, E08002 (2012). doi: 10.1029/2012JE004079 ADSCrossRefGoogle Scholar
  24. A.S. Brecht, S.W. Bougher, J.-C. Gérard, C.D. Parkinson, S. Rafkin, B. Foster, Understanding the variability of nightside temperatures, NO UV and \(\mathrm{O}_{2}\) IR nightglow emissions in the Venus upper atmosphere. J. Geophys. Res., Planets 116, E08004 (2011). doi: 10.1029/2010JE003770 ADSGoogle Scholar
  25. R. Carlson et al., Galileo infrared imaging spectroscopy measurements at venus. Science 253, 1541–1548 (1991) ADSCrossRefGoogle Scholar
  26. L. Colin, Basic facts about Venus, in Venus I, ed. by D.M. Hunten, L. Colin, T.M. Donahue, V.I. Moroz (University of Arizona Press, Tucson, 1983), pp. 10–26 Google Scholar
  27. C.C. Counselman III., S.A. Gourevich, R.W. King, G.B. Loriot, Zonal and meridional circulation of the lower atmosphere of Venus determined by radio interferometry. J. Geophys. Res. 85, 8026–8030 (1980) ADSCrossRefGoogle Scholar
  28. C. Covey, G. Schubert, Planetary-scale waves in the Venus atmosphere. J. Atmos. Sci. 39, 2397–2413 (1982) ADSCrossRefGoogle Scholar
  29. D. Crisp, Radiative forcing of Venus mesosphere: I. Solar fluxes and heating rates. Icarus 67, 484–514 (1986) ADSCrossRefGoogle Scholar
  30. A.D. Del Genio, W.B. Rossow, Planetary-scale waves and the cyclic nature of cloud top dynamics on Venus. J. Atmos. Sci. 47, 293–318 (1990) ADSCrossRefGoogle Scholar
  31. A.R. Dobrovolkis, D.J. Diner, Barotropic instability with divergence: theory and applications to Venus. J. Atmos. Sci. 47, 1578–1588 (1990) ADSCrossRefGoogle Scholar
  32. P. Drossart, F. Montmessin, The legacy of Venus Express: highlights from the first European planetary mission to Venus. Astron. Astrophys. Rev. 23, 5 (2015) ADSCrossRefGoogle Scholar
  33. L.S. Elson, Barotropic instability in the upper atmosphere of Venus. Geophys. Res. Lett. 5(7), 603–605 (1978) ADSCrossRefGoogle Scholar
  34. L.S. Elson, Wave instability in the polar region of Venus. J. Atmos. Sci. 39, 2356–2362 (1982) ADSCrossRefGoogle Scholar
  35. L.W. Esposito, Ultraviolet contrasts and the absorbers near the Venus cloud tops. J. Geophys. Res. 85, 8151–8157 (1980) ADSCrossRefGoogle Scholar
  36. L.W. Esposito, J.L. Bertaux, V. Krasnopolsky, V.I. Moroz, L.V. Zasova, in Chemistry of Lower Atmosphere and Clouds, ed. by S.W. Bougher, D.M. Hunten, R.J. Phillips ((University of Arizona Press, Tucson, 1997), pp. 415–458 Google Scholar
  37. V. Eymet, R. Fournier, J.-L. Dufresne, S. Lebonnois, F. Hourdin, M.A. Bullock, Net-exchange parameterization of the thermal infrared radiative transfer in Venus’ atmosphere. J. Geophys. Res. 114, E11008 (2009). doi: 10.1029/2008JE003276 ADSCrossRefGoogle Scholar
  38. A. Fedorova, E. Marcq, M. Luginin, O. Korablev, J.-L. Bertaux, F. Montmessin, Variations of water vapor and cloud top altitude in the Venus’ mesosphere from SPICAV/VEx observations. Icarus 275, 143–162 (2016) ADSCrossRefGoogle Scholar
  39. S.B. Fels, R.S. Lindzen, The interaction of thermally excited gravity waves with mean flows. Geophys. Fluid Dyn. 6, 149–191 (1974) ADSCrossRefGoogle Scholar
  40. F.M. Flasar, K.H. Baines, M.K. Bird, T. Tokano, R.A. West, Atmospheric dynamics and meteorology, in Titan from Cassini-Huygens, ed. by R.H. Brown, J.-P. Lebreton, J. Hunter-Waite (Springer, Netherlands, 2009), pp. 323–352 CrossRefGoogle Scholar
  41. T. Fukuhara, M. Futaguchi, G.L. Hashimoto, T. Horinouchi, T. Imamura, N. Iwagaimi, T. Kouyama, S. Murakami, M. Nakamura, K. Ogohara, M. Sato, T.M. Sato, M. Suzuki, M. Taguchi, S. Takagi, M. Ueno, S. Watanabe, M. Yamada, A. Yamazaki, Large stationary gravity wave in the atmosphere of Venus. Nat. Geosci. 10, 85–88 (2017) ADSCrossRefGoogle Scholar
  42. I.G. Garate-Lopez, R. Hueso, A. Sánchez-Lavega, J. Peralta, G. Piccioni, P. Drossart, A chaotic permanent vortex in Venus’ southern pole. Nat. Geosci. 6, 254–257 (2013) ADSCrossRefGoogle Scholar
  43. I.G. Garate-Lopez, A. Garcia-Muñoz, R. Hueso, A. Sanchez-Lavega, Three-dimensional thermal structure of the South polar vortex of Venus. Icarus 245, 16–31 (2015) ADSCrossRefGoogle Scholar
  44. R.F. Garcia, P. Drossart, G. Piccioni, M. López-Valverde, G. Occhipinti, Gravity waves in the upper atmosphere of Venus revealed by CO2 nonlocal thermodynamic equilibrium emissions. J. Geophys. Res. 114, E00B32 (2009). doi: 10.1029/2008JE003073 ADSCrossRefGoogle Scholar
  45. A. García-Muñoz, P. Wolkenberg, A. Sánchez-Lavega, R. Hueso, I. Garate-Lopez, A model of scattered thermal radiation for Venus from 3 to \(5~\upmu \text{m}\). Planet. Space Sci. 81, 65–73 (2013) ADSCrossRefGoogle Scholar
  46. P.J. Gierasch, Meridional circulation and the maintenance of the Venus atmospheric rotation. J. Atmos. Sci. 32, 1038–1044 (1975) ADSCrossRefGoogle Scholar
  47. P.J. Gierasch, Waves in the atmosphere of Venus. Nature 328, 510–512 (1987) ADSCrossRefGoogle Scholar
  48. P.J. Gierasch, R.M. Goody, R.E. Young, D. Crisp, C. Edwards, R. Kahn, D. McCleese, D. Rider, A. Del Genio, R. Greeley, A. Hou, C.B. Leovy, N. Newman, The general circulation of the Venus atmosphere: an assessment, in Venus II, ed. by S.W. Bougher, D.M. Hunten, R.J. Phillips (University of Arizona Press, Tucson, 1997), pp. 459–500 Google Scholar
  49. G. Gilli, M.a. López-Valverde, P. Drossart, G. Piccioni, S. Erard, A. Cardesín Moinelo, Limb observations of CO2 and CO non-LTE emissions in the Venus atmosphere by VIRTIS/Venus Express. J. Geophys. Res. 114, E00B29 (2009). doi: 10.1029/2008JE003112 ADSCrossRefGoogle Scholar
  50. G. Gilli, S. Lebonnois, F. González-Galindo, M.A. López-Valverde, A. Stolzenbach, F. Lefèvre, J.-Y. Chaufray, F. Lott, Thermal structure of the upper atmosphere of Venus simulated by a ground-to-thermosphere GCM. Icarus 281, 55–72 (2017) ADSCrossRefGoogle Scholar
  51. F. Gonzalez-Galindo, F. Forget, M.A. López-Valverde, M. Angelats-i-Coll, A ground-to-exosphere Martian general circulation model: 1. Seasonal, diurnal, and solar cycle variation of thermospheric temperatures. J. Geophys. Res., Planets 114, E04001 (2009). doi: 10.1029/2008JE003246 ADSGoogle Scholar
  52. D. Grassi, A. Migliorini, L. Montabone, S. Lebonnois, A. Cardesin-Moinelo, G. Piccioni, P. Drossart, L.V. Zasova, Thermal structure of Venusian nighttime mesosphere as observed by VIRTIS-Venus Express. J. Geophys. Res. 115, E09007 (2010). doi: 10.1029/2009JE003553 ADSCrossRefGoogle Scholar
  53. D. Grassi et al., The Venus nighttime atmosphere as observed by the VIRTIS-M instrument. Average fields from the complete infrared data set. J. Geophys. Res., Planets 119, 837–849 (2014). doi: 10.1002/2013JE004586 ADSCrossRefGoogle Scholar
  54. R. Greeley, K. Bender, P.E. Thomas, G. Schubert, D. Limonadi, C.M. Weitz, Wind-related features and processed on Venus. Icarus 115, 399–420 (1995) ADSCrossRefGoogle Scholar
  55. S.D. Griffiths, The nonlinear evolution of zonally symmetric equatorial inertial instability. J. Fluid Mech. 474, 245–273 (2003) ADSMathSciNetzbMATHCrossRefGoogle Scholar
  56. J. Gula, R. Plougonven, V. Zeitlin, Ageostrophic instabilities of fronts in a channel in a stratified rotating fluid. J. Fluid Mech. 627, 485–507 (2009). doi: 10.1017/S0022112009006508 ADSMathSciNetzbMATHCrossRefGoogle Scholar
  57. D.L. Hartmann, Barotropic instability of the polar night jet stream. J. Atmos. Sci. 40(4), 817–835 (1983) ADSCrossRefGoogle Scholar
  58. I.M. Held, A.Y. Hou, Nonlinear axially symmetric circulations in a nearly inviscid atmosphere. J. Atmos. Sci. 37, 515–533 (1980) ADSMathSciNetCrossRefGoogle Scholar
  59. A. Herrnstein, T.E. Dowling, Effect of topography on the spin-up of a Venus atmospheric model. J. Geophys. Res. 112, E04S08 (2007). doi: 10.1029/2006JE002804 ADSCrossRefGoogle Scholar
  60. R. Hide, Dynamics of the atmospheres of the major planets, with an appendix on the viscous boundary layer at the rigid bounding surface of an electrically conducting rotating fluid in the presences of a magnetic field. J. Atmos. Sci. 26, 841–853 (1969) ADSCrossRefGoogle Scholar
  61. D.P. Hinson, J.M. Jenkins, Magellan radio occultation measurements of atmospheric waves on Venus. Icarus 114, 310–327 (1995) ADSCrossRefGoogle Scholar
  62. J.L. Hollingsworth, R.E. Young, G. Schubert, C. Covey, A.S. Grossman, A simple-physics global circulation model for Venus: sensitivity assessments of atmospheric super-rotation. Geophys. Res. Lett. 34, L05202 (2007). doi: 10.1029/2006GL028567 ADSCrossRefGoogle Scholar
  63. J.R. Holton, An Introduction to Dynamic Meteorology (Academic Press, Netherlands, 2004) Google Scholar
  64. N. Hoshino, H. Fujiwara, M. Takagi, Y. Takahashi, Y. Kasaba, Characteristics of planetary-scale waves simulated by a new Venusian mesosphere and thermosphere general circulation model. Icarus 217, 818–830 (2012). doi: 10.1016/j.icarus.2011.06.039 ADSCrossRefGoogle Scholar
  65. N. Hoshino, H. Fujiwara, M. Takagi, Y. Kasaba, Effects of gravity waves on the day-night difference of the general circulation in the Venusian lower thermosphere. J. Geophys. Res., Planets 118, 2004–2015 (2013). doi: 10.1002/jgre.20154 ADSCrossRefGoogle Scholar
  66. B.J. Hoskins, M.E. McIntyre, A.W. Robertson, On the use and significance of isentropic potential vorticity maps. Q. J. R. Meteorol. Soc. 111, 877–946 (1985) ADSCrossRefGoogle Scholar
  67. A.Y. Hou, Axisymmetric circulations forced by heat and momentum sources—a simple model applicable to the Venus atmosphere. J. Atmos. Sci. 41, 3437–3455 (1984) ADSCrossRefGoogle Scholar
  68. A.Y. Hou, B.F. Farrell, Super-rotation induced by critical-level absorption of gravity waves on Venus: an assessment. J. Atmos. Sci. 44, 1049–1061 (1987) ADSCrossRefGoogle Scholar
  69. B.L. Hua, D.W. Moore, S. Le Gentil, Inertial nonlinear equilibration of equatorial flows. J. Fluid Mech. 331, 345–371 (1997) ADSzbMATHCrossRefGoogle Scholar
  70. R. Hueso, A. Sánchez-Lavega, G. Piccioni, P. Drossart, J.C. Gérard, I. Khatuntsev, L. Zasova, A. Migliorini, Morphology and dynamics of Venus oxygen airglow from Venus Express/VIRTIS observations. J. Geophys. Res., Planets 113, E00B02 (2008). doi: 10.1029/2008JE003081 Google Scholar
  71. R. Hueso, J. Peralta, A. Sánchez-Lavega, Assessing the long-term variability of Venus winds at cloud level from VRTIS-Venus Express. Icarus 217, 585–598 (2012) ADSCrossRefGoogle Scholar
  72. R. Hueso, J. Peralta, I. Garate-Lopez, T.V. Bandos, A. Sánchez-Lavega, Six years of Venus winds at the upper cloud level from UV, visible and near infrared observations from VIRTIS on Venus Express. Planet. Space Sci. 113–114, 78–99 (2015). doi: 10.1016/j.pss.2017.03.014 CrossRefGoogle Scholar
  73. S. Iga, Y. Matsuda, Shear instability in a shallow water model with implications for the Venus atmosphere. J. Atmos. Sci. 62, 2514–2527 (2005) ADSMathSciNetCrossRefGoogle Scholar
  74. N.I. Ignatiev, D.V. Titov, G. Piccioni, P. Drossart, W.J. Markiewicz, V. Cottini, Th. Roatsch, M. Almeida, N. Manoel, Altimetry of the Venus cloud tops from the Venus Express observations. J. Geophys. Res. 114, E00B43 (2009) ADSCrossRefGoogle Scholar
  75. K. Ikeda, Development of radiative transfer model for Venus atmosphere and simulation of super-rotation using a general circulation model. Ph.D. dissertation, The University of Tokyo, 2011 Google Scholar
  76. K. Ikeda, M. Yamamoto, M. Takahashi, Super-rotation of the Venus atmosphere simulated by an Atmospheric General Circulation Model. IUGG/IAMAS Meeting, Perugia, Italy, 2–13 July 2007 Google Scholar
  77. T. Imamura, Momentum balance of the Venusian midlatitude mesosphere. J. Geophys. Res. 102, 6615–6620 (1997) ADSCrossRefGoogle Scholar
  78. T. Imamura, Meridional propagation of planetary-scale waves in vertical shear: implication for the Venus atmosphere. J. Atmos. Sci. 63, 1623–1636 (2006) ADSCrossRefGoogle Scholar
  79. T. Imamura, T. Horinouchi, T. Dunkerton, The lateral transport of zonal momentum due to Kelvin waves in a meridional circulation. J. Atmos. Sci. 61, 1966–1975 (2004) ADSCrossRefGoogle Scholar
  80. T. Imamura, T. Higuchi, Y. Maejima, M. Takagi, N. Sugimoto, K. Ikeda, H. Ando, Inverse insolation dependence of Venus’ cloud-level convection. Icarus 228, 181–188 (2014) ADSCrossRefGoogle Scholar
  81. J.M. Jenkins, P.J. Steffes, D. Hinson, J. Twicken, L. Tyler, Radio occultation studies of Venus’ atmosphere with the Magellan spacecraft. Icarus 110, 79–94 (1994) ADSCrossRefGoogle Scholar
  82. E. Kalnay de Rivas, Further numerical calculations of the circulation of the atmosphere of Venus. J. Atmos. Sci. 32, 1017–1024 (1975). doi: 10.1175/1520-0469(1975)032 ADSCrossRefGoogle Scholar
  83. V.V. Kerzhanovich, S.S. Limaye, Circulation of the atmosphere from the surface to 100 km. Adv. Space Res. 5, 59–83 (1985) ADSCrossRefGoogle Scholar
  84. V.V. Kerzhanovich, M.Ya. Marov, The atmospheric dynamics of Venus according to Doppler measurements by the Venera entry probes, in Venus I, ed. by D.M. Hunten, L. Colin, T.M. Donahue, V.I. Moroz (University of Arizona Press, Tucson, 1983), pp. 766–778 Google Scholar
  85. I.V. Khatuntsev, M.V. Patsaeva, D.V. Titov, N.I. Ignatiev, A.V. Turin, S.S. Limaye, W.J. Markiewicz, M. Almeida, Th. Roatsch, R. Moissl, Cloud level winds from the Venus express monitoring camera imaging. Icarus 226, 140–158 (2013) ADSCrossRefGoogle Scholar
  86. A. Kido, Y. Wakata, Multiple equilibrium states appear in a Venus-like atmospheric general circulation model. J. Meteorol. Soc. Jpn. 86, 969–979 (2008). doi: 10.2151/jmsj.86.969 CrossRefGoogle Scholar
  87. A.J. Kliore, I.R. Patel, Thermal structure of the atmosphere of Venus from pioneer Venus radio occultations. Icarus 52, 320–334 (1982). doi: 10.1029/JA085iA13p07957 ADSCrossRefGoogle Scholar
  88. A.J. Kliore, V.I. Moroz, G.M. Keating, (eds.), The Venus international reference atmosphere. Adv. Space Res. 5 (1985), 305 pp Google Scholar
  89. T. Kouyama, T. Imamura, M. Nakamura, T. Satoh, Y. Futaana, Horizontal structure of planetary-scale waves at the cloud top of Venus deduced from Galileo SSI images with an improved cloud-tracking technique. Planet. Space Sci. 60, 207–216 (2012). doi: 10.1016/j.pss/2011.08.008 ADSCrossRefGoogle Scholar
  90. T. Kouyama, T. Imamura, M. Nakamura, T. Satoh, Y. Futaana, Long-term variation in the cloud-tracked zonal velocities at the cloud top of Venus deduced from Venus Express VMC images. J. Geophys. Res., Planets 118, 37–46 (2013). doi: 10.1029/2011JE004013 ADSCrossRefGoogle Scholar
  91. T. Kouyama, T. Imamura, M. Nakamura, T. Satoh, Y. Futaana, Vertical propagation of planetary-scale waves in variable background winds in the upper cloud region of Venus. Icarus 248, 560–568 (2015). doi: 10.1016/j.icarus.2014.07.011 ADSCrossRefGoogle Scholar
  92. S. Lebonnois, F. Hourdin, V. Eymet, A. Crespin, R. Fournier, F. Forget, Super-rotation of Venus’ atmosphere analyzed with a full general circulation model. J. Geophys. Res. 115, E06006 (2010a). doi: 10.1029/2009JE003458 ADSCrossRefGoogle Scholar
  93. S. Lebonnois, F. Hourdin, V. Eymet, A. Crespin, R. Fournier, F. Forget, Super-rotation of Venus’ atmosphere analysed with a full general circulation model. J. Geophys. Res. 115, E06006 (2010b). doi: 10.1029/2009JE003458 ADSCrossRefGoogle Scholar
  94. S. Lebonnois, C. Covey, A. Grossman, H. Parish, G. Schubert, R. Walterscheid, P. Lauritzen, C. Jablonowski, Angular momentum budget in general circulation models of superrotating atmospheres: a critical diagnostic. J. Geophys. Res. 117, E12004 (2012). doi: 10.1029/2012JE004223 ADSCrossRefGoogle Scholar
  95. S. Lebonnois, C. Lee, M. Yamamoto, J. Dawson, S.R. Lewis, J. Mendonca, P.L. Read, H. Parish, G. Schubert, L. Bengtsson, D. Grinspoon, S. Limaye, H. Schmidt, H. Svedhem, D. Titov, Models of Venus atmosphere, in Towards Understanding the Climate of Venus: Application of Terrestrial Models to Our Sister Planet, ed. by L. Bengtsson, R.-M. Bonnet, D. Grinspoon, S. Koumoutsaris, S. Lebonnois, D. Titov. ISSI Scientific Report Series, vol. 11 (Springer, Netherlands, 2013), pp. 129–156 CrossRefGoogle Scholar
  96. S. Lebonnois, N. Sugimoto, G. Gilli, Wave analysis in the atmosphere of Venus below 100-km altitude, simulated by the LMD Venus GCM. Icarus 278, 38–51 (2016) ADSCrossRefGoogle Scholar
  97. C. Lee, M.I. Richardson, A general circulation model ensemble study of the atmospheric circulation of Venus. J. Geophys. Res. 115, E04002 (2010). doi: 10.1029/2009JE003490 ADSCrossRefGoogle Scholar
  98. C. Lee, M.I. Richardson, A discrete ordinate, multiple scattering, radiative transfer model of the Venus atmosphere from 0.1 to 260 μm. J. Atmos. Sci. 68, 1323–1339 (2011). doi: 10.1175/2011JAS3703.1 ADSCrossRefGoogle Scholar
  99. C. Lee, M.I. Richardson, Angular momentum conservation in a simplified Venus general circulation model. Icarus 221, 1173–1176 (2012). doi: 10.1016/j.icarus.2012.10.007 ADSCrossRefGoogle Scholar
  100. C. Lee, S.R. Lewis, P.L. Read, A numerical model of the atmosphere of Venus. Adv. Space Res. 36, 2142–2145 (2005). doi: 10.1016/j.asr.2005.03.120 ADSCrossRefGoogle Scholar
  101. C. Lee, S.R. Lewis, P.L. Read, Super-rotation in a Venus general circulation model. J. Geophys. Res. 112, E04S11 (2007). doi: 10.1029/2006JE002874 ADSGoogle Scholar
  102. C. Lee, S.R. Lewis, P.L. Read, A bulk cloud parameterization in a Venus general circulation model. Icarus 206, 662–668 (2010) ADSCrossRefGoogle Scholar
  103. E. Lellouch, T. Clancy, D. Crisp, A. Kliore, D. Titov, S.W. Bougher, Monitoring of mesospheric structure and dynamics, in Venus II, ed. by S.W. Bougher, D.M. Hunten, R.J. Phillips (University of Arizona Press, Tucson, 1997), pp. 295–324 Google Scholar
  104. E. Lellouch, G. Paubert, R. Moreno, a. Moullet, Monitoring Venus’ mesospheric winds in support of Venus Express: IRAM 30-M and APEX Observations. Planet. Space Sci. 56(10), 1355–1367 (2008). doi: 10.1016/j.pss.2008.06.010 ADSCrossRefGoogle Scholar
  105. C.B. Leovy, Rotation of the upper atmosphere of Venus. J. Atmos. Sci. 30, 1218–1220 (1973). doi: 10.1175/1520-0469(1973)030 ADSCrossRefGoogle Scholar
  106. S.S. Leroy, A.P. Ingersoll, Convective generation of gravity waves in Venus’s atmosphere: gravity wave spectrum and momentum transport. J. Atmos. Sci. 52, 3717–3737 (1995) ADSCrossRefGoogle Scholar
  107. S.S. Leroy, A.P. Ingersoll, Radio scintillations in Venus’s atmosphere: application of a theory of gravity wave generation. J. Atmos. Sci. 53, 1018–1028 (1996) ADSCrossRefGoogle Scholar
  108. S.R. Lewis, C. Lee, P.L. Read, A Venus atmospheric general circulation model for Venus Express, in European Planetary Science Congress, Berlin, Germany, 18–22 Sept. 2006 Google Scholar
  109. S.R. Lewis, J. Dawson, S. Lebonnois, M. Yamamoto, Modelling efforts, in Towards Understanding the Climate of Venus, ed. by L. Bengtsson, R.-M. Bonnet, D. Grinspoon, S. Koumoutsaris, S. Lebonnois, D. Titov. ISSI Scientific Report Series, vol. 11 (Springer, Netherlands, 2013), pp. 111–128 CrossRefGoogle Scholar
  110. S.S. Limaye, Venus atmospheric circulation: observations and implications of the thermal structure. Adv. Space Res. 5(9), 51–62 (1985) ADSCrossRefGoogle Scholar
  111. S.S. Limaye, Venus: cloud level circulation during 1982 as determined from Pioneer cloud photopolarimeter images. II - solar longitude dependent circulation. Icarus 73, 212–226 (1988) ADSCrossRefGoogle Scholar
  112. S.S. Limaye, Venus atmospheric circulation: known and unknown. J. Geophys. Res. 112, E04S09 (2007). doi: 10.1029/2006JE002814 ADSCrossRefGoogle Scholar
  113. S.S. Limaye, M. Rengel, Atmospheric circulation and dynamics of Venus, in Towards Understanding the Climate of Venus, ed. by L. Bengtsson, R.-M. Bonnet, D. Grinspoon, S. Koumoutsaris, S. Lebonnois, D. Titov. ISSI Scientific Report Series, vol. 11 (Springer, Netherlands, 2013), pp. 55–72 CrossRefGoogle Scholar
  114. S. Limaye, V. Suomi, A normalized view of Venus. J. Atmos. Sci. 34, 205–215 (1977) ADSCrossRefGoogle Scholar
  115. S.S. Limaye, V.E. Suomi, Cloud motions on Venus—global structure and organization. J. Atmos. Sci. 38, 1220–1235 (1981) ADSCrossRefGoogle Scholar
  116. S.S. Limaye, C.J. Grund, S.P. Burre, Zonal mean circulation at the cloud level on Venus: spring and fall 1979 OCPP observations. Icarus 51, 416–439 (1982) ADSCrossRefGoogle Scholar
  117. S.S. Limaye, J.P. Kossin, C. Rozoff, G. Piccioni, D.V. Titov, W.J. Markiewicz, Vortex circulation on Venus: dynamical similarities with terrestrial hurricanes. Geophys. Res. Lett. 36, L04,204 (2009). doi: 10.1029/2008GL036093 CrossRefGoogle Scholar
  118. R.S. Lindzen, Instability of plane parallel shear flow (towards a mechanistic picture of how it works). Pure Appl. Geophys. 16, 103–121 (1988) ADSCrossRefGoogle Scholar
  119. V.M. Linkin, V.V. Kerzhanovich, A.N. Lipatov, K.M. Pichkadze, A.A. Shurupov, A.V. Tertebrashvili, A.P. Ingersoll, D. Crisp, A.W. Grossman, R.E. Young, A. Seiff, B. Ragent, J.E. Blamont, L.S. Elson, R. Preston, VEGA balloon dynamics and vertical winds in the Venus middle cloud region. Science 231, 1417–1419 (1986) ADSCrossRefGoogle Scholar
  120. M.A. López-Valverde, P. Drossart, R. Carlson, R. Mehlman, M. Roos-Serote, Non-LTE infrared observations at Venus: from NIMS/Galileo to VIRTIS/Venus Express. Planet. Space Sci. 55, 1757–1771 (2007). doi: 10.1016/j.pss.2007.01.008 ADSCrossRefGoogle Scholar
  121. R.D. Lorenz, Surface winds on Venus: probability distribution from in-situ measurements. Icarus 264, 311–315 (2016) ADSCrossRefGoogle Scholar
  122. D. Luz, D.L. Berry, G. Piccioni, P. Drossart, R. Politi, C.F. Wilson, S. Erard, F. Nuccilli, Venus’s southern polar vortex reveals precessing circulation. Science 332, 577–580 (2011). doi: 10.1126/science.1201629 ADSCrossRefGoogle Scholar
  123. P. Machado, D. Luz, Th. Widemann, E. Lellouch, O. Witasse, Mapping zonal winds at Venus’s cloud tops from ground-based Doppler velocimetry. Icarus 221, 248–261 (2013) ADSCrossRefGoogle Scholar
  124. P. Machado, Th. Widemann, D. Luz, J. Peralta, Wind circulation regimes at Venus’ cloud tops: ground-based Doppler velocimetry using CFHT/ESPaDOnS and comparison with simultaneous cloud tracking measurements using VEx/VIRTIS in February, 2011. Icarus 243, 249–263 (2014) ADSCrossRefGoogle Scholar
  125. P. Machado, T. Widemann, J. Peralta, R. Gonçalves, J.-F. Donati, D. Luz, Venus cloud-tracked and Doppler velocimetry winds from CFHT/ESPaDOnS and Venus Express/VIRTIS in April 2014. Icarus 285, 8–26 (2017) ADSCrossRefGoogle Scholar
  126. W.J. Markiewicz, D.V. Titov, S.S. Limaye, H.U. Keller, N. Ignatiev, R. Jaumann, N. Thomas, H. Michalik, R. Moissl, P. Russo, Morphology and dynamics of the upper cloud layer of Venus. Nature 450, 633–636 (2007) ADSCrossRefGoogle Scholar
  127. M.Y. Marov, Results of Venus missions. Annu. Rev. Astron. Astrophys. 16, 141–169 (1978). doi: 10.1146/annurev.aa.16.090178.001041 ADSCrossRefGoogle Scholar
  128. H.G. Mayr, I. Harris, Quasi-axisymmetric circulation and super-rotation in planetary atmospheres. Astron. Astrophys. 121, 124–136 (1983) ADSzbMATHGoogle Scholar
  129. J.M. Mendonca, P.L. Read, Exploring the Venus global super-rotation using a comprehensive general circulation model. Planet. Space Sci. 134, 1–18 (2016). doi: 10.1016/j.pss.2016.09.001 ADSCrossRefGoogle Scholar
  130. J.M. Mendonca, P.L. Read, C.F. Wilson, S.R. Lewis, Zonal winds at high latitudes on Venus: an improved application of cyclostrophic balance to Venus Express observations. Icarus 217, 629–639 (2012). doi: 10.1016/j.icarus.2011.07.010 ADSCrossRefGoogle Scholar
  131. J.M. Mendonca, P.L. Read, C.F. Wilson, C. Lee, A new fast and flexible radiative transfer method for Venus general circulation models. Planet. Space Sci. 105, 80–93 (2015). doi: 10.1016/j.pss.2014.11.008 ADSCrossRefGoogle Scholar
  132. D.V. Michelangeli, R.W. Zurek, L.S. Elson, Barotropic instability of midlatitude zonal jets on Mars, Earth and Venus. J. Atmos. Sci. 44, 2031–2041 (1987) ADSCrossRefGoogle Scholar
  133. A. Migliorini, D. Grassi, L. Montabone, S. Lebonnois, P. Drossart, G. Piccioni, Investigation of air temperature on the nightside of Venus derived from VIRTIS-H on board Venus-Express. Icarus 217, 640–647 (2012). doi: 10.1016/j.icarus.2011.07.013 ADSCrossRefGoogle Scholar
  134. J.L. Mitchell, G.K. Vallis, The transition to super-rotation in terrestrial atmospheres. J. Geophys. Res. 115, E12008 (2010). doi: 10.1029/2010JE003587 ADSCrossRefGoogle Scholar
  135. R. Moissl, I. Khatuntsev, S.S. Limaye, D.V. Titov, W.J. Markiewicz, N.I. Ignatiev, T. Roatsch et al., Venus cloud top winds from tracking UV features in Venus monitoring camera images. J. Geophys. Res., Planets 114, E00B31 (2009). doi: 10.1029/2008JE003117 CrossRefGoogle Scholar
  136. V.I. Moroz, The atmosphere of Venus. Space Sci. Rev. 29, 3–127 (1981) ADSCrossRefGoogle Scholar
  137. V.I. Moroz, L.V. Zasova, VIRA-2: a review of inputs for updating the Venus international reference atmosphere. Adv. Space Res. 19, 1191–1201 (1997) ADSCrossRefGoogle Scholar
  138. M. Newman, C. Leovy, Maintenance of strong rotational winds in Venus’ middle atmosphere by thermal tides. Science 257, 647–650 (1992) ADSCrossRefGoogle Scholar
  139. M. Newman, G. Schubert, A.J. Kliore, I.R. Patel, Zonal winds in the middle atmosphere of Venus from Pioneer Venus radio occultation data. J. Atmos. Sci. 41, 1901–1913 (1984) ADSCrossRefGoogle Scholar
  140. G.S. Orton, J. Caldwell, A.J. Friedson, T.Z. Martin, Middle infrared thermal maps of Venus at the time of the Galileo encounter. Science 253, 1536–1538 (1991) ADSCrossRefGoogle Scholar
  141. H.F. Parish, G. Schubert, C. Covey, R.L. Walterscheid, A. Grossman, S. Lebonnois, Decadal variations in a Venus general circulation model. Icarus 212, 42–65 (2011). doi: 10.1016/j.icarus.2010.11.015 ADSCrossRefGoogle Scholar
  142. J.B. Pechmann, A.P. Ingersoll, Thermal tides in the atmosphere of Venus: comparison of model results with observations. J. Atmos. Sci. 41, 3290–3313 (1984) ADSCrossRefGoogle Scholar
  143. J. Peralta, R. Hueso, A. Sánchez-Lavega, Cloud brightness distribution and turbulence in Venus using Galileo Violet images. Icarus 188, 305–314 (2007a). doi: 10.1016/j.icarus.2007.03.028 ADSCrossRefGoogle Scholar
  144. J. Peralta, R. Hueso, A. Sánchez-Lavega, A reanalysis of Venus winds at two cloud levels from Galileo SSI images. Icarus 190, 469–477 (2007b). doi: 10.1016/j.icarus.2007.03.028 ADSCrossRefGoogle Scholar
  145. J. Peralta, R. Hueso, A. Sanchez-Lavega, G. Piccioni, O. Lanciano, P. Drossart, Characterization of mesoscale gravity waves in the upper and lower clouds of Venus from VEX-VIRTIS images. J. Geophys. Res. 113, E00B18 (2008). doi: 10.1029/2008JE003185 ADSCrossRefGoogle Scholar
  146. J. Peralta, D. Luz, D.L. Berry, A. Sánchez-Lavega, R. Hueso, G. Piccioni, P. Drossart, Solar migrating atmospheric tides in the winds of the polar region of Venus. Icarus 220, 958–970 (2012). doi: 10.1016/j.icarus.2012.06.015 ADSCrossRefGoogle Scholar
  147. J. Peralta, T. Imamura, P.L. Read, D. Luz, A. Piccialli, M.A. López-Valverde, Analytical solution for waves in planets with atmospheric super-rotation. I. Acoustic and inertia-gravity waves. Astrophys. J. Suppl. Ser. 213, 17 (2014a). doi: 10.1088/0067-0049/213/1/17 ADSCrossRefGoogle Scholar
  148. J. Peralta, T. Imamura, P.L. Read, D. Luz, A. Piccialli, M.A. López-Valverde, Analytical solution for waves in planets with atmospheric super-rotation. II. Lamb, surface, and centrifugal waves. Astrophys. J. Suppl. Ser. 213, 18 (2014b). doi: 10.1088/0067-0049/213/1/18 ADSCrossRefGoogle Scholar
  149. J. Peralta, A. Sanchez-Lavega, M.A. Lopez-Valverde, D. Luz, P. Machado, Venus’s major cloud feature as an equatorially-trapped wave distorted by the wind. Geophys. Res. Lett. 42, 705–711 (2015) ADSCrossRefGoogle Scholar
  150. J. Peralta, M.A. Lopez-Valverde, G. Gilli, A. Piccialli, Dayside temperatures in the Venus upper atmosphere from Venus Express/VIRTIS nadir measurements at 4.3 microns. Astron. Astrophys. 585, A53 (2016). doi: 10.1051/0004-6361/201527191 ADSCrossRefGoogle Scholar
  151. J. Peralta, Y. Joo Lee, K. McGouldrick, H. Sagawa, A. Sanchez-Lavega, T. Imamura, T. Widemann, M. Nakamura, Overview of useful spectral regions for Venus: an update to encourage observations complementary to the Akatsuki mission. Icarus 288, 235–239 (2017) ADSCrossRefGoogle Scholar
  152. A. Petculescu, R.M. Lueptow, Atmospheric acoustics of Titan, Mars, Venus, and Earth. Icarus 186, 413–419 (2007) ADSCrossRefGoogle Scholar
  153. A. Piccialli, A.D.V. Titov, D. Grassi, I. Khatuntsev, P. Drossart, G. Piccioni, A. Migliorini, Cyclostrophic winds from the visible and infrared thermal imaging spectrometer temperature sounding: a preliminary analysis. J. Geophys. Res. 113, E00B11 (2008). doi: 10.1029/2008JE003127 ADSCrossRefGoogle Scholar
  154. A. Piccialli, S. Tellmann, D.V. Titov, S.S. Limaye, I.V. Khatuntsev, M. Pätzold, B. Häusler, Dynamical properties of the Venus mesosphere from the radio-occultation experiment VeRa onboard Venus Express. Icarus 217, 669–681 (2012). doi: 10.1016/j.icarus.2011.07.016 ADSCrossRefGoogle Scholar
  155. A. Piccialli, D.V. Titov, A. Sanchez-Lavega, J. Peralta, O. Shalygina, W.J. Markiewicz, H. Svedhem, High latitude gravity waves at the Venus cloud tops as observed by the Venus Monitoring Camera on board Venus Express. Icarus 227, 94–111 (2014) ADSCrossRefGoogle Scholar
  156. G. Piccioni, P. Drossart, A. Sanchez-Lavega, R. Hueso et al., South polar features on Venus similar to those near the North Pole. Nature 450, 637–640 (2007) ADSCrossRefGoogle Scholar
  157. R.A. Plumb, Angular momentum advection by axisymmetric motions. Q. J. R. Meteorol. Soc. 103, 479–485 (1977) ADSCrossRefGoogle Scholar
  158. J.B. Pollack, O.B. Toon, R.C. Whitten, R. Boese, B. Ragent, M. Tomasko, L. Esposito, L. Travis, D. Wiedman, Distribution and source of the UV absorption in Venus’ atmosphere. J. Geophys. Res. 85, 8141–8150 (1980) ADSCrossRefGoogle Scholar
  159. C.H.B. Prieslty, Turbulent Transfer in the Lower Atmosphere (Chicago University Press, Chicago, 1959) Google Scholar
  160. V. Ramanathan, R.D. Cess, An analysis of the strong zonal circulation within the stratosphere of Venus. Icarus 25, 89–103 (1975) ADSCrossRefGoogle Scholar
  161. P.L. Read, Super-rotation and diffusion of axial angular momentum: II. A review of quasi-axisymmetric models of planetary atmospheres. Q. J. R. Meteorol. Soc. 112, 253–272 (1986) ADSCrossRefGoogle Scholar
  162. P.L. Read, The dynamics and circulation of Venus atmosphere, in Towards Understanding the Climate of Venus, ed. by L. Bentgsson et al.(Springer, New York, 2013), pp. 73–110 CrossRefGoogle Scholar
  163. B. Ribstein, V. Zeitlin, A.-S. Tissier, Barotropic, baroclinic and inertial instabilities of the easterly Gaussian jet on the equatorial \(\beta\)-plane in rotating shallow water. Phys. Fluids 26, 056605 (2014). doi: 10.1063/1.4875030 ADSCrossRefGoogle Scholar
  164. C. Roldan, M.A. Lopez-Valverde, M. Lopez-Puertas, D.P. Edwards, Non-LTE infrared emissions of CO2 in the atmosphere of Venus. Icarus 147, 11–25 (2000). doi: 10.1006/icar.2000.6432 ADSCrossRefGoogle Scholar
  165. M. Roos-Serote, P. Drossart, Th. Encrenaz, E. Lellouch, R.W. Carlson, K.H. Baines, F.W. Taylor, S.B. Calcutt, Thermal structure and dynamics of the atmosphere of Venus between 70 and 90 km from the Galileo-NIMS spectra. Icarus 114, 300–309 (1995) ADSCrossRefGoogle Scholar
  166. W.B. Rossow, A general circulation model of a Venus-like atmosphere. J. Atmos. Sci. 40, 273–302 (1983). doi: 10.1175/1520-0469 ADSCrossRefGoogle Scholar
  167. W.B. Rossow, G.P. Williams, Large scale motions in the Venus stratosphere. J. Atmos. Sci. 36, 377–389 (1979) ADSCrossRefGoogle Scholar
  168. W.B. Rossow, A. Del Genio, S.S. Limaye, L.D. Travis, Cloud morphology and motions from Pioneer Venus images. J. Geophys. Res. 85, 8107–8128 (1980a) ADSCrossRefGoogle Scholar
  169. W.B. Rossow, S.B. Fels, P.H. Stone, Comments on ‘A three-dimensional model of dynamical processes in the Venus atmosphere’. J. Atmos. Sci. 37, 250–252 (1980b) ADSCrossRefGoogle Scholar
  170. W.B. Rossow, A.D. del Genio, T. Eichler, Cloud-tracked winds from Pioneer Venus OCPP images. J. Atmos. Sci. 47, 2053–2084 (1990) ADSCrossRefGoogle Scholar
  171. R.Z. Sagdeev et al., Overview of VEGA Venus balloon in situ meteorological measurements. Science 231, 1411–1414 (1986) ADSCrossRefGoogle Scholar
  172. S. Sakai, Rossby-Kelvin instability: a new type of ageostrophic instability caused by a resonance between Rossby waves and gravity waves. J. Fluid Mech. 202, 149–176 (1989) ADSMathSciNetzbMATHCrossRefGoogle Scholar
  173. A. Sánchez-Lavega, An Introduction to Planetary Atmospheres (Taylor & Francis/CRC Press, Boca Raton, 2011) Google Scholar
  174. A. Sánchez-Lavega, R. Hueso, G. Piccioni, P. Drossart, J. Peralta, S. Pérez-Hoyos, C. Wilson, F. Taylor, K. Baines, D. Luz, S. Erard, S. Lebonnois, Variable winds on Venus mapped in three dimensions. Geophys. Res. Lett. 35, L13204 (2008). doi: 10.1029/2008GL033817 ADSCrossRefGoogle Scholar
  175. A. Sánchez-Lavega, J. Peralta, J.M. Gómez-relad, R. Hueso, S. Pérez-Hoyos, I. Mendikoa, J.F. Rojas, T. Horinouchi, Y.J. Lee, S. Watanabe, Venus cloud morphology and motions from ground-based images at the time of the Akatsuki orbit insertion. Astrophys. J. Lett. 833, 07 (2016), 7 pp ADSCrossRefGoogle Scholar
  176. T.M. Sato, H. Sawada, T. Kouyama, K. Mitsuyama, T. Satoh, S. Ohtsuki, M. Ueno, Y. Kasaba, M. Nakamura, T. Imamura, Cloud top structure of Venus revealed by Subaru/COMICS mid-infrared images. Icarus 243, 386–399 (2014) ADSCrossRefGoogle Scholar
  177. P.J. Schinder, P.J. Gierasch, S.S. Leroy, M.D. Smith, Waves, advection, and cloud patterns on Venus. J. Atmos. Sci. 47, 2037–2052 (1990) ADSCrossRefGoogle Scholar
  178. E.K. Schneider, Axially symmetric steady state models of the basic state for instability and climate studies. Part II. Nonlinear calculations. J. Atmos. Sci. 34, 280–296 (1977) ADSCrossRefGoogle Scholar
  179. J.T. Schofield, D.J. Diner, Rotation of Venus’s polar dipole. Nature 305, 116–119 (1983). doi: 10.1038/305116a0 ADSCrossRefGoogle Scholar
  180. J.T. Schofield, F.W. Taylor, Measurements of the mean, solar-fixed temperature and cloud structure of the middle atmosphere of Venus. Q. J. R. Meteorol. Soc. 109, 57–80 (1983) ADSCrossRefGoogle Scholar
  181. G. Schubert, General circulation and the dynamical state of the Venus atmosphere, in Venus I, ed. by D.M. Hunten, L. Colin, T.M. Donahue, V.I. Moroz (University of Arizona Press, Tucson, 1983), pp. 681–765 Google Scholar
  182. G. Schubert, R.L. Walterscheid, Propagation of small-scale acoustic-gravity waves in the Venus atmosphere. J. Atmos. Sci. 41, 1202–1213 (1984) ADSCrossRefGoogle Scholar
  183. G. Schubert, C. Covey, A. Del Genio, L.S. Elson, G. Keating, A. Seiff, R.E. Young, J. Apt, C.C. Counselman, A.J. Kliore, S.S. Limaye, H.E. Revercomb, L.A. Sromovsky, V.E. Suomi, F. Taylor, R. Woo, U. Von Zahn, Structure and circulation of the Venus atmosphere. J. Geophys. Res. 85(A13), 8007–8025 (1980) ADSCrossRefGoogle Scholar
  184. W.H. Schubert et al., Polygonal eyewalls, asymmetric eye contraction, and potential vorticity mixing in hurricanes. J. Atm. Sci. 56, 1197–1223 (1999) ADSCrossRefGoogle Scholar
  185. A. Seiff, Dynamical implications of the observed thermal contrasts in Venus’s upper atmosphere. Icarus 51, 574–592 (1982) ADSCrossRefGoogle Scholar
  186. A. Seiff, D.B. Kirk, R.E. Young, R.C. Blanchard, J.T. Findlay, G.M. Kelly, S.C. Sommer, Measurements of thermal structure and thermal contrasts in the atmosphere of Venus and related dynamical observations: results from the four Pioneer Venus probes. J. Geophys. Res. 85, 7903–7933 (1980) ADSCrossRefGoogle Scholar
  187. M.D. Smith, P.J. Gierasch, P.J. Schinder, A global traveling wave on Venus. Science 256, 652–655 (1992) ADSCrossRefGoogle Scholar
  188. M.D. Smith, P.J. Gierasch, P.J. Schinder, Global-scale waves in the Venus atmosphere. J. Atmos. Sci. 50, 4080–4096 (1993). doi: 10.1175/1520-0469(1993)050<4080:GSWITV>2.0.CO;2 ADSCrossRefGoogle Scholar
  189. M. Sornig et al., Venus upper atmosphere winds from ground-based heterodyne spectroscopy of CO2 at \(10~\upmu \text{m}\) wavelength. Planet. Space Sci. 56, 1399–1406 (2012) ADSCrossRefGoogle Scholar
  190. P.H. Stone, The meteorology of the jovian atmosphere, in Jupiter: Studies of the Interior, Atmosphere, Magnetosphere, and Satellites, ed. by T. Gehrels, M.S. Matthews (University of Arizona Press, Tucson, 1976), pp. 586–618. ISBN 0-8165-0530-6 Google Scholar
  191. N. Sugimoto, M. Takagi, Y. Matsuda, Baroclinic instability in the Venus atmosphere simulated by GCM. J. Geophys. Res., Planets 119, 1950–1968 (2014a). doi: 10.1002/2014JE004624 ADSCrossRefGoogle Scholar
  192. N. Sugimoto, M. Takagi, Y. Matsuda, Waves in a Venus general circulation model. Geophys. Res. Lett. 41, 7461–7467 (2014b). doi: 10.1002/2014GL061807 ADSCrossRefGoogle Scholar
  193. V.E. Suomi, S.S. Limaye, Venus—further evidence of vortex circulation. Science 201, 1009–1111 (1978) ADSCrossRefGoogle Scholar
  194. M. Takagi, Y. Matsuda, Sensitivity of thermal tides in the Venus atmosphere to basic zonal flow and Newtonian cooling. Geophys. Res. Lett. 32, L02203 (2005). doi: 10.1029/2004GL022060 ADSGoogle Scholar
  195. M. Takagi, Y. Matsuda, A further study on the stability of a baroclinic flow in cyclostrophic balance. Geophys. Res. Lett. 32, L19804 (2005b). doi: 10.1029/2005GL023700 ADSGoogle Scholar
  196. M. Takagi, Y. Matsuda, Dynamical effect of thermal tides in the lower Venus atmosphere. Geophys. Res. Lett. 33, L13102 (2006). doi: 10.1029/2006GL026168 ADSCrossRefGoogle Scholar
  197. M. Takagi, Y. Matsuda, A study on the stability of a baroclinic flow in cyclostrophic balance on the sphere. Geophys. Res. Lett. 33, L14807 (2006b). doi: 10.1029/2006GL026200 ADSCrossRefGoogle Scholar
  198. M. Takagi, Y. Matsuda, Effects of thermal tides on the Venus atmospheric super-rotation. J. Geophys. Res. 112, D09112 (2007). doi: 10.1029/2006JD007901 ADSCrossRefGoogle Scholar
  199. F.W. Taylor, The Scientific Exploration of Venus (Cambridge University Press, Cambridge, 2014) CrossRefGoogle Scholar
  200. F.W. Taylor, D.J. Diner, L.S. Elson, M.S. Hanner, D.J. McCleese, J.V. Martonchik, P.E. Reichley et al., Infrared remote sounding of the middle atmosphere of Venus from the Pioneer orbiter. Science 203, 779–781 (1979). doi: 10.1126/science.203.4382.779 ADSCrossRefGoogle Scholar
  201. F.W. Taylor, R. Beer, M.T. Chahine, D.J. Diner, L.S. Elson, R.D. Haskins, D.J. McCleese, J.V. Martonchik, P.E. Reichley, S.P. Bradley, J. Delderfield, J.T. Schofield, C.B. Farmer, L. Froidevaux, J. Leung, M.T. Coffey, J.C. Gille, Structure and meteorology of the middle atmosphere of Venus: infrared remote sounding from the Pioneer orbiter. J. Geophys. Res. 85, 7963–8006 (1980) ADSCrossRefGoogle Scholar
  202. S. Tellmann, M. Pätzold, B. Häusler, M.K. Bird, G.L. Tyler, Structure of the Venus neutral atmosphere as observed by the radio science experiment VeRa on Venus Express. J. Geophys. Res. 114, E00B36 (2009) ADSCrossRefGoogle Scholar
  203. S. Tellmann, B. Häusler, D.P. Hinson, G.L. Tyler, T.P. Andert, M.K. Bird, T. Imamura, M. Pätzold, S. Remus, Small-scale temperature fluctuations seen by the VeRa radio science experiment on Venus Express. Icarus 221, 471–480 (2012) ADSCrossRefGoogle Scholar
  204. D.V. Titov et al., Morphology of the cloud tops as observed by the Venus Express monitoring camera. Icarus 217, 682–701 (2012) ADSCrossRefGoogle Scholar
  205. A. Toigo, P.J. Gierasch, M.D. Smith, High resolution cloud feature tracking on Venus by Galileo. Icarus 109, 318–336 (1994) ADSCrossRefGoogle Scholar
  206. M.G. Tomasko, L.R. Doose, P.H. Smith, A.P. Odell, Measurements of the flux of sunlight in the atmosphere of Venus. J. Geophys. Res. 85, 8167–8186 (1980) ADSCrossRefGoogle Scholar
  207. L.D. Travis, Nature of the atmospheric dynamics on Venus from power spectrum analysis of Mariner 10 images. J. Atmos. Sci. 35, 1584–1595 (1978) ADSCrossRefGoogle Scholar
  208. G.K. Vallis, Atmospheric and Oceanic Fluid Dynamics (Cambridge University Press, UK, 2006) zbMATHCrossRefGoogle Scholar
  209. T. Widemann et al., New wind measurements in Venus lower mesosphere from visible spectroscopy. Planet. Space Sci. 55, 1741–1756 (2007) ADSCrossRefGoogle Scholar
  210. T. Widemann et al., Venus Doppler winds at cloud tops observed with ESPaDOnS at CFHT. Planet. Space Sci. 56, 1320–1334 (2008) ADSCrossRefGoogle Scholar
  211. M. Yamamoto, M. Takahashi, The fully developed super-rotation simulated by a general circulation model of a Venus-like atmosphere. J. Atmos. Sci. 60, 561–574 (2003a) ADSCrossRefGoogle Scholar
  212. M. Yamamoto, M. Takahashi, Super-rotation and equatorial waves in a T21 Venus-like AGCM. Geophys. Res. Lett. 30, 1449 (2003b). doi: 10.1029/2003GL016924 ADSCrossRefGoogle Scholar
  213. M. Yamamoto, M. Takahashi, Dynamics of Venus’ super-rotation: the eddy momentum transport processes newly found in a GCM. Geophys. Res. Lett. 31, L09701 (2004). doi: 10.1029/2004GL019518 ADSGoogle Scholar
  214. M. Yamamoto, M. Takahashi, Super-rotation maintained by meridional circulation and waves in a Venus-like AGCM. J. Atmos. Sci. 63, 3296–3314 (2006) ADSCrossRefGoogle Scholar
  215. M. Yamamoto, M. Takahashi, Dynamical effects of solar heating below the cloud layer in a Venus-like atmosphere. J. Geophys. Res. 114, E12004 (2009). doi: 10.1029/2009JE003381 ADSCrossRefGoogle Scholar
  216. M. Yamamoto, M. Takahashi, Venusian middle-atmospheric dynamics in the presence of a strong planetary-scale 5.5-day wave. Icarus 217, 702–713 (2012). doi: 10.1016/j.icarus.2011.06.017 ADSCrossRefGoogle Scholar
  217. M. Yamamoto, M. Takahashi, Dynamics of polar vortices at cloud top and base on Venus inferred from a general circulation model: case of a strong diurnal thermal tide. Planet. Space Sci. 113, 109–119 (2015) ADSCrossRefGoogle Scholar
  218. M. Yamamoto, H. Tanaka, Formation and maintenance of the 4-day circulation in the Venus middle atmosphere. J. Atmos. Sci. 54, 1472–1489 (1997) ADSCrossRefGoogle Scholar
  219. R.E. Young, J.B. Pollack, A three-dimensional model of dynamical processes in the Venus atmosphere. J. Atmos. Sci. 34, 1315–1351 (1977) ADSCrossRefGoogle Scholar
  220. R.E. Young, H. Houben, L. Pfister, Baroclinic instability in the Venus atmosphere. J. Atmos. Sci. 41, 2310–2333 (1984) ADSCrossRefGoogle Scholar
  221. R.E. Young, R.L. Walterscheid, G. Schubert, A. Seiff, V.M. Linkin, A.N. Lipatov, Characteristics of gravity waves generated by surface topography on Venus: comparison with the VEGA balloon results. J. Atmos. Sci. 44, 2628–2639 (1987) ADSCrossRefGoogle Scholar
  222. R.E. Young, R.L. Walterscheid, G. Schubert, L. Pfister, H. Houben, D.L. Bindschadler, Characteristics of finite amplitude stationary gravity waves in the atmosphere of Venus. J. Atmos. Sci. 51, 1857–1875 (1994) ADSCrossRefGoogle Scholar
  223. A.M. Zalucha, A.S. Brecht, S. Rafkin, S.W. Bougher, M.J. Alexander, Incorporation of a gravity wave momentum deposition parameterization into the Venus Thermosphere General Circulation Model (VTGCM). J. Geophys. Res., Planets 118, 147–160 (2013). doi: 10.1029/2012JE004168 ADSCrossRefGoogle Scholar
  224. L. Zasova, I.V. Khatountsev, N.I. Ignatiev, V.I. Moroz, Local time variations of the middle atmosphere of Venus: solar-related structures. Adv. Space Res. 29, 243–248 (2002). doi: 10.1016/S0273-1177(01)00574-9 ADSCrossRefGoogle Scholar
  225. L.V. Zasova, N. Ignatiev, I. Khatuntsev, V. Linkin, Structure of the Venus atmosphere. Planet. Space Sci. 55, 1712–1728 (2007). doi: 10.1016/j.pss.2007.01.011 ADSCrossRefGoogle Scholar
  226. S. Zhang, S.W. Bougher, M.J. Alexander, The impact of gravity waves on the Venus thermosphere and \(\mathrm{O}_{2}\) IR nightglow. J. Geophys. Res. 101, 23195–23205 (1996) ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Agustín Sánchez-Lavega
    • 1
  • Sebastien Lebonnois
    • 2
  • Takeshi Imamura
    • 3
  • Peter Read
    • 4
  • David Luz
    • 5
    • 6
    • 7
  1. 1.Departamento de Física Aplicada I, Escuela de Ingeniería de BilbaoUniversidad del País Vasco UPV/EHUBilbaoSpain
  2. 2.Laboratoire de Météorologie DynamiqueParis 05France
  3. 3.Department of Complexity Science and Engineering, Graduate School of Frontier SciencesThe University of TokyoKashiwaJapan
  4. 4.Atmospheric, Oceanic & Planetary PhysicsUniversity of OxfordOxfordUK
  5. 5.Instituto de AstrofísicaObservatório Astronómico de LisboaLisbonPortugal
  6. 6.Faculdade de CiênciasUniversidade de LisboaLisbonPortugal
  7. 7.Laboratoire d’Etudes Spatiales et d’Instrumentation en AstrophysiqueObservatoire de ParisMeudon cedexFrance

Personalised recommendations