Advertisement

Space Science Reviews

, Volume 211, Issue 1–4, pp 277–313 | Cite as

Potential Effects of Surface Temperature Variations and Disturbances and Thermal Convection on the Mars InSight HP3 Heat-Flow Determination

  • Paul Morgan
  • Suzanne E. Smrekar
  • Ralph Lorenz
  • Matthias Grott
  • Olaf Kroemer
  • Nils Müller
Article

Abstract

The HP3 instrument on the InSight lander mission will measure subsurface temperatures and thermal conductivities from which heat flow in the upper few meters of the regolith at the landing site will be calculated. The parameter to be determined is steady-state conductive heat flow, but temperatures may have transient perturbations resulting from surface temperature changes and there could be a component of thermal convection associated with heat transport by vertical flow of atmospheric gases over the depth interval of measurement. The experiment is designed so that it should penetrate to a depth below which surface temperature perturbations are smaller than the required measurement precision by the time the measurements are made. However, if the measurements are delayed after landing, and/or the probe does not penetrate to the desired depth, corrections may be necessary for the transient perturbations. Thermal convection is calculated to be negligible, but these calculations are based on unknown physical properties of the Mars regolith. The effects of thermal convection should be apparent at shallow depths where transient thermal perturbations would be observed to deviate from conductive theory. These calculations were required during proposal review and their probability of predicting a successful measurement a prerequisite for mission approval. However, their uncertainties lies in unmeasured physical parameters of the Mars regolith.

Keywords

Mars Heat flow InSight HP3 Conduction Convection Barometric pumping 

Notes

Acknowledgements

PM was supported for this work by subcontract no. 1479970 for the InSight Mission from the Jet Propulsion Laboratory. This is InSight Contribution Number 28.

References

  1. C.F. Ahlers, S. Finsterle, G.S. Bodvarsson, J. Contam. Hydrol. 38, 47 (1999) ADSCrossRefGoogle Scholar
  2. A.E. Arvidson, E.A. Guinness, H.J. Moore, J. Tillman, S.D. Wall, Science 222, 463 (1983) ADSCrossRefGoogle Scholar
  3. R.M. Barrer, in The Solid-Gas Interface, vol. 2, ed. by E.A. Flood (Dekker, New York, 1967), p. 557 Google Scholar
  4. A.E. Beck, in Terrestrial Heat Flow, ed. by W.H.K. Lee. Geophysical Monogr. Ser., vol. 8 (Am. Geophys. Union, Washington, 1965), p. 24 Google Scholar
  5. D.D. Blackwell, P. Morgan, in Proceedings of the Second United Nations Symposium on the Development and Use of Geothermal Resources, vol. 2, San Francisco, 20–29 May 1975 (U.S. Govt. Printing Office, Washington, 1977), pp. 895–902 Google Scholar
  6. D.D. Blackwell, M.J. Holdaway, P. Morgan, D. Petefish, T. Rape, J.L. Steele, D. Thorstenson, A.F. Waibel, in W.R. McSpadden, The Marysville, Montana Geothermal Project. Final Report 23111-01410 to the US Energy Research and Development Administration (September 1975), p. E1, http://pubs.geothermal-library.org/lib/grc/1005524.pdf. Accessed 10 September 2016
  7. CalcSteam, Berndt Wischnewski, Richard-Wagner-Str. 49, 10585 Berlin (2016), http://www.peacesoftware.de/einigewerte/wasser_dampf_e.html. Accessed 25 February 2016
  8. W.D. Carrier III, G.R. Olhoeft, W. Mendell, in Lunar Sourcebook. A User’s Guide to the Moon (Cambridge University Press, Cambridge, 1991), p. 475, Chap. 9 Google Scholar
  9. H.S. Carslaw, J.C. Jaeger, Conduction of Heat in Solids, 2nd edn. (Oxford University Press, London, 1959), 510 pp zbMATHGoogle Scholar
  10. G.K.C. Clarke, D.A. Fisher, E.D. Waddington, in The Physical Basis of Ice Sheet Modelling, ed. by E.D. Waddington, J.S. Walder. IAHS Publication, vol. 170 (1987), p. 169 Google Scholar
  11. B.J. Conrath, Icarus 24, 36 (1975) ADSCrossRefGoogle Scholar
  12. B. Cushman-Rosin, J.-M. Beckers, in Introduction to Geophysical Fluid Dynamics. International Geophysical Series, vol. 101 (Academic Press, Waltham, 2011), p. 163, Chap. 6 Google Scholar
  13. I.J. Daubar, C.M. Dundas, S. Byrne, P. Geissle, G.D. Bart, A.S. McEwen, P.S. Russell, M. Chojnacki, M.P. Golombek, Icarus 267, 86 (2016) ADSCrossRefGoogle Scholar
  14. E.E. Davis, in Handbook of Terrestrial Heat-Flow Density Determination, ed. by R. Haenel, L. Rybach, L. Stegena (Kluwer Academic, Dordrecht, 1988), p. 223, Chap. 6 CrossRefGoogle Scholar
  15. K.S. Edgett, M.C. Malin, J. Geophys. Res. 105, 1623 (2000) ADSCrossRefGoogle Scholar
  16. F.P. Fanale, J.R. Savail, W.B. Banerdt, R.S. Saunders, Icarus 50, 381 (1982a) ADSCrossRefGoogle Scholar
  17. F.P. Fanale, W.B. Banerdt, R.S. Saunders, L.A. Johansen, J.R. Savail, J. Geophys. Res. 87, 10,215 (1982b) ADSCrossRefGoogle Scholar
  18. Fluid Properties Calculator (Microelectronics Heat Transfer Laboratory, 2016), http://www.mhtl.uwaterloo.ca/old/onlinetools/airprop/airprop.html. Accessed 25 February 2016
  19. R.D. Forsythe, C.R. Blackwelder, J. Geophys. Res. 103, 31421 (1998) ADSCrossRefGoogle Scholar
  20. R.A. Freeze, J.A. Cherry, Groundwater (Prentice Hall, New York, 1979), 604 pp Google Scholar
  21. G.D. Garland, D.H. Lennox, Geophys. J. Int. 6, 245 (1962) ADSCrossRefGoogle Scholar
  22. M.P. Golombek, A.F.C. Haldemann, R.A. Simpson, R.L. Fergason, N.E. Putzig, in The Martian Surface, ed. by J. Bell (Cambridge University Press, Cambridge, 2008), p. 468 CrossRefGoogle Scholar
  23. M. Grott, J. Helbert, R. Nadalini, J. Geophys. Res. (2007). doi: 10.1029/2007JE002905 Google Scholar
  24. R.M. Haberle, J. Gómez-Elvira, M. de la Torre Juarez, A.-M. Harri, J.L. Hollingsworth, H. Kahanpän, M.A. Kahre, M. Lemmon, F.J. Martin-Torres, M. Mischna, J.E. Moores, C. Newman, S.C.R. Rafkin, N. Rennó, M.I. Richardson, J.A. Rodríguez-Manfredi, A.R. Vasavada, M.-P. Zorzana-Mier, REMS/MSL Science Teams, J. Geophys. Res., Planets (2014). doi: 10.1002/2013JE004488 Google Scholar
  25. K.E.H. Herkenhoff, M.P. Golombek, E.A. Guinness, J.B. Johnson, A. Kusack, L. Richter, R.J. Sullivan, S. Gorevan, in The Martian Surface, ed. by J. Bell (Cambridge University Press, Cambridge, 2008), p. 451 CrossRefGoogle Scholar
  26. S.L. Hess, R.M. Henry, C.B. Leovy, J.A. Ryan, J.E. Tillman, J. Geophys. Res. 82, 4559 (1977) ADSCrossRefGoogle Scholar
  27. S. Holzkämper, A. Mangini, C. Spötl, M. Mudelsee, Geophys. Res. Lett. (2004). doi: 10.1029/2003GL019112 Google Scholar
  28. F. Hourdin, P.L. Van, F. Forget, O. Talagrand, J. Atmos. Sci. 50, 3625 (1993) ADSCrossRefGoogle Scholar
  29. T.L. Hudson, O. Aharonson, N. Schorghofer, C.B. Farmer, M.H. Hecht, N.T. Bridges, J. Geophys. Res. (2007). doi: 10.1029/2006JE002815 Google Scholar
  30. J.C. Jaeger, in Terrestrial Heat Flow, ed. by W.H.K. Lee. Geophysical Monogr. Ser., vol. 8 (Am. Geophys. Union, Washington, 1965), p. 7 Google Scholar
  31. D.W. James, J. Mater. Sci. 3, 540 (1968) ADSCrossRefGoogle Scholar
  32. C. Jaupart, J.-C. Mareschal, Heat Generation and Transport in the Earth (Cambridge Univ. Press, Cambridge, 2011), 464 pp Google Scholar
  33. Journey to Mars, InSightLitho2015 (JPL/NASA, 2015), http://www.jpl.nasa.gov/missions/insight/. Accessed 23 March 2016
  34. H.H. Kieffer, Science 194, 1344 (1976) ADSCrossRefGoogle Scholar
  35. H.H. Kieffer, J. Geophys. Res. (2013). doi: 10.1029/2012JE004164 Google Scholar
  36. A.M. Kling, R.M. Haberle, S.C.R. Rafkin, M.A. Kahre, J.L. Hollingsworth, Investigation of the diurnal variation of surface pressure in Gale Crater (2014), http://www.hou.usra.edu/meetings/8thmars2014/pdf/1400.pdf. Accessed 1 March 2016
  37. L.J. Kridge, Proc. R. Soc. Lond. A 173, 450 (1939) ADSCrossRefGoogle Scholar
  38. M.G. Langseth, S.P. Clark, J.L. Chute, S.J. Keihm, A.E. Wechsler, Earth Moon Planets (1972). doi: 10.1007/BF00562006 Google Scholar
  39. M.G. Langseth, S.J. Keihm, J.L. Chute, in Apollo 17: Preliminary Science Report, Rep. SP-330 (Natl. Aeronautics & Space Admin., Washington, 1973), p. 1 Google Scholar
  40. M.G. Langseth, S.J. Keihm, K. Peters, Proc. Lunar Sci. Conf., 7th edn., vol. 7 (1976), p. 3143 Google Scholar
  41. G.D. Lazear, Hydrogeol. J. 14, 1582 (2006) ADSCrossRefGoogle Scholar
  42. M.T. Lemmon, M.J. Wolff, J.F. Bell III., M.D. Smith, B.A. Cantor, P.H. Smith, Icarus 251, 96 (2015) ADSCrossRefGoogle Scholar
  43. N.R. Lomb, Astrophys. Space Sci. 39, 447 (1976) ADSCrossRefGoogle Scholar
  44. R.D. Lorenz, Icarus 250, 262 (2015) ADSCrossRefGoogle Scholar
  45. MegaWatSoft, CO2 Tables, registered version (2016), http://www.carbon-dioxide-properties.com/CO2TablesWeb.aspx. Accessed 25 February 2016
  46. A.D. Misener, A.E. Beck, in Methods and Techniques in Geophysics, ed. by S.K. Runcorn (Interscience, New York, 1960), p. 10 Google Scholar
  47. J.T. Moore, V. Gischig, M. Katterbach, S. Loew, Earth Surf. Process. Landf. 36, 1985 (2011) ADSCrossRefGoogle Scholar
  48. P. Morgan, D.D. Blackwell, R.E. Spafford, R.E. Smith, Heat flow measurements in Yellowstone Lake and the thermal structure of the Yellowstone Caldera. J. Geophys. Res. 82, 3719 (1977) ADSCrossRefGoogle Scholar
  49. N. Mueller, E. Kopp, I. Walter, M. Grott, J. Knollenberg, M. Siegler, S. Smrekar, F. Hänschke, E. Kessler, T. Spohn, The HP3 Radiometer for the InSight Mission (2014), http://www.hou.usra.edu/meetings/lpsc2014/pdf/2375.pdf. Accessed 25 February 2016
  50. NIST, Thermophysical Properties of Fluid Systems (2016), http://webbook.nist.gov/chemistry/fluid/. Accessed 15 April 2016
  51. E. Pardo-Igúzquiza, F.J. Rodríguez-Tovar, Comput. Geosci. 49, 207 (2012) ADSCrossRefGoogle Scholar
  52. A.-C. Plesa, M. Grott, N. Müller, S. Piquex, M. Siegler, T. Spohn, J. Geophys. Res. 121, 2166 (2016). doi: 10.1002/2016JE005127 CrossRefGoogle Scholar
  53. J.B. Pollack, R.M. Haberle, J.R. Murphy, J. Schaeffer, H. Lee, J. Geophys. Res. 98, 3149 (1993) ADSCrossRefGoogle Scholar
  54. K.L. Rasmussen, P.H. Warren, Nature 313, 121 (1985) ADSCrossRefGoogle Scholar
  55. S. Rojstaczer, J.P. Tunks, Water Res. J. 31, 3337 (1995) ADSCrossRefGoogle Scholar
  56. B.R. Scanlon, J.P. Nicot, J.W. Massmann, in Soil Physics Companion, ed. by A.W. Warrick (CRC Press/Taylor & Francis, Boca Raton, 2002), p. 297, Chap. 8 Google Scholar
  57. J.D. Scargle, Astrophys. J. 263, 835 (1982) ADSCrossRefGoogle Scholar
  58. M.A. Siegler, S.E. Smrekar, J. Geophys. Res., Planets 119, 47 (2014). doi: 10.1002/2013JE004453 ADSCrossRefGoogle Scholar
  59. M.A. Siegler, S.E. Smrekar, S. Piqueux, N. Müller, M. Grott, J-P. Williams, Three-Dimensional Thermal Modeling for the 2016 InSight Mission, 46th Lunar and Planetary Science Conference (2015), http://www.hou.usra.edu/meetings/lpsc2015/pdf/2696.pdf. Accessed 24 June 2016
  60. M.A. Siegler, S.E. Smrekar, M. Grott, S. Piqueux, N. Müller, J-P. Williams, A.-C. Catalina, T. Spohn, The InSight Mars lander and its effect on the subsurface thermal environment. Space Sci. Rev. (2017). doi: 10.1007/s11214-017-0331-2, this issue Google Scholar
  61. M.D. Smith, Icarus 167, 148 (2004) ADSCrossRefGoogle Scholar
  62. M.D. Smith, Icarus 202, 444 (2009) ADSCrossRefGoogle Scholar
  63. T. Spohn, M. Grott, J. Knollenberg, T.V. Zoest, G. Kargl, S.E. Smrekar, W.B. Banerdt, T.L. Hudson, the HP3 Instrument Team, InSight: Measuring the Martian Heat Flow Using the Heat Flow and Physical Properties Package (HP3) (2012), http://elib.dlr.de/75901/1/1445.pdf. Accessed 15 February 2016
  64. T. Spohn, M. Grott, S. Smrekar, C. Krause, T.L. Hudson, the HP3 Instrument Team, Measuring the Martian Heat Flow Using the Heat Flow and Physical Properties Package (HP3) (2014), http://www.hou.usra.edu/meetings/lpsc2014/pdf/1916.pdf. Accessed 10 September 2016
  65. S.W. Squyres, R.E. Arvidson, J.F. Bell III., J. Brückner, N.A. Cabrol, W. Calvin, M.H. Carr, P.R. Christensen, B.C. Clark, L. Crumpler, D.J. Des Marais, C. d’Uston, T. Economou, J. Farmer, W. Farrand, W. Folkner, M. Golombek, S. Gorevan, J.A. Grant, R. Greeley, J. Grotzinger, L. Haskin, K.E. Herkenhoff, S. Hviid, J. Johnson, G. Klingelhöfer, A. Knoll, G. Landis, M. Lemmon, R. Li, M.B. Madsen, M.C. Malin, S.M. McLennan, H.Y. McSween, D.W. Ming, J. Moersch, R.V. Morris, T. Parker, J.W. Rice Jr., L. Richter, R. Rieder, M. Sims, M. Smith, P. Smith, L.A. Soderblom, R. Sullivan, H. Wänke, T.W. Dowiak, M. Wolff, A. Yen, Science 305, 794 (2004) ADSCrossRefGoogle Scholar
  66. The Engineering Toolbox, Air Properties (2016), http://www.engineeringtoolbox.com/air-properties-d_156.html. Accessed 25 February 2016
  67. The Engineering Toolbox, Thermal Expansion—Volumetric or Cubic (2016), http://www.engineeringtoolbox.com/volumetric-temperature-expansion-d_315.html. Accessed 25 February 2016
  68. O.B. Toon, J.B. Pollack, W. Ward, J.A. Burns, K. Bilski, Icarus 44, 552 (1980) ADSCrossRefGoogle Scholar
  69. D.L. Turcotte, G. Schubert, Geodynamics, 2nd edn. (Cambridge University Press, Cambridge, 2002), 456 pp CrossRefGoogle Scholar
  70. P. Vadasz, in Thermal Engineering and Applied Science (2016), p. 7, Chap. 2. doi: 10.1007/978-3-319-20056-9_2 Google Scholar
  71. D. Vaniman, R. Reedy, G. Heiken, G. Olhoeft, W. Mendell, in Lunar Sourcebook, ed. by G.H. Heiken, D.T. Vaniman, B.M. French. A User’s Guide to the Moon (Cambridge University Press, Cambridge, 1991), p. 27 Google Scholar
  72. A.R. Vasada, A.R. Piqueuz, S. Lewis, K.W. Lemmon, M.D. Smith, Icarus 284, 372 (2017) ADSCrossRefGoogle Scholar
  73. R.W. Zurek, L.J. Martin, J. Geophys. Res. 98, 3247 (1993) ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.Colorado Geological SurveyColorado School of MinesGoldenUSA
  2. 2.Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaUSA
  3. 3.Space Exploration SectorJohns Hopkins University Applied Physics LaboratoryLaurelUSA
  4. 4.German Aerospace Center DLR BerlinInstitute of Planetary ResearchBerlinGermany

Personalised recommendations