Space Science Reviews

, Volume 212, Issue 3–4, pp 1107–1136 | Cite as

Acceleration and Propagation of Solar Energetic Particles

  • Karl-Ludwig KleinEmail author
  • Silvia Dalla
Part of the following topical collections:
  1. The Scientific Foundation of Space Weather


Solar Energetic Particles (SEPs) are an important component of Space Weather, including radiation hazard to humans and electronic equipment, and the ionisation of the Earth’s atmosphere. We review the key observations of SEPs, our current understanding of their acceleration and transport, and discuss how this knowledge is incorporated within Space Weather forecasting tools. Mechanisms for acceleration during solar flares and at shocks driven by Coronal Mass Ejections (CMEs) are discussed, as well as the timing relationships between signatures of solar eruptive events and the detection of SEPs in interplanetary space. Evidence on how the parameters of SEP events are related to those of the parent solar activity is reviewed and transport effects influencing SEP propagation to near-Earth locations are examined. Finally, the approaches to forecasting Space Weather SEP effects are discussed. We conclude that both flare and CME shock acceleration contribute to Space Weather relevant SEP populations and need to be considered within forecasting tools.


Sun: particle emission Solar-terrestrial relations Space weather 



The authors are grateful to ISSI for organizing the workshop on the scientific foundations of space weather, as well as a number of earlier team meetings that helped us shape our ideas on solar energetic particles. S.D. acknowledges support from the UK Science and Technology Facilities Council (STFC) (grant ST/M00760X/1) and the Leverhulme Trust (grant RPG-2015-094). Research at Paris Observatory received funding from the French space agency CNES and the European Union’s Horizon 2020 research and innovation programme under grant agreement No 637324 (HESPERIA project).


  1. M. Ackermann, M. Ajello, A. Albert, A. Allafort, L. Baldini et al., High-energy gamma-ray emission from solar flares: summary of Fermi Large Area Telescope detections and analysis of two M-class flares. Astrophys. J. 787, 15 (2014). doi: 10.1088/0004-637X/787/1/15 ADSCrossRefGoogle Scholar
  2. A. Afanasiev, M. Battarbee, R. Vainio, Self-consistent Monte Carlo simulations of proton acceleration in coronal shocks: effect of anisotropic pitch-angle scattering of particles. Astron. Astrophys. 584, A81 (2015). doi: 10.1051/0004-6361/201526750 ADSCrossRefGoogle Scholar
  3. N. Agueda, K.L. Klein, N. Vilmer, R. Rodríguez-Gasén, O.E. Malandraki et al., Release timescales of solar energetic particles in the low corona. Astron. Astrophys. 570, A5 (2014). doi: 10.1051/0004-6361/201423549 CrossRefGoogle Scholar
  4. N. Agueda, R. Vainio, D. Lario, B. Sanahuja, Injection and interplanetary transport of near-relativistic electrons: modeling the impulsive event on 2000 May 1. Astrophys. J. 675, 1601–1613 (2008). doi: 10.1086/527527 ADSCrossRefGoogle Scholar
  5. M. Ajello, A. Albert, A. Allafort, L. Baldini, G. Barbiellini et al., Impulsive and long duration high-energy gamma-ray emission from the very bright 2012 March 7 solar flares. Astrophys. J. 789, 20 (2014). doi: 10.1088/0004-637X/789/1/20 ADSCrossRefGoogle Scholar
  6. V.V. Akimov, P. Ambrož, A.V. Belov, A. Berlicki, I.M. Chertok et al., Evidence for prolonged acceleration based on a detailed analysis of the long-duration solar gamma-ray flare of June 15, 1991. Sol. Phys. 166, 107–134 (1996) ADSCrossRefGoogle Scholar
  7. A. Aran, B. Sanahuja, D. Lario, SOLPENCO: a solar particle engineering code. Adv. Space Res. 37, 1240–1246 (2006). doi: 10.1016/j.asr.2005.09.019 ADSCrossRefGoogle Scholar
  8. M.J. Aschwanden, Particle acceleration and kinematics in solar flares. Space Sci. Rev. 101, 1–227 (2002) ADSCrossRefGoogle Scholar
  9. H. Aurass, F. Landini, G. Poletto, Coronal current sheet signatures during the 17 May 2002 CME-flare. Astron. Astrophys. 506, 901–911 (2009). doi: 10.1051/0004-6361/200912229 ADSCrossRefGoogle Scholar
  10. H.M. Bain, M.L. Mays, J.G. Luhmann, Y. Li, L.K. Jian, D. Odstrcil, Shock connectivity in the August 2010 and July 2012 solar energetic particle events inferred from observations and ENLIL modeling. Astrophys. J. 825, 1 (2016). doi: 10.3847/0004-637X/825/1/1 ADSCrossRefGoogle Scholar
  11. C.C. Balch, Updated verification of the Space Weather Prediction Center’s solar energetic particle prediction model. Space Weather 6, S01001 (2008). doi: 10.1029/2007SW000337 ADSCrossRefGoogle Scholar
  12. A.O. Benz, M. Battaglia, N. Vilmer, Location of decimetric pulsations in solar flares. Sol. Phys. 273, 363–375 (2011). doi: 10.1007/s11207-011-9760-3 ADSCrossRefGoogle Scholar
  13. J.W. Bieber, W.H. Matthaeus, C.W. Smith, W. Wanner, M.B. Kallenrode, G. Wibberenz, Proton and electron mean free paths: the Palmer consensus revisited. Astrophys. J. 420, 294–306 (1994). doi: 10.1086/173559 ADSCrossRefGoogle Scholar
  14. A. Buttighoffer, Solar electron beams associated with radio type III bursts: propagation channels observed by Ulysses between 1 and 4 AU. Astron. Astrophys. 335, 295–302 (1998) ADSGoogle Scholar
  15. H.V. Cane, W.C. Erickson, N.P. Prestage, Solar flares, type III radio bursts, coronal mass ejections and energetic particles. J. Geophys. Res. Space Phys. 107, 1315 (2002). doi: 10.1029/2001JA000320 ADSCrossRefGoogle Scholar
  16. H.V. Cane, D.V. Reames, T.T. von Rosenvinge, The role of interplanetary shocks in the longitude distribution of solar energetic particles. J. Geophys. Res. Space Phys. 93, 9555–9567 (1988). doi: 10.1029/JA093iA09p09555 ADSCrossRefGoogle Scholar
  17. H.V. Cane, I.G. Richardson, T.T. von Rosenvinge, A study of solar energetic particle events of 1997–2006: their composition and associations. J. Geophys. Res. Space Phys. 115, A08101 (2010). doi: 10.1029/2009JA014848 ADSCrossRefGoogle Scholar
  18. D. Caprioli, A.R. Pop, A. Spitkovsky, Simulations and theory of ion injection at non-relativistic collisionless shocks. Astrophys. J. Lett. 798, L28 (2015). doi: 10.1088/2041-8205/798/2/L28 ADSCrossRefGoogle Scholar
  19. P.J. Cargill, L. Vlahos, G. Baumann, J.F. Drake, Å. Nordlund, Current fragmentation and particle acceleration in solar flares. Space Sci. Rev. 173, 223–245 (2012). doi: 10.1007/s11214-012-9888-y ADSCrossRefGoogle Scholar
  20. H. Carmichael, A process for flares. NASA Spec. Publ. 50, 451 (1964) ADSGoogle Scholar
  21. I.M. Chertok, On the correlation between the solar gamma-ray line emission, radio bursts and proton fluxes in the interplanetary space. Astron. Nachr. 311, 379–381 (1990) ADSCrossRefGoogle Scholar
  22. I.M. Chertok, V.V. Grechnev, N.S. Meshalkina, On the correlation between spectra of solar microwave bursts and proton fluxes near the Earth. Astron. Rep. 53, 1059–1069 (2009). doi: 10.1134/S1063772909110110 ADSCrossRefGoogle Scholar
  23. C.M.S. Cohen, G.M. Mason, R.A. Mewaldt, M.E. Wiedenbeck, The longitudinal dependence of heavy-ion composition in the 2013 April 11 solar energetic particle event. Astrophys. J. 793, 35 (2014). doi: 10.1088/0004-637X/793/1/35 ADSCrossRefGoogle Scholar
  24. C.M.S. Cohen, R.A. Mewaldt, R.A. Leske, A.C. Cummings, E.C. Stone et al., New observations of heavy-ion-rich solar particle events from ACE. Geophys. Res. Lett. 26, 2697–2700 (1999). doi: 10.1029/1999GL900560 ADSCrossRefGoogle Scholar
  25. S. Dalla, A. Balogh, S. Krucker, A. Posner, R. Müller-Mellin et al., Properties of high heliolatitude solar energetic particle events and constraints on models of acceleration and propagation. Geophys. Res. Lett. 30, 8035 (2003). doi: 10.1029/2003GL017139 ADSCrossRefGoogle Scholar
  26. S. Dalla, M.S. Marsh, M. Battarbee, Solar energetic particle drifts and the energy dependence of 1 AU charge states. Astrophys. J. 834, 167 (2017). doi: 10.3847/1538-4357/834/2/167 ADSCrossRefGoogle Scholar
  27. S. Dalla, M.S. Marsh, J. Kelly, T. Laitinen, Solar energetic particle drifts in the Parker spiral. J. Geophys. Res. Space Phys. 118, 5979–5985 (2013). doi: 10.1002/jgra.50589 ADSCrossRefGoogle Scholar
  28. S. Dalla, M.S. Marsh, T. Laitinen, Drift-induced deceleration of solar energetic particles. Astrophys. J. 808, 62 (2015). doi: 10.1088/0004-637X/808/1/62 ADSCrossRefGoogle Scholar
  29. S. Dalla, M.S. Marsh, P. Zelina, T. Laitinen, Time dependence of Fe/O ratio within a 3D solar energetic particle propagation model including drift. Astron. Astrophys. 598, A73 (2017). doi: 10.1051/0004-6361/201628618 ADSCrossRefGoogle Scholar
  30. H. Debrunner, J.A. Lockwood, C. Barat, R. Buetikofer, J.P. Dezalay et al., Energetic neutrons, protons, and gamma rays during the 1990 May 24 solar cosmic-ray event. Astrophys. J. 479, 997–1011 (1997) ADSCrossRefGoogle Scholar
  31. P. Démoulin, A. Vourlidas, M. Pick, A. Bouteille, Erratum: Initiation and development of the white-light and radio coronal mass ejection on 2001 April 15. Astrophys. J. 754, 156 (2012a). doi: 10.1088/0004-637X/754/2/156 ADSCrossRefGoogle Scholar
  32. P. Démoulin, A. Vourlidas, M. Pick, A. Bouteille, Initiation and development of the white-light and radio coronal mass ejection on 2001 April 15. Astrophys. J. 750, 147 (2012b). doi: 10.1088/0004-637X/750/2/147 ADSCrossRefGoogle Scholar
  33. M. Desai, J. Giacalone, Large gradual solar energetic particle events. Living Rev. Sol. Phys. 13, 3 (2016). doi: 10.1007/s41116-016-0002-5 ADSCrossRefGoogle Scholar
  34. M. Dierckxsens, K. Tziotziou, S. Dalla, I. Patsou, M.S. Marsh et al., Relationship between solar energetic particles and properties of flares and CMEs: statistical analysis of solar cycle 23 events. Sol. Phys. 290, 841–874 (2015). doi: 10.1007/s11207-014-0641-4 ADSCrossRefGoogle Scholar
  35. R. DiFabio, Z. Guo, E. Möbius, B. Klecker, H. Kucharek, G.M. Mason, M. Popecki, Energy-dependent charge states and their connection with ion abundances in impulsive solar energetic particle events. Astrophys. J. 687, 623–634 (2008). doi: 10.1086/591833 ADSCrossRefGoogle Scholar
  36. W. Dröge, Particle scattering by magnetic fields. Space Sci. Rev. 93, 121–151 (2000) ADSCrossRefGoogle Scholar
  37. N. Dresing, R. Gómez-Herrero, B. Heber, A. Klassen, O. Malandraki et al., Statistical survey of widely spread out solar electron events observed with STEREO and ACE with special attention to anisotropies. Astron. Astrophys. 567, A27 (2014). doi: 10.1051/0004-6361/201423789 ADSCrossRefGoogle Scholar
  38. W. Dröge, Energetic solar electron spectra and gamma-ray observations, in High Energy Solar Physics, ed. by R. Ramaty, N. Mandzhavidze, X.M. Hua. American Institute of Physics Conference Series, vol. 374 (1996), pp. 78–85 Google Scholar
  39. W. Dröge, Y.Y. Kartavykh, B. Klecker, G.A. Kovaltsov, Anisotropic three-dimensional focused transport of solar energetic particles in the inner heliosphere. Astrophys. J. 709, 912–919 (2010). doi: 10.1088/0004-637X/709/2/912 ADSCrossRefGoogle Scholar
  40. A.G. Emslie, B.R. Dennis, G.D. Holman, H.S. Hudson, Refinements to flare energy estimates: a followup to “Energy partition in two solar flare/CME events” by A. G. Emslie et al. J. Geophys. Res. Space Phys. 110, A11,103 (2005). doi: 10.1029/2005JA011305 CrossRefGoogle Scholar
  41. C.Y. Fan, M. Pick, R. Pyle, J.A. Simpson, D.R. Smith, Protons associated with centers of solar activity and their propagation in interplanetary magnetic field regions corotating with the Sun. J. Geophys. Res. Space Phys. 73, 1555–1582 (1968) ADSCrossRefGoogle Scholar
  42. L. Fletcher, B.R. Dennis, H.S. Hudson, S. Krucker, K. Phillips et al., An observational overview of solar flares. Space Sci. Rev. 159, 19–106 (2011). doi: 10.1007/s11214-010-9701-8 ADSCrossRefGoogle Scholar
  43. H.A. Garcia, Forecasting methods for occurrence and magnitude of proton storms with solar soft X-rays. Space Weather S02, 002 (2004). doi: 10.1029/2003SW000001 Google Scholar
  44. A. García-Rigo, M. Núñez, R. Qahwaji, O. Ashamari, P. Jiggens et al., Prediction and warning system of SEP events and solar flares for risk estimation in space launch operations. J. Space Weather Space Clim. 6(27), A28 (2016). doi: 10.1051/swsc/2016021 CrossRefGoogle Scholar
  45. J. Giacalone, The efficient acceleration of thermal protons by perpendicular shocks. Astrophys. J. Lett. 628, L37–L40 (2005). doi: 10.1086/432510 ADSCrossRefGoogle Scholar
  46. R. Gómez-Herrero, N. Dresing, A. Klassen, B. Heber, D. Lario et al., Circumsolar energetic particle distribution on 2011 November 3. Astrophys. J. 799, 55 (2015). doi: 10.1088/0004-637X/799/1/55 ADSCrossRefGoogle Scholar
  47. N. Gopalswamy, P. Mäkelä, S. Akiyama, S. Yashiro, H. Xie et al., Large solar energetic particle events associated with filament eruptions outside of active regions. Astrophys. J. 806, 8 (2015). doi: 10.1088/0004-637X/806/1/8 ADSCrossRefGoogle Scholar
  48. N. Gopalswamy, S. Yashiro, A. Lara, M.L. Kaiser, B.J. Thompson et al., Large solar energetic particle events of cycle 23: a global view. Geophys. Res. Lett. 30, 8015 (2003). doi: 10.1029/2002GL016435 ADSGoogle Scholar
  49. N. Gopalswamy, S. Yashiro, H. Xie, S. Akiyama, E. Aguilar-Rodriguez et al., Radio-quiet fast and wide coronal mass ejections. Astrophys. J. 674, 560–569 (2008). doi: 10.1086/524765 ADSCrossRefGoogle Scholar
  50. M. Gordovskyy, P.K. Browning, E.P. Kontar, N.H. Bian, Effect of collisions and magnetic convergence on electron acceleration and transport in reconnecting twisted solar flare loops. Sol. Phys. 284, 489–498 (2013). doi: 10.1007/s11207-012-0124-4 ADSCrossRefGoogle Scholar
  51. J.A. Grayson, S. Krucker, R.P. Lin, A statistical study of spectral hardening in solar flares and related solar energetic particle events. Astrophys. J. 707, 1588–1594 (2009). doi: 10.1088/0004-637X/707/2/1588 ADSCrossRefGoogle Scholar
  52. P.C. Grigis, A.O. Benz, The spectral evolution of impulsive solar X-ray flares. Astron. Astrophys. 426, 1093–1101 (2004). doi: 10.1051/0004-6361:20041367 ADSCrossRefGoogle Scholar
  53. J. Heerikhuisen, Y.E. Litvinenko, I.J.D. Craig, Proton acceleration in analytic reconnecting current sheets. Astrophys. J. 566, 512–520 (2002). doi: 10.1086/337957 ADSCrossRefGoogle Scholar
  54. J. Heyvaerts, E.R. Priest, D.M. Rust, An emerging flux model for the solar flare phenomenon. Astrophys. J. 216, 123–137 (1977). doi: 10.1086/155453 ADSCrossRefGoogle Scholar
  55. G.D. Holman, M.J. Aschwanden, H. Aurass, M. Battaglia, P.C. Grigis et al., Implications of X-ray observations for electron acceleration and propagation in solar flares. Space Sci. Rev. 159, 107–166 (2011). doi: 10.1007/s11214-010-9680-9 ADSCrossRefGoogle Scholar
  56. G.D. Holman, M.E. Pesses, Solar type II radio emission and the shock drift acceleration of electrons. Astrophys. J. 267, 837–843 (1983) ADSCrossRefGoogle Scholar
  57. H. Hudson, J. Ryan, High-energy particles in solar flares. Annu. Rev. Astron. Astrophys. 33, 239–282 (1995). doi: 10.1146/annurev.aa.33.090195.001323 ADSCrossRefGoogle Scholar
  58. P. Jiggens, M.A. Chavy-Macdonald, G. Santin, A. Menicucci, H. Evans, A. Hilgers, The magnitude and effects of extreme solar particle events. J. Space Weather Space Clim. 4(27), A20 (2014). doi: 10.1051/swsc/2014017 CrossRefGoogle Scholar
  59. F.C. Jones, D.C. Ellison, The plasma physics of shock acceleration. Space Sci. Rev. 58, 259–346 (1991). doi: 10.1007/BF01206003 ADSCrossRefGoogle Scholar
  60. S. Kahler, Solar flares and coronal mass ejections. Annu. Rev. Astron. Astrophys. 30, 113–141 (1992) ADSCrossRefGoogle Scholar
  61. S.W. Kahler, The role of the big flare syndrome in correlations of solar energetic proton fluxes and associated microwave burst parameters. J. Geophys. Res. Space Phys. 87, 3439–3448 (1982). doi: 10.1029/JA087iA05p03439 ADSCrossRefGoogle Scholar
  62. S.W. Kahler, The correlation between solar energetic particle peak intensities and speeds of coronal mass ejections: effects of ambient particle intensities and energy spectra. J. Geophys. Res. Space Phys. 106, 20,947–20,956 (2001). doi: 10.1029/2000JA002231 ADSCrossRefGoogle Scholar
  63. S.W. Kahler, E.W. Cliver, H.V. Cane, R.E. McGuire, R.G. Stone, N.R. Sheeley, Solar filament eruptions and energetic particle events. Astrophys. J. 302, 504–510 (1986) ADSCrossRefGoogle Scholar
  64. S.W. Kahler, E.W. Cliver, A.G. Ling, Validating the proton prediction system (PPS). J. Atmos. Sol.-Terr. Phys. 69, 43–49 (2007). doi: 10.1016/j.jastp.2006.06.009 ADSCrossRefGoogle Scholar
  65. M.B. Kallenrode, Particle propagation in the inner heliosphere. J. Geophys. Res. Space Phys. 98, 19 (1993). doi: 10.1029/93JA02079 Google Scholar
  66. M.B. Kallenrode, G. Wibberenz, Particle injection following solar flares on 1980 May 28 and June 8—evidence for different injection time histories in impulsive and gradual events? Astrophys. J. 376, 787–796 (1991) ADSCrossRefGoogle Scholar
  67. G. Kanbach, D.L. Bertsch, C.E. Fichtel, R.C. Hartman, S.D. Hunter et al., Detection of a long-duration solar gamma-ray flare on June 11, 1991 with EGRET on COMPTON-GRO. Astron. Astrophys. Suppl. Ser. 97, 349–353 (1993) ADSGoogle Scholar
  68. S.R. Kane, E.L. Chupp, D.J. Forrest, G.H. Share, E. Rieger, Rapid acceleration of energetic particles in the 1982 February 8 solar flare. Astrophys. J. Lett. 300, L95–L98 (1986). doi: 10.1086/184610 ADSCrossRefGoogle Scholar
  69. Y.Y. Kartavykh, W. Dröge, B. Klecker, G.M. Mason, E. Möbius et al., Evidence of a two-temperature source region in the 3He-rich solar energetic particle event of 2000 May 1. Astrophys. J. 671, 947–954 (2007). doi: 10.1086/522687 ADSCrossRefGoogle Scholar
  70. A.L. Kiplinger, Comparative studies of hard X-ray spectral evolution in solar flares with high-energy proton events observed at Earth. Astrophys. J. 453, 973–986 (1995) ADSCrossRefGoogle Scholar
  71. A. Klassen, N. Dresing, R. Gómez-Herrero, B. Heber, R. Müller-Mellin, Unexpected spatial intensity distributions and onset timing of solar electron events observed by closely spaced STEREO spacecraft. Astron. Astrophys. 593, A31 (2016). doi: 10.1051/0004-6361/201628734 ADSCrossRefGoogle Scholar
  72. B. Klecker, H. Kunow, H.V. Cane, S. Dalla, B. Heber et al., Energetic particle observations. Space Sci. Rev. 123, 217–250 (2006). doi: 10.1007/s11214-006-9018-9 ADSCrossRefGoogle Scholar
  73. B. Klecker, E. Möbius, M.A. Popecki, Ionic charge states of solar energetic particles: a clue to the source. Space Sci. Rev. 130, 273–282 (2007). doi: 10.1007/s11214-007-9207-1 ADSCrossRefGoogle Scholar
  74. K.L. Klein, N. Agueda, R. Bütikofer, On the origin of relativistic solar particle events: interplanetary transport modelling and radio emission, in 34th International Cosmic Ray Conference, ed. by R. Caballero, J.C. D’Olivo, G. Medina-Tanco, L. Nellen, F.A. Sánchez, J.F. Valdés-Galicia. Proceedings of Science (2015), pp. 121–124 Google Scholar
  75. K.L. Klein, S. Krucker, G. Lointier, A. Kerdraon, Open magnetic flux tubes in the corona and the transport of solar energetic particles. Astron. Astrophys. 486, 589–596 (2008). doi: 10.1051/0004-6361:20079228 ADSCrossRefGoogle Scholar
  76. K.L. Klein, S. Masson, C. Bouratzis, V. Grechnev, A. Hillaris, P. Preka-Papadema, The relativistic solar particle event of 2005 January 20: origin of delayed particle acceleration. Astron. Astrophys. 572, A4 (2014). doi: 10.1051/0004-6361/201423783 CrossRefGoogle Scholar
  77. K.L. Klein, G. Trottet, A. Klassen, Energetic particle acceleration and propagation in strong CME-less flares. Sol. Phys. 263, 185–208 (2010). doi: 10.1007/s11207-010-9540-5 ADSCrossRefGoogle Scholar
  78. K.L. Klein, G. Trottet, S. Samwel, O. Malandraki, Particle acceleration and propagation in strong flares without major solar energetic particle events. Sol. Phys. 269, 309–333 (2011). doi: 10.1007/s11207-011-9710-0 ADSCrossRefGoogle Scholar
  79. B. Kliem, M. Karlický, A.O. Benz, Solar flare radio pulsations as a signature of dynamic magnetic reconnection. Astron. Astrophys. 360, 715–728 (2000) ADSGoogle Scholar
  80. L. Kocharov, G.A. Kovaltsov, J. Torsti, V.M. Ostryakov, Evaluation of solar energetic Fe charge states: effect of proton-impact ionization. Astron. Astrophys. 357, 716–724 (2000) ADSGoogle Scholar
  81. L.G. Kocharov, G.A. Kovaltsov, G.E. Kocharov, E.I. Chuikin, I.G. Usoskin et al., Electromagnetic and corpuscular emission from the solar flare of 1991 June 15: continuous acceleration of relativistic particles. Sol. Phys. 150, 267–283 (1994) ADSCrossRefGoogle Scholar
  82. G.A. Kovaltsov, I.G. Usoskin, E.W. Cliver, W.F. Dietrich, A.J. Tylka, Fluence ordering of solar energetic proton events using cosmogenic radionuclide data. Sol. Phys. 289, 4691–4700 (2014). doi: 10.1007/s11207-014-0606-7 ADSCrossRefGoogle Scholar
  83. K.A. Kozarev, R.M. Evans, N.A. Schwadron, M.A. Dayeh, M. Opher et al., Global numerical modeling of energetic proton acceleration in a coronal mass ejection traveling through the solar corona. Astrophys. J. 778, 43 (2013). doi: 10.1088/0004-637X/778/1/43 ADSCrossRefGoogle Scholar
  84. D. Krauss-Varban, Particle acceleration in shocks, in Heliophysics: Space Storms and Radiation: Causes and Effects, ed. by C.J. Schrijver, G.L. Siscoe (Cambridge University Press, Cambridge, 2010), pp. 209–231 CrossRefGoogle Scholar
  85. S. Krucker, M. Battaglia, P.J. Cargill, L. Fletcher, H.S. Hudson et al., Hard X-ray emission from the solar corona. Astron. Astrophys. Rev. 16, 155–208 (2008). doi: 10.1007/s00159-008-0014-9 ADSCrossRefGoogle Scholar
  86. S. Krucker, G.J. Hurford, A.L. MacKinnon, A.Y. Shih, R.P. Lin, Coronal \(\gamma \)-ray bremsstrahlung from solar flare-accelerated electrons. Astrophys. J. Lett. 678, L63–L66 (2008b). doi: 10.1086/588381 ADSCrossRefGoogle Scholar
  87. S. Krucker, E.P. Kontar, S. Christe, R.P. Lin, Solar flare electron spectra at the sun and near the Earth. Astrophys. J. Lett. 663, L109–L112 (2007). doi: 10.1086/519373 ADSCrossRefGoogle Scholar
  88. T. Laitinen, A. Kopp, F. Effenberger, S. Dalla, M.S. Marsh, Solar energetic particle access to distant longitudes through turbulent field-line meandering. Astron. Astrophys. 591, A18 (2016). doi: 10.1051/0004-6361/201527801 ADSCrossRefGoogle Scholar
  89. D. Lario, A. Aran, R. Gómez-Herrero, N. Dresing, B. Heber et al., Longitudinal and radial dependence of solar energetic particle peak intensities: STEREO, ACE, SOHO, GOES, and MESSENGER observations. Astrophys. J. 767, 41 (2013). doi: 10.1088/0004-637X/767/1/41 ADSCrossRefGoogle Scholar
  90. D. Lario, B. Sanahuja, A.M. Heras, Energetic particle events: efficiency of interplanetary shocks as \(50~\mbox{keV} < \mathrm{E} < 100~\mbox{MeV}\) proton accelerators. Astrophys. J. 509, 415–434 (1998). doi: 10.1086/306461 ADSCrossRefGoogle Scholar
  91. M.A. Lee, R.A. Mewaldt, J. Giacalone, Shock acceleration of ions in the Heliosphere. Space Sci. Rev. 173, 247–281 (2012). doi: 10.1007/s11214-012-9932-y ADSCrossRefGoogle Scholar
  92. P.C. Liewer, M. Neugebauer, T. Zurbuchen, Characteristics of active-region sources of solar wind near solar maximum. Sol. Phys. 223, 209–229 (2004). doi: 10.1007/s11207-004-1105-z ADSCrossRefGoogle Scholar
  93. J. Lin, N.A. Murphy, C. Shen, J.C. Raymond, K.K. Reeves et al., Review on current sheets in CME development: theories and observations. Space Sci. Rev. 194, 237–302 (2015). doi: 10.1007/s11214-015-0209-0 ADSCrossRefGoogle Scholar
  94. J.G. Luhmann, S.A. Ledvina, D. Odstrcil, M.J. Owens, X.P. Zhao et al., Cone model-based SEP event calculations for applications to multipoint observations. Adv. Space Res. 46, 1–21 (2010). doi: 10.1016/j.asr.2010.03.011 ADSCrossRefGoogle Scholar
  95. W.B. Manchester IV., T.I. Gombosi, D.L. De Zeeuw, I.V. Sokolov, I.I. Roussev et al., Coronal mass ejection shock and sheath structures relevant to particle acceleration. Astrophys. J. 622, 1225–1239 (2005). doi: 10.1086/427768 ADSCrossRefGoogle Scholar
  96. G. Mann, A. Klassen, Electron beams generated by shock waves in the solar corona. Astron. Astrophys. 441, 319–326 (2005). doi: 10.1051/0004-6361:20034396 ADSCrossRefGoogle Scholar
  97. C. Marqué, A. Posner, K.L. Klein, Solar energetic particles and radio-silent fast coronal mass ejections. Astrophys. J. 642, 1222–1235 (2006) ADSCrossRefGoogle Scholar
  98. M.S. Marsh, S. Dalla, M. Dierckxsens, T. Laitinen, N.B. Crosby SPARX: a modeling system for Solar Energetic Particle Radiation Space Weather forecasting. Space Weather 13, 386–394 (2015). doi: 10.1002/2014SW001120 ADSCrossRefGoogle Scholar
  99. M.S. Marsh, S. Dalla, J. Kelly, T. Laitinen, Drift-induced perpendicular transport of solar energetic particles. Astrophys. J. 774, 4 (2013). doi: 10.1088/0004-637X/774/1/4 ADSCrossRefGoogle Scholar
  100. G.M. Mason, M.I. Desai, C.M.S. Cohen, R.A. Mewaldt, E.C. Stone, J.R. Dwyer, The role of interplanetary scattering in western hemisphere large solar energetic particle events. Astrophys. J. Lett. 647, L65–L68 (2006). doi: 10.1086/507469 ADSCrossRefGoogle Scholar
  101. G.M. Mason, J.E. Mazur, J.R. Dwyer, 3He enhancements in large solar energetic particle events. Astrophys. J. Lett. 525, L133–L136 (1999) ADSCrossRefGoogle Scholar
  102. S. Masson, S.K. Antiochos, C.R. DeVore, A model for the escape of solar-flare-accelerated particles. Astrophys. J. 771, 82 (2013). doi: 10.1088/0004-637X/771/2/82 ADSCrossRefGoogle Scholar
  103. J.E. Mazur, G.M. Mason, J.R. Dwyer, J. Giacalone, J.R. Jokipii, E.C. Stone, Interplanetary magnetic field line mixing deduced from impulsive solar flare particles. Astrophys. J. 532, L79–L82 (2000) ADSCrossRefGoogle Scholar
  104. J.E. Mazur, G.M. Mason, M.D. Looper, R.A. Leske, R.A. Mewaldt, Charge states of solar energetic particles using the geomagnetic cutoff technique: SAMPEX measurements in the 6 November 1997 solar particle event. Geophys. Res. Lett. 26, 173–176 (1999). doi: 10.1029/1998GL900075 ADSCrossRefGoogle Scholar
  105. K.G. McCracken, High frequency of occurrence of large solar energetic particle events prior to 1958 and a possible repetition in the near future. Space Weather 5, 07004 (2007). doi: 10.1029/2006SW000295 ADSCrossRefGoogle Scholar
  106. K.G. McCracken, H. Moraal, M.A. Shea, The high-energy impulsive ground-level enhancement. Astrophys. J. 761, 101 (2012). doi: 10.1088/0004-637X/761/2/101 ADSCrossRefGoogle Scholar
  107. R.A. Mewaldt, C.M.S. Cohen, D.K. Haggerty, G.M. Mason, M.L. Looper et al., Radiation risks from large solar energetic particle events, in Turbulence and Nonlinear Processes in Astrophysical Plasmas, ed. by D. Shaikh, G.P. Zank. American Institute of Physics Conference Series, vol. 932 (2007), pp. 277–282. doi: 10.1063/1.2778975 Google Scholar
  108. R.A. Mewaldt, C.M.S. Cohen, G.M. Mason, The Source Material for Large Solar Energetic Particle Events. American Geophysical Union Geophysical Monograph Series, vol. 165 (2006). Washington D.C. Google Scholar
  109. R.A. Mewaldt, G.M. Mason, C.M.S. Cohen, R. Gómez-Herrero, D.K. Haggerty et al., Evolution of suprathermal seed particle and solar energetic particle abundances, in Physics of the Heliosphere: A 10 Year Retrospective, ed. by J. Heerikhuisen, G. Li, N. Pogorelov, G. Zank. American Institute of Physics Conference Series, vol. 1436 (2012), pp. 206–211. doi: 10.1063/1.4723609 Google Scholar
  110. J.A. Miller, P.J. Cargill, A.G. Emslie, G.D. Holman, B.R. Dennis et al., Critical issues for understanding particle acceleration in impulsive solar flares. J. Geophys. Res. Space Phys. 102, 14,631–14,660 (1997). doi: 10.1029/97JA00976 ADSCrossRefGoogle Scholar
  111. L.I. Miroshnichenko, Solar Cosmic Rays (Kluwer Acad. Publ., Dordrecht/Boston/London, 2001) CrossRefGoogle Scholar
  112. R. Miteva, K.L. Klein, O. Malandraki, G. Dorrian, Solar energetic particle events in the 23rd solar cycle: interplanetary magnetic field configuration and statistical relationship with flares and CMEs. Sol. Phys. 282, 579–613 (2013). doi: 10.1007/s11207-012-0195-2 ADSCrossRefGoogle Scholar
  113. E. Möbius, M. Popecki, B. Klecker, L.M. Kistler, A. Bogdanov et al., Energy dependence of the ionic charge state distribution during the November 1997 solar energetic particle event. Geophys. Res. Lett. 26, 145–148 (1999). doi: 10.1029/1998GL900131 ADSCrossRefGoogle Scholar
  114. H. Moraal, K.G. McCracken, The time structure of ground level enhancements in solar cycle 23. Space Sci. Rev. 171, 85–95 (2012). doi: 10.1007/s11214-011-9742-7 ADSCrossRefGoogle Scholar
  115. M. Núñez, Predicting solar energetic proton events (E > 10 MeV). Space Weather 9, 07003 (2011). doi: 10.1029/2010SW000640 CrossRefGoogle Scholar
  116. M. Pesce-Rollins, N. Omodei, V. Petrosian, W. Liu, F. Rubio da Costa et al., First detection of >100 MeV gamma-rays associated with a behind-the-limb solar flare. Astrophys. J. Lett. 805, L15 (2015). doi: 10.1088/2041-8205/805/2/L15 ADSCrossRefGoogle Scholar
  117. V. Petrosian, Stochastic acceleration by turbulence. Space Sci. Rev. 173, 535–556 (2012). doi: 10.1007/s11214-012-9900-6 ADSCrossRefGoogle Scholar
  118. J. Pomoell, R. Vainio, R. Kissmann, MHD modeling of coronal large-amplitude waves related to CME lift-off. Sol. Phys. 253, 249–261 (2008). doi: 10.1007/s11207-008-9186-8 ADSCrossRefGoogle Scholar
  119. A. Posner, Up to 1-hour forecasting of radiation hazards from solar energetic ion events with relativistic electrons. Space Weather 5, 05001 (2007). doi: 10.1029/2006SW000268 ADSCrossRefGoogle Scholar
  120. R. Ramaty, N. Mandzhavidze, B. Kozlovsky, J.G. Skibo, Acceleration in solar flares: interacting particles versus interplanetary particles. Adv. Space Res. 13(9), 275–284 (1993). doi: 10.1016/0273-1177(93)90490-3 ADSCrossRefGoogle Scholar
  121. J.C. Raymond, S. Krucker, R.P. Lin, V. Petrosian, Observational aspects of particle acceleration in large solar flares. Space Sci. Rev. 173, 197–221 (2012). doi: 10.1007/s11214-012-9897-x ADSCrossRefGoogle Scholar
  122. D.V. Reames, Particle acceleration at the Sun and in the heliosphere. Space Sci. Rev. 90, 413–491 (1999). doi: 10.1023/A:1005105831781 ADSCrossRefGoogle Scholar
  123. R. Reinhard, G. Wibberenz, Propagation of flare protons in the solar atmosphere. Sol. Phys. 36, 473–494 (1974) ADSCrossRefGoogle Scholar
  124. I.G. Richardson, T.T.von Rosenvinge, H.V. Cane, E.R. Christian, C.M.S. Cohen et al., >25 MeV proton events observed by the High Energy Telescopes on the STEREO A and B spacecraft and/or at Earth during the first seven years of the STEREO mission. Sol. Phys. 289, 3059–3107 (2014). doi: 10.1007/s11207-014-0524-8 ADSCrossRefGoogle Scholar
  125. E.C. Roelof, Propagation of solar cosmic rays in the interplanetary magnetic field, in Lectures in High-Energy Astrophysics, ed. by H. Ögelmann, J. Wayland. NASA, vol. SP-199 (1969), pp. 111–136 Google Scholar
  126. A.P. Rouillard, I. Plotnikov, R.F. Pinto, M. Tirole, M. Lavarra et al., Deriving the properties of coronal pressure fronts in 3D: application to the 2012 May 17 ground level enhancement. Astrophys. J. 833, 45 (2016). doi: 10.3847/1538-4357/833/1/45 ADSCrossRefGoogle Scholar
  127. A.P. Rouillard, N.R. Sheeley, A. Tylka, A. Vourlidas, C.K. Ng et al., The longitudinal properties of a solar energetic particle event investigated using modern solar imaging. Astrophys. J. 752, 44 (2012). doi: 10.1088/0004-637X/752/1/44 ADSCrossRefGoogle Scholar
  128. D. Ruffolo, Effect of adiabatic deceleration on the focused transport of solar cosmic rays. Astrophys. J. 442, 861–874 (1995). doi: 10.1086/175489 ADSCrossRefGoogle Scholar
  129. P. Saint-Hilaire, N. Vilmer, A. Kerdraon, A decade of solar type III radio bursts observed by the Nançay Radioheliograph 1998–2008. Astrophys. J. 762, 60 (2013). doi: 10.1088/0004-637X/762/1/60 ADSCrossRefGoogle Scholar
  130. A. Sandroos, R. Vainio, Particle acceleration at shocks propagating in inhomogeneous magnetic fields. Astron. Astrophys. 455, 685–695 (2006). doi: 10.1051/0004-6361:20054754 ADSzbMATHCrossRefGoogle Scholar
  131. C.J. Schrijver, M.L. DeRosa, Photospheric and heliospheric magnetic fields. Sol. Phys. 212, 165–200 (2003). doi: 10.1023/A:1022908504100 ADSCrossRefGoogle Scholar
  132. N.A. Schwadron, L. Townsend, K. Kozarev, M.A. Dayeh, F. Cucinotta et al., Earth–Moon–Mars radiation environment module framework. Space Weather 8, S00E02 (2010). doi: 10.1029/2009SW000523 Google Scholar
  133. G. Souvatzoglou, A. Papaioannou, H. Mavromichalaki, J. Dimitroulakos, C. Sarlanis, Optimizing the real-time ground level enhancement alert system based on neutron monitor measurements: introducing GLE Alert Plus. Space Weather 12, 633–649 (2014). doi: 10.1002/2014SW001102 ADSCrossRefGoogle Scholar
  134. L. Sui, G.D. Holman, B.R. Dennis, Evidence for magnetic reconnection in three homologous solar flares observed by RHESSI. Astrophys. J. 612, 546–556 (2004). doi: 10.1086/422515 ADSCrossRefGoogle Scholar
  135. B. Tan, H. Mészárosová, M. Karlický, G. Huang, C. Tan, Microwave type III pair bursts in solar flares. Astrophys. J. 819, 42 (2016). doi: 10.3847/0004-637X/819/1/42 ADSCrossRefGoogle Scholar
  136. J.K. Thalmann, Y. Su, M. Temmer, A.M. Veronig, The confined X-class flares of solar active region 2192. Astrophys. J. Lett. 801, L23 (2015). doi: 10.1088/2041-8205/801/2/L23 ADSCrossRefGoogle Scholar
  137. G. Trottet, S. Samwel, K.L. Klein, T. Dudok de Wit, R. Miteva, Statistical evidence for contributions of flares and coronal mass ejections to major solar energetic particle events. Sol. Phys. 290, 819–839 (2015). doi: 10.1007/s11207-014-0628-1 ADSCrossRefGoogle Scholar
  138. G. Trottet, N. Vilmer, C. Barat, J.P. Dezalay, R. Talon et al., Temporal and spectral characteristics of the June 11, 1991 gamma-ray flare. Astron. Astrophys. Suppl. Ser. 97, 337–339 (1993) ADSGoogle Scholar
  139. A.J. Tylka, M.A. Lee, A model for spectral and compositional variability at high energies in large, gradual solar particle events. Astrophys. J. 646, 1319–1334 (2006). doi: 10.1086/505106 ADSCrossRefGoogle Scholar
  140. A.J. Tylka, O.E. Malandraki, G. Dorrian, Y.K. Ko, R.G. Marsden et al., Initial Fe/O enhancements in large, gradual, solar energetic particle events: observations from Wind and Ulysses. Sol. Phys. 285, 251–267 (2013). doi: 10.1007/s11207-012-0064-z ADSCrossRefGoogle Scholar
  141. R. Vainio, L. Desorgher, D. Heynderickx, M. Storini, E. Flückiger et al., Dynamics of the Earth’s particle radiation environment. Space Sci. Rev. 147, 187–231 (2009). doi: 10.1007/s11214-009-9496-7 ADSCrossRefGoogle Scholar
  142. M.A.I. Van Hollebeke, L.S. Ma Sung, F.B. McDonald, The variation of solar proton energy spectra and size distribution with heliolongitude. Sol. Phys. 41, 189–223 (1975). doi: 10.1007/BF00152967 ADSCrossRefGoogle Scholar
  143. N. Vilmer, A.L. MacKinnon, G.J. Hurford, Properties of energetic ions in the solar atmosphere from \(\gamma \)-ray and neutron observations. Space Sci. Rev. 159, 167–224 (2011). doi: 10.1007/s11214-010-9728-x ADSCrossRefGoogle Scholar
  144. Y. Wang, J. Zhang, A comparative study between eruptive X-class flares associated with coronal mass ejections and confined X-class flares. Astrophys. J. 665, 1428–1438 (2007). doi: 10.1086/519765 ADSCrossRefGoogle Scholar
  145. Y.M. Wang, M. Pick, G.M. Mason, Coronal holes, jets, and the origin of 3He-rich particle events. Astrophys. J. 639, 495–509 (2006). doi: 10.1086/499355 ADSCrossRefGoogle Scholar
  146. A. Warmuth, G. Mann, H. Aurass, Modelling shock drift acceleration of electrons at the reconnection outflow termination shock in solar flares. Observational constraints and parametric study. Astron. Astrophys. 494, 677–691 (2009). doi: 10.1051/0004-6361:200810101 ADSCrossRefGoogle Scholar
  147. M.E. Wiedenbeck, G.M. Mason, C.M.S. Cohen, N.V. Nitta, R. Gómez-Herrero, D.K. Haggerty, Observations of solar energetic particles from 3He-rich events over a wide range of heliographic longitude. Astrophys. J. 762, 54 (2013). doi: 10.1088/0004-637X/762/1/54 ADSCrossRefGoogle Scholar
  148. M.A. Xapsos, G.P. Summers, J.L. Barth, E.G. Stassinopoulos, E.A. Burke, Probability model for worst case solar proton event fluences. IEEE Trans. Nucl. Sci. 46, 1481–1485 (1999). doi: 10.1109/23.819111 ADSCrossRefGoogle Scholar
  149. P. Zelina, S. Dalla, C.M.S. Cohen, R.A. Mewaldt, Time evolution of elemental ratios in solar energetic particle events. Astrophys. J. 835, 71 (2017). doi: 10.3847/1538-4357/aa5274 ADSCrossRefGoogle Scholar
  150. M. Zhang, G. Qin, H. Rassoul, Propagation of solar energetic particles in three-dimensional interplanetary magnetic fields. Astrophys. J. 692, 109–132 (2009). doi: 10.1088/0004-637X/692/1/109 ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.LESIA—Observatoire de ParisCNRSMeudonFrance
  2. 2.Jeremiah Horrocks InstituteUniversity of Central LancashirePrestonUK

Personalised recommendations