Space Science Reviews

, Volume 211, Issue 1–4, pp 501–524 | Cite as

Modeling of Ground Deformation and Shallow Surface Waves Generated by Martian Dust Devils and Perspectives for Near-Surface Structure Inversion

  • Balthasar Kenda
  • Philippe Lognonné
  • Aymeric Spiga
  • Taichi Kawamura
  • Sharon Kedar
  • William Bruce Banerdt
  • Ralph Lorenz
  • Don Banfield
  • Matthew Golombek


We investigated the possible seismic signatures of dust devils on Mars, both at long and short period, based on the analysis of Earth data and on forward modeling for Mars. Seismic and meteorological data collected in the Mojave Desert, California, recorded the signals generated by dust devils. In the 10–100 s band, the quasi-static surface deformation triggered by pressure fluctuations resulted in detectable ground-tilt effects: these are in good agreement with our modeling based on Sorrells’ theory. In addition, high-frequency records also exhibit a significant excitation in correspondence to dust devil episodes. Besides wind noise, this signal includes shallow surface waves due to the atmosphere-surface coupling and is used for a preliminary inversion of the near-surface S-wave profile down to 50 m depth. In the case of Mars, we modeled the long-period signals generated by the pressure field resulting from turbulence-resolving Large-Eddy Simulations. For typical dust-devil-like vortices with pressure drops of a couple Pascals, the corresponding horizontal acceleration is of a few nm/s2 for rocky subsurface models and reaches 10–20 nm/s2 for weak regolith models. In both cases, this signal can be detected by the Very-Broad Band seismometers of the InSight/SEIS experiment up to a distance of a few hundred meters from the vortex, the amplitude of the signal decreasing as the inverse of the distance. Atmospheric vortices are thus expected to be detected at the InSight landing site; the analysis of their seismic and atmospheric signals could lead to additional constraints on the near-surface structure, more precisely on the ground compliance and possibly on the seismic velocities.


Dust devils Mars Ground tilt Subsurface Large-eddy simulation Insight 



This work has been supported by CNES and ANR SismoMars in the frame of the preparation of InSight/SEIS. B. Kenda acknowledges the support of ED560 STEP’UP and of the NASA InSight project for his PhD support. R. Lorenz acknowledges the support of NASA Grant NNX12AI04G. Research described in this paper was partially done by the InSight Project, Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. This is IPGP contribution 3844. This is InSight Contribution Number 26. We gratefully thank the Editor and two anonymous reviewers, whose comments helped us in improving the manuscript.

Supplementary material

11214_2017_378_MOESM1_ESM.avi (36.2 mb)
(AVI 36.2 MB)
11214_2017_378_MOESM2_ESM.avi (33.6 mb)
(AVI 33.6 MB)
11214_2017_378_MOESM3_ESM.avi (42.3 mb)
(AVI 42.3 MB)
11214_2017_378_MOESM4_ESM.avi (7.6 mb)
(AVI 7.6 MB)


  1. H. Arai, K. Tokimatsu, S-wave velocity profiling by inversion of microtremors H/V spectrum. Bull. Seismol. Soc. Am. 94, 53–63 (2004) CrossRefGoogle Scholar
  2. R. Beauduin, P. Lognonné, J.P. Montagner, S. Cacho, J.F. Karczewski, M. Morand, The effects of the atmospheric pressure changes on seismic signals or how to improve the quality of a station. Bull. Seismol. Soc. Am. 86, 1760–1769 (1996) Google Scholar
  3. A.J. Bedard, Low-frequency atmospheric acoustic energy associated with vortices produced by thunderstorms. Mon. Weather Rev. 133, 241–263 (2005) ADSCrossRefGoogle Scholar
  4. S. Bonnefoy-Claudet, A. Köhler, C. Cornou, M. Wathelet, P.-Y. Bard, Effect of love waves on microtremor H/V ratio. Bull. Seismol. Soc. Am. 98, 288–300 (1998) CrossRefGoogle Scholar
  5. D.S. Choi, C.M. Dundas, Measurements of Martian dust devils winds with HiRISE. Geophys. Res. Lett. 38, L24206 (2011) ADSCrossRefGoogle Scholar
  6. A. Colaïtis, A. Spiga, F. Hourdin, C. Rio, F. Forget, E. Millour, A thermal plume model for the martian convective boundary layer. J. Geophys. Res. 118, 1468–1487 (2013) CrossRefGoogle Scholar
  7. P. Delage, F. Karakostas, A. Dhemaied, Y.J. Cui, M.D. Laure, The geotechnical properties of some Martian regolith simulants in link with the InSight landing site. Space Sci. Rev. (2017, this issue). doi: 10.1007/s11214-017-0339-7 Google Scholar
  8. M.D. Ellehoj, H.P. Gunnlaugsson, P.A. Taylor, H. Kahanpää, K.M. Bean, B.A. Cantor, B.T. Gheynani, L. Drube, D. Fischer, A.-M. Harri, C. Holstein-Rathlou, M.T. Lemmon, M.B. Madsen, M.C. Malin, J. Polkko, P.H. Smith, L.K. Tamppari, W. Weng, J. Whiteway, Convective vortices and dust devils at the Phoenix Mars mission landing site. J. Geophys. Res. 115, E00E16 (2010) CrossRefGoogle Scholar
  9. W.M. Farrell, P.H. Smith, G.T. Delory, G.B. Hillard, J.R. Marshall, D. Catling, M. Hecht, D.M. Tratt, N. Renno, M.D. Desch, S.A. Cummer, J.G. Houser, B. Johnson, Electric and magnetic signatures of dust devils from the 2000–2001 MATADOR desert tests. J. Geophys. Res. 109, E03004 (2004) ADSGoogle Scholar
  10. B. Galanti, A. Tsinober, Is turbulence ergodic? Phys. Lett. A 330, 173–180 (2004) ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. M. Golombek, D. Kipp, N. Warner, I.J. Daubar, R. Fergason, R. Kirk, R. Beyer, A. Huertas, S. Piquex, N. Putzig, B.A. Campbell, G.A. Morgan, C. Charalambous, W.T. Pike, K. Gwinner, F. Calef, D. Kass, M. Mischna, J. Ashley, C. Bloom, N. Wigton, C. Schwartz, H. Gengl, L. Redmond, J. Sweeney, E. Sklyanskiy, M. Lisano, J. Bernardino, P. Lognonné, S. Smrekar, B. Banerdt, Selection of the InSight landing site. Space Sci. Rev. (2017, this issue). doi: 10.1007/s11214-016-0321-9 Google Scholar
  12. R.B. Herrmann, Computer programs in seismology: an evolving tool for instruction and research. Seismol. Res. Lett. 84, 1081–1088 (2013) CrossRefGoogle Scholar
  13. D.P. Hinson, M. Patzold, S. Tellmann, B. Häusler, G.L. Tyler, The depth of the convective boundary layer on Mars. Icarus 198, 57–66 (2008) ADSCrossRefGoogle Scholar
  14. M.S. Howe, Lectures on the theory of vortex sound, in Sound-Flow Interactions, ed. by Y. Aurégan, A. Maurel, V. Pagneux, J.-F. Pinton (Springer, Berlin, 2002), pp. 31–110 CrossRefGoogle Scholar
  15. H. Kahanpää, C. Newman, J. Moores, M.-P. Zorzano, J. Martín-Torres, S. Navarro, A. Lepinette, B. Cantor, M.T. Lemmon, P. Valentín-Serrano, A. Ullán, W. Schmidt, Convective vortices and dust devils at the MSL landing site: annual variability. J. Geophys. Res., Planets (2004). doi: 10.1002/2016JE005027 Google Scholar
  16. S. Kedar, J. Andrade, B. Banerdt, P. Delage, M. Golombek, T. Hudson, A. Kiely, M. Knapmeyer, B. Knapmeyer-Endrun, C. Krause, T. Kawamura, P. Lognonné, T. Pike, Y. Ruan, N. Teanby, J. Tromp, J. Wookey, Analysis of regolith properties using seismic signals generated by InSights HP3 penetrator. Space Sci. Rev. (2017, this issue) Google Scholar
  17. B.L.N. Kennet, Seismic Waves Propagation in Stratified Media (Cambridge University Press, Cambridge, 1983) Google Scholar
  18. B. Knapmeyer-Endrun, M.P. Golombek, M. Ohrnberger, Rayleigh wave ellipticity modeling and inversion for shallow structure at the proposed InSight landing site in Elysium Planitia, Mars. Space Sci. Rev. (2017, this issue). doi: 10.1007/s11214-016-0300-1 Google Scholar
  19. K. Konno, T. Ohmachi, Ground-motion characteristic estimated from spectral ratio between horizontal and vertical components of microtremors. Bull. Seismol. Soc. Am. 88, 228–241 (1998) Google Scholar
  20. E. Larose, A. Khan, Y. Nakamura, M. Campillo, Lunar subsurface investigated from correlation of seismic noise. Geophys. Res. Lett. 32, L16201 (2005) ADSCrossRefGoogle Scholar
  21. D.K. Lilly, On the numerical simulation of buoyant convection. Tellus 14, 148–162 (1962) ADSCrossRefGoogle Scholar
  22. P. Lognonné, B. Mosser, Planetary seismology. Surv. Geophys. 14, 239–302 (1993) ADSCrossRefGoogle Scholar
  23. P. Lognonné, J. Gagnepaine Beyneix, W.B. Banerdt, S. Cacho, J.F. Karxzewski, M. Moran, Ultra broad band seismology on InterMarsNet. Planet. Space Sci. 44, 1241–1249 (1996) ADSCrossRefGoogle Scholar
  24. P. Lognonné, C. Johnson, Planetary seismology, in Treatise in Geophysics, Volume 10: Planets and Moons, ed. by G. Schubert (Elsevier, Amsterdam, 2007), pp. 67–122 Google Scholar
  25. P. Lognonné, W.T. Pike, Planetary seismometry, in Extraterrestrial Seismology, ed. by V.C.H. Tong, R.A. García (Cambridge University Press, Cambridge, 2015), pp. 36–50 CrossRefGoogle Scholar
  26. R.D. Lorenz, Obseving desert dust devils with a pressure logger. Geosci. Instrum. Method. Data Syst. 1, 209–220 (2012) ADSCrossRefGoogle Scholar
  27. R.D. Lorenz, The longevity and aspect ratio of dust devils: effects on detection efficiencies and comparison of landed and orbital imaging at Mars. Icarus 226, 964–970 (2013) ADSCrossRefGoogle Scholar
  28. R.D. Lorenz, Vortex encounter rates with fixed barometer stations: comparison with visual dust devil counts and large eddy simulations. J. Atmos. Sci. 71, 4461–4472 (2014) ADSCrossRefGoogle Scholar
  29. R.D. Lorenz, D. Christie, Dust devil signatures in infrasound records of the international monitoring system. Geophys. Res. Lett. 42, 2009–2014 (2015) ADSCrossRefGoogle Scholar
  30. R.D. Lorenz, S. Kedar, N. Murdoch, P. Lognonné, T. Kawamura, D. Mimoun, W.B. Banerdt, Seismometer detection of dust devil vortices by ground tilt. Bull. Seismol. Soc. Am. 105, 3015–3023 (2015) CrossRefGoogle Scholar
  31. R.D. Lorenz, M.R. Balme, Z. Gu, H. Kahanpää, M. Klose, M. Kurgansky, M.R. Patel, D. Reiss, A.P. Rossi, A. Spiga, T. Takemi, W. Wei, History and applications of dust devil studies. Space Sci. Rev. 203, 5–37 (2016) ADSCrossRefGoogle Scholar
  32. P.G. Malischewsky, F. Scherenbaum, Love’s formula and H/V-ratio (ellipticity) of Rayleigh waves. Wave Motion 40, 57–67 (2004) MathSciNetCrossRefzbMATHGoogle Scholar
  33. P.J. Mason, Large-eddy simulation of the convective atmospheric boundary layer. J. Atmos. Sci. 46, 1492–1516 (1989) ADSCrossRefGoogle Scholar
  34. T.I. Michaels, S.C.R. Rafkin, Large-eddy simulation of atmospheric convection on Mars. Q. J. R. Meteorol. Soc. 130, 1251–1274 (2004) ADSCrossRefGoogle Scholar
  35. E. Millour, F. Forget, A. Spiga, T. Navarro, J.-B. Madeleine, L. Montabone, A. Pottier, F. Lefevre, F. Montmessin, J.-Y. Chaufray, M.A. Lopez-Valverde, F. Gonzalez-Galindo, S.R. Lewis, P.L. Read, J.-P. Huot, M.-C. Desjean, The Mars Climate Database (MCD version 5.2), EPSC (2015) Google Scholar
  36. D. Mimoun, N. Murdoch, P. Lognonné, T. Pike, K. Hurst (the SEIS team), The seismic noise model of the InSight mission to Mars. Space Sci. Rev. (2017, this issue) Google Scholar
  37. M. Mucciarelli, M.R. Gallipoli, D. Di Giacomo, F. Di Nota, E. Nino, The influence of wind on measurements of seismic noise. Geophys. J. Int. 161, 303–308 (2005) ADSCrossRefGoogle Scholar
  38. N. Murdoch, D. Mimoun, R.F. Garcia, W. Rappin, T. Kawamura, P. Lognonné, Evaluating the wind-induced mechanical noise on the InSight seismometers. Space Sci. Rev. (2017a, this issue). doi: 10.1007/s11214-016-0311-y Google Scholar
  39. N. Murdoch, B. Kenda, T. Kawamura, A. Spiga, P. Lognonné, D. Mimoun, W.B. Banerdt, Pressure noise on Mars determined from large-eddy simulations. Space Sci. Rev. (2017b, this issue). doi: 10.1007/s11214-017-0343-y Google Scholar
  40. J.R. Murphy, S. Nelli, Mars Pathfinder convective vortices: frequency of occurrence. Geophys. Res. Lett. 29, 2103 (2002) ADSGoogle Scholar
  41. V. Naderyan, C.J. Hickey, R. Raspet, Wind-induced ground motion. J. Geophys. Res., Solid Earth 121, 917–930 (2016) ADSCrossRefGoogle Scholar
  42. L.D.V. Neakrase, R. Greeley, J.D. Iversen, M.R. Balme, Dust flux within dust devils: preliminary laboratory simulations. Geophys. Res. Lett. 33, L19S09 (2006) CrossRefGoogle Scholar
  43. F.M. Neubauer, Thermal convection in the Martian atmosphere. J. Geophys. Res. 71(10), 2419–2426 (1966) ADSCrossRefGoogle Scholar
  44. S. Nishizawa, M. Odaka, Y.O. Takahash, K. Sugiyama, K. Nakajima, M. Ishiwatari, S. Takehiro, H. Yashiro, Y. Sato, H. Tomita, Y.-Y. Hayashi, Martian dust devil statistics from high-resolution large-eddy simulations. Geophys. Res. Lett. 43, 4180–4188 (2016) ADSCrossRefGoogle Scholar
  45. S.C.R. Rafkin, R.M. Haberle, T.I. Michaels, The Mars regional atmospheric modeling system: model description and selected simulations. Icarus 151, 228–256 (2001) ADSCrossRefGoogle Scholar
  46. D. Reiss, R.D. Lorenz, Dust devil track survey at Elysium Plmanitia: implications for the InSight landing sites. Icarus 266, 315–330 (2016) ADSCrossRefGoogle Scholar
  47. D. Reiss, A. Spiga, G. Erkeling, The horizontal motion of dust devils on Mars derived from CRISM and CTX/HiRISE observations. Icarus 227, 8–20 (2014) ADSCrossRefGoogle Scholar
  48. N.O. Rennó, A.A. Nash, J. Lunine, J. Murphy, Martian and terrestrial dust devils: test of a scaling theory using Pathfinder data. J. Geophys. Res. 105, 1859–1865 (2000) ADSCrossRefGoogle Scholar
  49. N.O. Rennó, V.J. Abreu, J. Koch, P.H. Smith, O.K. Hartogensis, H.A.R. De Bruin, D. Burose, G.T. Delory, W.M. Farrell, C.J. Watts, J. Garatuza, M. Parker, A. Carswell, MATADOR 2002: a pilot field experiment on convective plumes and dust devils. J. Geophys. Res. 109, E07001 (2004) ADSCrossRefGoogle Scholar
  50. M.H. Ritzwoller, A.L. Levshin, Estimating shallow shear wave velocities with marine multicomponent seismic data. Geophysics 67 (2002). doi: 10.1190/1.1527099
  51. J.A. Ryan, R.D. Lucich, Possible dust devils, vortices on Mars. J. Geophys. Res. 88(C15), 11005–11011 (1986) ADSCrossRefGoogle Scholar
  52. E.D. Schmitter, Modeling tornado dynamics and the generation of infrasound, electric and magnetic field. Nat. Hazards Earth Syst. Sci. 10, 295–298 (2010) ADSCrossRefGoogle Scholar
  53. J.T. Schofield, J.R. Barnes, D. Crisp, R.M. Haberle, S. Larsen, J.A. Magalhaes, J.R. Murphy, A. Seiff, G. Wilson, The Mars Pathfinder Atmospheric Structure Investigation/Meteorology (ASI/MET) experiment. Science 278(5344), 1752–1758 (1997) ADSCrossRefGoogle Scholar
  54. W.C. Skamarock, J.B. Klemp, A time-split nonhydrostatic atmospheric model for weather research and forecasting applications. J. Comput. Phys. 227, 3465–3485 (2008) ADSMathSciNetCrossRefzbMATHGoogle Scholar
  55. G.G. Sorrells, A preliminary investigation into the relationship between long-period seismic noise and local fluctuations in the atmospheric pressure field. Geophys. J. R. Astron. Soc. 26, 71–82 (1971) ADSCrossRefGoogle Scholar
  56. G.G. Sorrells, J.A. McDonald, Z.A. Der, E. Herrin, Earth motion caused by local atmospheric pressure changes. Geophys. J. R. Astron. Soc. 26, 83–98 (1971) ADSCrossRefGoogle Scholar
  57. A. Spiga, F. Forget, A new model to simulate the Martian mesoscale and microscale atmospheric circulation: Validation and first results. J. Geophys. Res., Planets 114 (2009). doi: 10.1029/2008JE003242
  58. A. Spiga, F. Forget, S.R. Lewis, D.P. Hinson, Structure and dynamics of the convective boundary layer on Mars as inferred from large-eddy simulations and remote-sensing measurements. Q. J. R. Meteorol. Soc. 136, 414–428 (2010) ADSCrossRefGoogle Scholar
  59. A. Spiga, E. Barth, Z. Gu, F. Hoffmann, J. Ito, B. Jemmett-Smith, M. Klose, S. Raasch, S. Rafkin, T. Takemi, D. Tyler, W. Wei, Large-eddy simulations of dust devils and convective vortices. Space Sci. Rev. 203, 245–275 (2016) ADSCrossRefGoogle Scholar
  60. F.B. Tatom, K.R. Knupp, S.J. Vitton, Tornado detection based on seismic signal. J. Appl. Meteorol. 34, 572–582 (1995) ADSCrossRefGoogle Scholar
  61. A.D. Toigo, M.I. Richardson, S.P. Ewald, P.J. Gierasch, Numerical simulation of Martian dust devils. J. Geophys. Res. 108, 95 (2003) Google Scholar
  62. G.H. Vatistas, V. Kozel, W.C. Mih, A simpler model for concentrated vortices. Exp. Fluids 11, 73–76 (1991) CrossRefGoogle Scholar
  63. N.H. Warner, M.P. Golombek, J. Sweeney, R. Fergason, R. Kirk, C. Schwartz, Near surface stratigraphy and regolith production in southwestern Elysium Planitia, Mars: implications for Hesperian-Amazonian terrains and the InSight lander mission. Space Sci. Rev. (2017, this issue). doi: 10.1007/s11214-017-0352-x Google Scholar
  64. M.M. Withers, R.C. Aster, C.J. Young, E.P. Chael, High-frequency analysis of seismic background noise as a function of wind speed and shallow depth. Bull. Seismol. Soc. Am. 86, 1507–1515 (1996) Google Scholar
  65. W. Zürn, J. Exss, H. Steffen, C. Kroner, T. Jahr, M. Westerhaus, On reduction of long-period horizontal seismic noise using local barometric pressure. Geophys. J. Int. 171, 780–796 (2007) ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Balthasar Kenda
    • 1
  • Philippe Lognonné
    • 1
  • Aymeric Spiga
    • 2
  • Taichi Kawamura
    • 1
  • Sharon Kedar
    • 3
  • William Bruce Banerdt
    • 3
  • Ralph Lorenz
    • 4
  • Don Banfield
    • 5
  • Matthew Golombek
    • 3
  1. 1.Institut de Physique du Globe de Paris, Sorbonne Paris Cité, UMR 7154 CNRSUniv. Paris DiderotParisFrance
  2. 2.Laboratoire de Météorologie Dynamique, UMR CNRS 8539, Institut Pierre-Simon Laplace, UPMC Univ. Paris 6Sorbonne UniversitésParisFrance
  3. 3.Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaUSA
  4. 4.Johns Hopkins University Applied Physics LaboratoryLaurelUSA
  5. 5.Cornell UniveristyIthacaUSA

Personalised recommendations