Advertisement

Space Science Reviews

, Volume 212, Issue 3–4, pp 1511–1540 | Cite as

Venus Surface Composition Constrained by Observation and Experiment

  • Martha Gilmore
  • Allan Treiman
  • Jörn Helbert
  • Suzanne Smrekar
Article
Part of the following topical collections:
  1. Venus III

Abstract

New observations from the Venus Express spacecraft as well as theoretical and experimental investigation of Venus analogue materials have advanced our understanding of the petrology of Venus melts and the mineralogy of rocks on the surface. The VIRTIS instrument aboard Venus Express provided a map of the southern hemisphere of Venus at ∼1 μm allowing, for the first time, the definition of surface units in terms of their 1 μm emissivity and derived mineralogy. Tessera terrain has lower emissivity than the presumably basaltic plains, consistent with a more silica-rich or felsic mineralogy. Thermodynamic modeling and experimental production of melts with Venera and Vega starting compositions predict derivative melts that range from mafic to felsic. Large volumes of felsic melts require water and may link the formation of tesserae to the presence of a Venus ocean. Low emissivity rocks may also be produced by atmosphere-surface weathering reactions unlike those seen presently.

High 1 μm emissivity values correlate to stratigraphically recent flows and have been used with theoretical and experimental predictions of basalt weathering to identify regions of recent volcanism. The timescale of this volcanism is currently constrained by the weathering of magnetite (higher emissivity) in fresh basalts to hematite (lower emissivity) in Venus’ oxidizing environment. Recent volcanism is corroborated by transient thermal anomalies identified by the VMC instrument aboard Venus Express. The interpretation of all emissivity data depends critically on understanding the composition of surface materials, kinetics of rock weathering and their measurement under Venus conditions.

Extended theoretical studies, continued analysis of earlier spacecraft results, new atmospheric data, and measurements of mineral stability under Venus conditions have improved our understanding atmosphere-surface interactions. The calcite-wollastonite CO2 buffer has been discounted due, among other things, to the rarity of wollastonite and instability of carbonate at the Venus surface. Sulfur in the Venus atmosphere has been shown experimentally to react with Ca in surface minerals to produce anhydrite. The extent of this SO2 buffer is constrained by the Ca content of surface rocks and sulfur content of the atmosphere, both of which are likely variable, perhaps due to active volcanism. Experimental work on a range of semiconductor and ferroelectric minerals is placing constraints on the cause(s) of Venus’ anomalously radar bright highlands.

Keywords

Venus Mineralogy Crust Geochemistry 

Notes

Acknowledgements

We appreciate discussions with Justin Filiberto, John Grotzinger, and Bruce Fegley. We thank the reviewers who provided very helpful comments.

References

  1. J.A. Adamchik, A.L. Draper, The temperature dependence of the Urey equilibrium and the problem of CO2 content of the atmosphere of Venus. Planet. Space Sci. 11, 1303–1307 (1963) ADSCrossRefGoogle Scholar
  2. J.B. Adams, A.L. Filice, Spectral reflectance 0.4 to 2.0 microns of silicate rock powders. J. Geophys. Res. 72(22), 5705–5715 (1967). doi: 10.1029/JZ072i022p05705 ADSCrossRefGoogle Scholar
  3. D.A. Allen, J.W. Crawford, Cloud structure on the dark side of Venus. Nature 307, 222–224 (1984) ADSCrossRefGoogle Scholar
  4. F.S. Anderson, S.E. Smrekar, Global mapping of crustal and lithospheric thickness on Venus. J. Geophys. Res. 111, E08006 (2006). doi: 10.1029/2004JE002395 ADSGoogle Scholar
  5. J. Arkani-Hamed, On the tectonics of Venus. Phys. Earth Planet. Inter. 76, 75–96 (1993) ADSCrossRefGoogle Scholar
  6. R.E. Arvidson, R.A. Brackett, M.K. Shepard, N.R. Izenberg, B. Fegley Jr., J.J. Plaut, Microwave signatures and surface properties of Ovda Regio and surroundings, Venus. Icarus 112, 171–186 (1994) ADSCrossRefGoogle Scholar
  7. D.C. Aveline, W.J. Abbey, M. Choukroun, A.H. Treiman, M.D. Dyar, S.E. Smrekar, S.M. Feldman, Rock and mineral weathering experiments under model Venus conditions. Lunar Planet. Sci. Conf. Abstr. 42, 2165 (2011) ADSGoogle Scholar
  8. D.C. Bain, P.F.S. Ritchie, D.R. Clark, D.M.L. Duthie, Geochemistry and mineralogy of weathered basalt from Morvern. Scotland. Mineral. Mag. 43, 865–872 (1980) CrossRefGoogle Scholar
  9. K.H. Baines et al., Detection of sub-micron radiation from the surface of Venus by Cassini/VIMS. Icarus 48, 307–311 (2000) ADSCrossRefGoogle Scholar
  10. V.L. Barsukov, V.P. Volkov, I.L. Khodakovsky, The crust of Venus: theoretical models of chemical and mineral composition. Proc. Lunar Planet. Sci. Conf. 13, A3–A9 (1982), J. Geophys. Res. 87 ADSGoogle Scholar
  11. A.T. Basilevsky, E.V. Shalygin, D.V. Titov, W.J. Markiewicz, F. Scholten, Th. Roatsch, M.A. Kreslavsky, L.V. Moroz, N.I. Ignatiev, B. Fiethe, B. Osterloh, H. Michalik, Geologic interpretation of the near-infrared images of the surface taken by the Venus Monitoring Camera, Venus Express. Icarus 217, 434–450 (2012). doi: 10.1016/j.icarus.2011.11.003 ADSCrossRefGoogle Scholar
  12. M. Bauer, W.E. Klee, The monoclinic-hexagonal phase transition in chlorapatite. Eur. J. Mineral. 5, 307–316 (1993) ADSCrossRefGoogle Scholar
  13. E.E. Bjonnes, V.L. Hansen, B. James, J.B. Swenson, Equilibrium resurfacing of Venus: results from new Monte Carlo modeling and implications for Venus surface histories. Icarus 217, 451–461 (2012) ADSCrossRefGoogle Scholar
  14. B. Bonin, Extra-terrestrial igneous granites and related rocks: a review of their occurrence and petrogenesis. Lithos 153, 3–24 (2012) ADSCrossRefGoogle Scholar
  15. R.A. Brackett, B. Fegley, R.E. Arvidson, Volatile transport on Venus and implications for surface geochemistry and geology. J. Geophys. Res., Planets 100, 1553–1563 (1995) ADSCrossRefGoogle Scholar
  16. M. Brown, Granite: from genesis to emplacement. Geol. Soc. Am. Bull. 125, 1079–1113 (2013). doi: 10.1130/B30877.1 ADSCrossRefGoogle Scholar
  17. E.A. Bruckenthal, R.B. Singer, Spectral effects of dehydration on phyllosilicates. Lunar Planet. Sci. Conf. 18, 135 (1987) ADSGoogle Scholar
  18. M.A. Bullock, D.H. Grinspoon, The stability of climate on Venus. J. Geophys. Res. 101, 7521–7529 (1996) ADSCrossRefGoogle Scholar
  19. M.A. Bullock, D.H. Grinspoon, The recent evolution of climate on Venus. Icarus 150, 19–37 (2001) ADSCrossRefGoogle Scholar
  20. D.J.M. Burkhardt, T. Scherer, Surface oxidation of basalt glass/liquid. J. Non-Cryst. Solids 352, 241–247 (2006) ADSCrossRefGoogle Scholar
  21. I.H. Campbell, S.R. Taylor, No water, no granites-no oceans, no continents. Geophys. Res. Lett. 10(11), 1061–1064 (1983) ADSCrossRefGoogle Scholar
  22. B.A. Campbell, P.G. Rogers, B. Regio Venus, Integration of remote sensing data and terrestrial analogs for geologic analysis. J. Geophys. Res., Planets 99, 21153–21171 (1994) ADSCrossRefGoogle Scholar
  23. B.A. Campbell, D.B. Campbell, C.H. DeVries, Surface processes in the Venus highlands: results from analysis of Magellan and Arecibo data. J. Geophys. Res., Planets 104, 1897–1916 (1999) ADSCrossRefGoogle Scholar
  24. B.A. Campbell, D.B. Campbell, G.A. Morgan, L.M. Carter, M.C. Nolan, J.F. Chandler, Evidence for crater ejecta on Venus tessera terrain from Earth-based radar images. Icarus 250, 123–130 (2015). doi: 10.1016/j.icarus.2014.11.025 ADSCrossRefGoogle Scholar
  25. R.W. Carlson, K.H. Baines, Th. Encrenaz, F.W. Taylor, P. Drossart, L.W. Kamp, J.B. Pollack, E. Lellouch, A.D. Collard, S.B. Calcutt, D.H. Grinspoon, P.R. Weissman, W.D. Smythe, A.C. Ocampo, G.E. Danielson, F.P. Fanale, T.V. Johnson, H.H. Kieffer, D.L. Matson, T.B. McCord, L. Soderblom, Galileo infrared imaging spectroscopy measurements at Venus. Science 253, 1541–1548 (1991) ADSCrossRefGoogle Scholar
  26. L.M. Carter, D.B. Campbell, B.A. Campbell, Volcanic deposits in shield fields and highland regions on Venus: surface properties from radar polarimetry. J. Geophys. Res., Planets 111, (E6) (2006). doi: 10.1029/2005JE002519 Google Scholar
  27. A. Cathala, G. Berger, G.S. Pokrovski, Atmosphere-surface interactions at the Venus conditions: experiments and modeling. Lunar Planet. Sci. Conf. Abstr. 48, 1529 (2017) ADSGoogle Scholar
  28. E.A. Cloutis, F.C. Hawthorne, S.A. Mertzman, K. Krenn, M.A. Craig, D. Marcino, M. Methot, J. Strong, J.F. Mustard, D.L. Blaney, J.F. Bell III., F. Vilas, Detection and discrimination of sulfate minerals using reflectance spectroscopy. Icarus 184, 121–157 (2006) ADSCrossRefGoogle Scholar
  29. G.B. Cook, R.F. Cooper, T. Wu, Chemical diffusion and crystalline nucleation during oxidation of ferrous iron-bearing magnesium aluminosilicate glass. J. Non-Cryst. Solids 120, 207–222 (1990) ADSCrossRefGoogle Scholar
  30. G.B. Cook, R.F. Cooper, Iron concentration and the physical processes of dynamic oxidation in an alkaline earth aluminosilicate glass. Am. Mineral. 85, 397–406 (2000) ADSCrossRefGoogle Scholar
  31. R.F. Cooper, J.B. Fanselow, D.B. Poker, The mechanism of oxidation of a basaltic glass: chemical diffusion of network-modifying cations. Geochim. Cosmochim. Acta 60, 3253–3265 (1996) ADSCrossRefGoogle Scholar
  32. D. Crisp, S. McNulldroch, S.K. Stephens, W.M. Sinton, B. Ragent, K.W. Ho- dapp, R.G. Probst, L.R. Doyle, D.A. Allen, J. Eias, Ground-based near-infrared imaging observations of Venus during the Galileo encounter. Science 253, 1538–1541 (1991) ADSCrossRefGoogle Scholar
  33. J.A. Cutts, T.S. Balint, E. Chassefiere, E.A. Kolawa, Technology perspectives in the future exploration of Venus, in Exploring Venus as a Terrestrial Planet, ed. by L.W. Esposito, E.R. Stofan, T.E. Cravens. AGU Monograph Series, vol. 176 (2007), pp. 207–225, 250 pp. CrossRefGoogle Scholar
  34. A. Davaille, S.E. Smrekar, S. Tomlinson, Experimental and observational evidence for plume-induces subduction on Venus. Nat. Geosci. (2017). doi: 10.1038/ngeo2928 Google Scholar
  35. C. de Bergh et al., Deuterium on Venus: observations from Earth. Science 251, 547–549 (1991) ADSCrossRefGoogle Scholar
  36. P. D’Incecco, N. Müller, J. Helbert, M. D’Amore, Idunn Mons on Venus: location and extent of recently active lava flows. Planet. Space Sci. 136, 25–33 (2017) ADSCrossRefGoogle Scholar
  37. T.M. Donahue, J.H. Hoffman, R.R. Hodges, A.J. Watson, Venus was wet: a measurement of the ratio of deuterium to hydrogen. Science 216, 630–633 (1982) ADSCrossRefGoogle Scholar
  38. P. Drossart et al., Scientific goals for the observation of Venus by VIRTIS on ESA/Venus Express mission. Planet. Space Sci. 55, 1653–1672 (2007) ADSCrossRefGoogle Scholar
  39. R.A. Eggleton, C. Foudoulis, D. Varkevisser, Weathering of basalt: changes in rock chemistry and mineralogy. Clays Clay Mineral. 35, 161–169 (1987) ADSCrossRefGoogle Scholar
  40. L. Elkins-Tanton, S.E. Smrekar, P.C. Hess, E.M. Parmentier, Volcanism and volatile recycling on a one-plate planet: applications to Venus. J. Geophys. Res. 112, E04S06 (2007). doi: 10.1029/2006JE002793 CrossRefGoogle Scholar
  41. R.E. Ernst, K.L. Buchan, D.W. Desnoyers, Plumes and plume clusters on Earth and Venus: evidence from large igneous provinces (LIPS), in Superplumes, ed. by D.A. Yuen et al.(Springer, Berlin, 2007), pp. 537–561 Google Scholar
  42. L.W. Esposito, Sulfur dioxide: episodic injection shows evidence for active Venus volcanism. Science 223, 1072–1074 (1984) ADSCrossRefGoogle Scholar
  43. B. Fegley Jr., Venus. Treatise on Geochemistry, vol. 1 (2004, 2003), pp. 487–507 Google Scholar
  44. B. Fegley Jr., R.G. Prinn, Estimation of the rate of volcanism on Venus from reaction rate measurements. Nature 337(6202), 55–58 (1989) ADSCrossRefGoogle Scholar
  45. B. Fegley Jr., A.H. Treiman, Chemistry of atmosphere-surface interactions on Venus and Mars, in Venus and Mars: Atmospheres, Ionospheres, and Solar Wind Interactions, ed. by J.G. Luhmann, M. Tatrallyay, R.O. Pepin (American Geophysical Union, Washington, 1992), pp. 7–71 Google Scholar
  46. B. Fegley Jr., A.H. Treiman, V.L. Sharpton, Venus surface mineralogy: observational and theoretical constraints, in Proceedings of Lunar and Planetary Science, vol. 22 (Lunar and Planetary Institute, Houston, 1992), pp. 3–19 Google Scholar
  47. B. Fegley Jr., G. Klingelhöfer, R.A. Brackett, N. Izenberg, D.T. Kremser, K. Lodders, Basalt oxidation and the formation of hematite on the surface of Venus. Icarus 118, 373–383 (1995a) ADSCrossRefGoogle Scholar
  48. B. Fegley Jr., K. Lodders, A.H. Treiman, G. Klingelhöfer, The rate of pyrite decomposition on the surface of Venus. Icarus 115, 159–180 (1995b) ADSCrossRefGoogle Scholar
  49. B. Fegley Jr., G. Klingelhöfer, K. Lodders, T. Widemann, Geochemistry of surface-atmosphere interactions on Venus, in Venus II: Geology, Geophysics, Atmosphere, and Solar Wind Environment, ed. by S.W. Bougher, D.M. Hunten, R.J. Philips (University of Arizona Press, Tucson, 1997a), pp. 591–636 Google Scholar
  50. B. Fegley Jr., M.Yu. Zolotov, K. Lodders, The oxidation state of the lower atmosphere and surface of Venus. Icarus 125, 416–439 (1997b) ADSCrossRefGoogle Scholar
  51. J. Filiberto, Magmatic diversity on Venus: constraints from terrestrial analog crystallization experiments. Icarus 231, 131–136 (2014) ADSCrossRefGoogle Scholar
  52. J. Filiberto, A.H. Treiman, Geochemistry of Venus basalts with constraints on magma genesis. Lunar Planet. Sci. Conf. Abstr. 48, 1148 (2017) ADSGoogle Scholar
  53. C.P. Florensky, O.V. Nikolaeva, V.P. Volkov, A.F. Kudryaskova, A.A. Pronin, Yu.M. Geektin, E.A. Tschaikina, A.S. Bashikirova, The oxidizing-reducing conditions on the surface of Venus according to the data of the “KONTRAST” geochemical indicator on the Venera 13 and Venera 14 spacecraft. Cosm. Res. 21, 278–281 (1983) ADSGoogle Scholar
  54. P.G. Ford, G.H. Pettengill, Venus: global surface radio emissivity. Science 220, 1379–1381 (1983) ADSCrossRefGoogle Scholar
  55. P.G. Ford, G.H. Pettengill, Venus topography and kilometer-scale slopes. J. Geophys. Res. 97, 13,103–13,114 (1992) ADSCrossRefGoogle Scholar
  56. I. Garate-Lopez, R. Jueso, A. Sánchez-Lavega, J. Peralta, G. Piccioni, P. Drossart, A chaotic long-lived vortex at the southern pole of Venus. Nat. Geosci. 6, 254–257 (2013) ADSCrossRefGoogle Scholar
  57. J.B. Garvin, J.W. Head, G.H. Pettengill, S.H. Zisk, Venus global radar reflectivity and correlations with elevation. J. Geophy. Res. 90(B8), 6859–6871 (1985) ADSCrossRefGoogle Scholar
  58. P. Gavin, V. Chevrier, Thermal alteration of nontronite and montorillonite: implications for the martian surface. Icarus 208, 721–734 (2010) ADSCrossRefGoogle Scholar
  59. M.S. Gilmore, Tellus Regio, Venus: evidence of tectonic assembly of tessera terrain and implications for exploration. Lunar Planet. Sci. Conf. Abstr. 40, 2015 (2009) ADSGoogle Scholar
  60. M.S. Gilmore, J.W. Head, Sequential deformation of plains at the margins of Alpha Regio, Venus: implications for tessera formation. Meteorit. Planet. Sci. 35, 667–687 (2000) ADSCrossRefGoogle Scholar
  61. M.S. Gilmore, M.A. Ivanov, J.W. Head, A.T. Basilevsky, Duration of tessera deformation on Venus. J. Geophys. Res. 102, 13357–13368 (1997) ADSCrossRefGoogle Scholar
  62. M.S. Gilmore, N. Mueller, J. Helbert, VIRTIS emissivity of Alpha Regio, Venus, with implications for tessera composition. Icarus 254, 350–361 (2015). doi: 10.1016/j.icarus.2015.04.008 ADSCrossRefGoogle Scholar
  63. B.J. Gladman, J.A. Burns, M. Duncan, P. Lee, H.F. Levinson, The exchange of impact ejecta between terrestrial planets. Science 271, 1387–1392 (1996) ADSCrossRefGoogle Scholar
  64. T.D. Glotch et al., Highly silicic compositions on the Moon. Science 329, 1510–1513 (2010). 2013 ADSCrossRefGoogle Scholar
  65. R.E. Grimm, P.C. Hess, The crust of Venus, in Venus II, ed. by S.W. Bougher et al.(University of Arizona Press, Tuscon, 1997), pp. 1205–1244 Google Scholar
  66. D.H. Grinspoon, Implications of the high deuterium-to-hydrogen ratio for the sources of water in Venus’ atmosphere. Nature 363, 428–431 (1993) ADSCrossRefGoogle Scholar
  67. D.H. Grinspoon, M.A. Bullock, Astrobiology and Venus exploration, in Exploring Venus as a Terrestrial Planet, ed. by L.W. Esposito et al.. AGU Geophysical Monograph Series, vol. 176 (2007), pp. 191–206 CrossRefGoogle Scholar
  68. J.P. Grotzinger, J.F. Kasting, New constraints on precambrian ocean composition. J. Geol. 101, 235–243 (1993) ADSGoogle Scholar
  69. J. Guandique, E. Kohler, V. Chevrier, Stability of metallic minerals under Venusian surface temperatures: investigating the potential source of radar anomalies. Lunar Planet. Sci. Conf. Abstr. 45, 2391 (2014) ADSGoogle Scholar
  70. J.E. Guest et al., Small volcanic edifices and volcanism in the plains of Venus. J. Geophys. Res. 97(E10), 15949–15966 (1992) ADSCrossRefGoogle Scholar
  71. J.J. Hagerty, D.J. Lawrence, B.R. Hawke, D.T. Vaniman, R.C. Elphic, W.C. Feldman, Refined thorium abundances for lunar red spots: implications for evolved, non-mare volcanism on the Moon. J. Geophys. Res. 111, E06002 (2006). doi: 10.1029/2005JE002592 ADSCrossRefGoogle Scholar
  72. A.N. Halliday, The origins of volatiles in the terrestrial planets. Geochim. Cosmochim. Acta 105, 146–171 (2013) ADSCrossRefGoogle Scholar
  73. E. Harrington, A.H. Treiman, The puzzle of radar-bright highlands on Venus: a high-spatial resolution study in Ovda Regio. Lunar Planet. Sci. Conf. Abstr. XLVI, 2713 (2015) ADSGoogle Scholar
  74. G.A. Hashimoto, Y. Abe, Climate control on Venus: comparison of the carbonate and pyrite models. Planet. Space Sci. 53, 839–848 (2005) ADSCrossRefGoogle Scholar
  75. G.L. Hashimoto, S. Sugita, On observing the compositional variability of the surface of Venus using nightside near-infrared thermal radiation. J. Geophys. Res. 108I, 5109 (2003). doi: 10.1029/2003JE002082 ADSCrossRefGoogle Scholar
  76. G.A. Hashimoto, Y. Abe, S. Sasaki, CO2 amount on Venus constrained by a criterion of topographic-greenhouse instability. Geophys. Res. Lett. 24, 289–292 (1997) ADSCrossRefGoogle Scholar
  77. G.L. Hashimoto, M. Roos-Serote, S. Sugita, M.S. Gilmore, L.W. Kamp, R.W. Carlson, K.H. Baines, Felsic highland crust on Venus suggested by Galileo Near-Infrared Mapping Spectrometer data. J. Geophys. Res. 113, E00B24 (2008) CrossRefGoogle Scholar
  78. G.L. Hashimoto, M. Roos-Serote, S. Sugita, M.S. Gilmore, L.W. Kamp, R.W. Carlson, K.H. Baines, Felsic highland crust on Venus suggested by Galileo Near-Infrared Mapping Spectrometer data. J. Geophys. Res. 113, E00B24 (2008). doi: 10.1029/2008JE003134 CrossRefGoogle Scholar
  79. R. Haus, G. Arnold, Radiative transfer in the atmosphere of Venus and application to surface emissivity retrieval from VIRTIS/VEX measurements. Planet. Space Sci. 58, 1578–1598 (2010). doi: 10.1016/j.pss.2010.08.001 ADSCrossRefGoogle Scholar
  80. J.W. Head III., A.R. Peterfreund, J.B. Garvin, S.H. Zisk, Surface characteristics of Venus derived from Pioneer Venus altimetry, roughness, and reflectivity measurements. J. Geophys. Res. 90, 6873–6885 (1985) ADSCrossRefGoogle Scholar
  81. J. Helbert, A. Maturilli, The emissivity of a fine-grained labradorite sample at typical Mercury dayside temperatures. Earth Planet. Sci. Lett. 285, 347–354 (2009) ADSCrossRefGoogle Scholar
  82. J. Helbert, N. Müller, P. Kostama, L. Marinangeli, G. Piccioni, P. Drossart, Surface brightness variations seen by VIRTIS on Venus Express and implications for the evolution of the Lada Terra region, Venus. Geophys. Res. Lett. 35, L11201 (2008). doi: 10.1029/2008GL033609 ADSCrossRefGoogle Scholar
  83. J. Helbert, S. Ferrari, A. Maturilli, M.D. Dyar, N. Müller, S. Smrekar, Studying the surface composition of Venus in the near infrared. Lunar Planet. Sci. Conf. Abstr. 46, 1793 (2015) ADSGoogle Scholar
  84. J. Helbert, A. Maturilli, M.D. Dyar, S. Ferrari, N. Müller, S. Smrekar, First set of laboratory Venus analog spectra for all atmospheric windows. Lunar Planet. Sci. Conf. Abstr. 48, 1512 (2017) ADSGoogle Scholar
  85. R.R. Herrick, Resurfacing history of Venus. Geology 22, 703–706 (1994). doi: 10.1130/0091-7613 ADSCrossRefGoogle Scholar
  86. R.R. Herrick, M.E. Rumpf, Postimpact modification by volcanic or tectonic processes as the rule, not the exception, for Venusian craters. J. Geophys. Res. 116, E02004 (2011). doi: 10.1029/2010JE003722 ADSCrossRefGoogle Scholar
  87. R.R. Herrick, V.L. Sharpton, Implications from stereo-derived topography of Venusian impact craters. J. Geophys. Res. 105, 20245–20262 (2000). doi: 10.1029/1999JE001225 ADSCrossRefGoogle Scholar
  88. Y. Hong, B. Fegley Jr., The kinetics and mechanism of pyrite thermal decomposition. Ber. Bunsenges. Phys. Chem. 101, 1870–1881 (1997) CrossRefGoogle Scholar
  89. Y. Hong, B. Fegley Jr., The sulfur vapor pressure over pyrite on the surface of Venus. Planet. Space Sci. 46, 683–690 (1998) ADSCrossRefGoogle Scholar
  90. J.M. Hughes, J. Rakovan, The crystal structure of apatite, Ca5(PO4)3(F, OH, Cl). Rev. Mineral. Geochem. 48, 1–12 (2002) CrossRefGoogle Scholar
  91. G.R. Hunt, J.W. Salisbury, Visible and near-infrared spectra of minerals and rocks: I silicate minerals. Mod. Geol. 1, 283–300 (1970) Google Scholar
  92. M.A. Ivanov, Morphology of the tessera terrain on Venus: implications for the composition of tessera material. Sol. Syst. Res. 35, 1–17 (2001) ADSCrossRefGoogle Scholar
  93. M.A. Ivanov, A.T. Basilevsky, Density and morphology of impact craters on tesserae terrain. Geophys. Res. Lett. 20, 2579–2582 (1993) ADSCrossRefGoogle Scholar
  94. M.A. Ivanov, J.W. Head III, Geologic map of the Mylitta Fluctus quadrangle (V-61), Venus. U.S. Geological Survey Scientific Investigations Map 2920 (2006) Google Scholar
  95. M.A. Ivanov, J.W. Head, The history of volcanism on Venus. Planet. Space Sci. 84, 66–92 (2013) ADSCrossRefGoogle Scholar
  96. N.R. Izenberg, R.E. Arvidson, R.J. Phillips, Impact crater degradation on Venusian plains. Geophys. Res. Lett. 21(4), 289–292 (1994). doi: 10.1029/94GL00080 ADSCrossRefGoogle Scholar
  97. N.M. Johnson, B. Fegley Jr., Water on Venus: new insights from tremolite decomposition. Icarus 146, 301–306 (2000) ADSCrossRefGoogle Scholar
  98. N.M. Johnson, B. Fegley Jr., Experimental studies of atmosphere-surface interactions on Venus. Adv. Space Res. 29, 233–241 (2002) ADSCrossRefGoogle Scholar
  99. N.M. Johnson, B. Fegley Jr., Tremolite decomposition on Venus II. Products, kinetics, and mechanism. Icarus 164, 317–333 (2003a) ADSCrossRefGoogle Scholar
  100. N.M. Johnson, B. Fegley Jr., Longevity of fluorine-bearing tremolite on Venus. Icarus 165, 340–348 (2003b) ADSCrossRefGoogle Scholar
  101. D. Kappel, G. Arnold, R. Haus, Multi-spectrum retrieval of Venus IR surface emissivity maps from VIRTIS/VES nightside measurements at Themis Regio. Icarus 265, 42–62 (2016) ADSCrossRefGoogle Scholar
  102. J.F. Kasting, J.B. Pollack, Loss of water from Venus, I, hydrodynamic escape of hydrogen. Icarus 63, 479–508 (1983) ADSCrossRefGoogle Scholar
  103. W.M. Kaula, Constraints on Venus evolution from radiogenic argon. Icarus 139, 32–39 (1999) ADSCrossRefGoogle Scholar
  104. K.B. Klose, J.A. Wood, A. Hashimoto, Mineral equilibria and the high radar reflectivity of Venus mountaintops. J. Geophys. Res., Planets 97, 16353–16369 (1992) ADSCrossRefGoogle Scholar
  105. E. Kohler, V.F. Chevrier, P. Gavin, N. Johnson, Experimental investigation into the radar anomalies on the surface of Venus. Lunar Planet. Sci. Conf. Abstr. 43, 2749 (2012) ADSGoogle Scholar
  106. E. Kohler, V.F. Chevrier, P. Gavin, N. Johnson, Experimental stability of tellurium and its implications for the Venusian radar anomalies. Lunar Planet. Sci. Conf. Abstr. 44, 2951 (2013) ADSGoogle Scholar
  107. E. Kohler et al., Proposed radar reflective minerals tested under Venus surface and atmosphere conditions. Lunar Planet. Sci. Conf. 45, 2321 (2014) ADSGoogle Scholar
  108. E. Kohler, S. Port, V. Chevrier, N. Johnson, C. Lacy, Radar-reflective minerals investigated under Venus near-surface conditions. Lunar Planet. Sci. Conf. Abstr. 45, 2321 (2015) ADSGoogle Scholar
  109. V.A. Krasnopolsky, Spatially-resolved high-resolution spectroscopy of Venus 2. Variations of HDO, OCS and SO2 at the cloud tops. Icarus 209, 314–322 (2010). doi: 10.1016/j.icarus.2010.05.008 ADSCrossRefGoogle Scholar
  110. P.S. Kumar, J.W. Head, Geologic map of the Lada Terra quadrangle (V-56). Venus: U.S. Geological Survey Scientific Investigations Map 3249, scale 1:5,000,000 (2013), 11 p. doi: 10.3133/sim3249
  111. S. Kumar, H.A. Taylor Jr., Deuterium on Venus: model comparisons with Pioneer Venus observations of the predawn bulge atmosphere. Icarus 62, 494–504 (1984) ADSCrossRefGoogle Scholar
  112. S.B. Lang, S.A.M. Tofail, A.L. Kholkin, M. Wojtas, M. Gregor, A.A. Gandhi, Y. Wang, S. Bauer, M. Krause, A. Plecenik, Ferroelectric polarization in nanocrystalline hydroxyapatite thin films on silicon. Sci. Rep. 3, 2215 (2013) ADSCrossRefGoogle Scholar
  113. B.I. Lazoryak, V.A. Morozov, A.A. Belik, S.Yu. Stefanovich, V.V. Grebenev, I.A. Leonidov, E.B. Mitberge, S.A. Davydov, O.I. Lebedev, G. Van Tendeloo, Ferroelectric phase transition in the whitlockite-type Ca9Fe(PO4)7; crystal structure of the paraelectric phase at 923 K. Solid State Sci. 6, 185–195 (2004) ADSCrossRefGoogle Scholar
  114. J. Lecacheux, P. Drossart, P. Laques, F. Deladerriere, F. Colas, Detection of the surface of Venus at 1.0 μm from ground-based observations. Planet. Space Sci. 41, 543–549 (1993) ADSCrossRefGoogle Scholar
  115. C.-T.A. Lee, P. Luffi, T. Plank, H. Dalton, W.P. Leeman, Constraints on the depths and temperatures of basaltic magma generation on Earth and other terrestrial planets using new thermobarometers for mafic magmas. Earth Planet. Sci. Lett. 279(1–2), 20–33 (2009) ADSCrossRefGoogle Scholar
  116. J.S. Lewis, An estimate of the surface conditions of Venus. Icarus 8, 434–456 (1968) ADSCrossRefGoogle Scholar
  117. J.S. Lewis, Venus: atmospheric and lithospheric composition. Earth Planet. Sci. Lett. 10, 73–80 (1970) ADSCrossRefGoogle Scholar
  118. K.P. Magee, J.W. Head, The role of rifting in the generation of melt: implications for the origin and evolution of the Lada Terra-Lavinia Planitia region of Venus. J. Geophys. Res. 100, 1527–1552 (1995) ADSCrossRefGoogle Scholar
  119. E. Marcq, J.-L. Bertaux, F. Montmessin, D. Belyaev, Variations of sulphur dioxide at the cloud top of Venus’s dynamic atmosphere. Nat. Geosci. 6, 25–28 (2013) ADSCrossRefGoogle Scholar
  120. H.R.H. Martin, R. Smithies, J–F. Rapp Moyen, D. Champion, An overview of adakite, tonalite–trondhjemite–granodiorite (TTG), and sanukitoid: relationships and some implications for crustal evolution. Lithos 79, 1–24 (2005). doi: 10.1016/j.lithos.2004.04.048 ADSCrossRefGoogle Scholar
  121. H. Masursky, E. Eliason, P.G. Ford, G.E. McGill, G.H. Pettengill, G.G. Schaber, G. Schubert, Pioneer-Venus radar results: geology from images and altimetry. J. Geophys. Res. 85, 8232–8260 (1980) ADSCrossRefGoogle Scholar
  122. A. Maturilli, J. Helbert, J.M.St. John, J.W. Head III., W.M. Vaughan, M. D’Amore, M. Fottschalk, S. Ferrari, Komatiites as Mercury surface analogues: spectral measurements at PEL. Earth Planet. Sci. Lett. 398, 58–65 (2014) ADSCrossRefGoogle Scholar
  123. M.C. McCanta, M.D. Dyar, A.H. Treiman, Alteration of Hawaiian basalts under sulfur-rich conditions: applications to understanding surface-atmosphere interactions on Mars and Venus. Am. Mineral. 99, 291–302 (2014) ADSCrossRefGoogle Scholar
  124. W.B. McKinnon, K.J. Zahnle, B.I. Ivanov, H.J. Melosh, Cratering on Venus: models and observations, in Venus II, ed. by S.W. Bougher, D.M. Hunten, R.J. Phillips (University of Arizona Press, Tuscon, 1997), pp. 969–1014 Google Scholar
  125. V.S. Meadows, D. Crisp, Ground-based near-infrared observations of the Venus nightside: the thermal structure and water abundance near the surface. J. Geophys. Res. 101, 4595–4622 (1996) ADSCrossRefGoogle Scholar
  126. R.E. Milliken et al., Opaline silica in young deposits on Mars. Geology 36, 847–850 (2008) ADSCrossRefGoogle Scholar
  127. H.J. Moore, J.J. Plaut, P.M. Schenk, J.W. Head, An unusual volcano on Venus. J. Geophys. Res. 97, 13479–13493 (1992) ADSCrossRefGoogle Scholar
  128. A. Morbidelli et al., Building terrestrial planets. Ann. Rev. Earth Planet. Sci. 40, 251–275 (2012) ADSCrossRefGoogle Scholar
  129. R.F. Mueller, Sources of HCl and HF in the atmosphere of Venus. Nature 220, 55–57 (1968) ADSCrossRefGoogle Scholar
  130. R.F. Mueller, Planetary problems: origin of Venus atmosphere. Science 163, 1322–1324 (1969) ADSCrossRefGoogle Scholar
  131. N. Mueller, J. Helbert, G.L. Hashimoto, C.C.C. Tsang, S. Erard, G. Piccolini, P. Drossart, Venus surface thermal emission at 1 mm in VIRTIS imaging observations: evidence for variation of crust and mantle differentiation conditions. J. Geophys. Res. 113, E00B17 (2008). doi: 10.1029/2008JE003118 CrossRefGoogle Scholar
  132. O.V. Nikolayeva, M.A. Ivanov, V.K. Borozdin, Evidence on the crustal dichotomy, in Venus Geology, Geochemistry, and Geophysics, Research Results from the USSR, ed. by V.L. Barsukov, A.T. Basilevsky, V.P. Volkov, V.N. Zharkov (University of Arizona Press, Tucson, 1992), pp. 129–139 Google Scholar
  133. J.G. O’Rourke, J. Korenaga, Terrestrial planet evolution in the stagnant lid regime: size effects and the formation of self-destabilizing crust. Icarus 221, 1043–1060 (2012). doi: 10.1016/j.icarus.2012.10.015 ADSCrossRefGoogle Scholar
  134. J.G. O’Rourke, A.S. Wolf, B.L. Ehlmann Venus, Interpreting the spatial distribution of volcanically modified craters. Geophys. Res. Lett. 41 8252–8260 (2014). doi: 10.1002/2014GL062121 ADSCrossRefGoogle Scholar
  135. E.M. Parmentier, P.C. Hess, Chemical differentiation of a convecting planetary interior: consequences for a one plate planet such as Venus. Geophys. Res. Lett. 19, 2015–2018 (1992) ADSCrossRefGoogle Scholar
  136. B. Pavri, J.W. Head III., K.B. Klose, L. Wilson, Steep-sided domes on Venus: characteristics, geologic setting, and eruption conditions from Magellan data. J. Geophys. Res. 97(E8), 13445–13478 (1992) ADSCrossRefGoogle Scholar
  137. G.H. Pettengill, E. Eliason, P.G. Ford, G.B. Loriot, H. Masursky, G.E. McGill, Pioneer-Venus radar results: altimetry and surface properties. J. Geophys. Res. 85, 8261–8270 (1980) ADSCrossRefGoogle Scholar
  138. G.H. Pettengill, P.G. Ford, B.D. Chapman, Venus: surface electromagnetic properties. J. Geophys. Res. 93(B12), 14881–14892 (1988) ADSCrossRefGoogle Scholar
  139. G.H. Pettengill, P.G. Ford, R.J. Wilt, Venus surface radiothermal emission as observed by Magellan. J. Geophysics Res. 97(E8), 13091–13102 (1992) ADSCrossRefGoogle Scholar
  140. G.H. Pettengill, P.G. Ford, R.A. Simpson, Electrical properties of the Venus surface from bistatic radar observations. Science 272, 1628–1631 (1996) ADSCrossRefGoogle Scholar
  141. G.H. Pettengill, P.G. Ford, R.A. Simpson, Surface scattering and dielectric properties, in Venus II: Geology, Geophysics, Atmosphere, and Solar Wind Environment, ed. by S.W. Bougher, D.M. Hunten, R.J. Philips (University of Arizona Press, Tucson, 1997), pp. 527–546 Google Scholar
  142. F.J. Pettijohn, P.E. Potter, R. Siever, Sand and Sandstone, 2nd edn. (Springer, New York, 1986) Google Scholar
  143. R.J. Phillips, M.C. Malin, Tectonics of Venus. Annu. Rev. Earth Planet. Sci. 12, 411–443 (1984) ADSCrossRefGoogle Scholar
  144. R.J. Phillips et al., Impact craters and Venus resurfacing history. J. Geophys. Res. 97(E10), 15923–15948 (1992) ADSCrossRefGoogle Scholar
  145. C.M. Pieters, J.W. Head, S. Pratt, W. Patterson, J. Garvin, V.L. Barsukov, A.T. Basilevsky et al., The color of the surface of Venus. Science 234, 1379–1383 (1986) ADSCrossRefGoogle Scholar
  146. S.T. Port, E. Kohler, V. Chevrier, Bismuth tellurides and sulfides mixtures and their relation to metal frost on Venus. Lunar Planet. Sci. Conf. Abstr. 47, 2245 (2016) ADSGoogle Scholar
  147. S.T. Port, E. Kohler, V. Chevrier, Bismuth tellurides and sulfide mixtures and their relation to metal frost on Venus. Lunar Planet. Sci. Conf. Abstr. 48, 1081 (2017) ADSGoogle Scholar
  148. R.G. Prinn, The photochemistry of the atmosphere of Venus, in The Photochemistry of Atmospheres, ed. by J.S. Levine (Academic Press, New York, 1985), pp. 281–336 CrossRefGoogle Scholar
  149. B.G. Radoman-Shaw, R.P. Harvey, G.C.C. Costa, N.S. Jacobson, A. Avishai, L.M. Nakley, The stability of calcium silicates and calcium carbonate in the surface of Venus. Lunar Planet. Sci. Conf. Abstr. 48, 2701 (2017) ADSGoogle Scholar
  150. E.O. Rausch, Dielectric properties of chlorapatite. Doctoral Dissertation, School of Physics, Georgia Institute of Technology, 1976 Google Scholar
  151. K.M. Roberts, J.E. Guest, J.W. Head, M.G. Lancaster, Mylitta Fluctus, Venus: rift-related, centralized volcanism and the emplacement of large-volume flow units. J. Geophys. Res. 97, 15,991–16,015 (1992) ADSCrossRefGoogle Scholar
  152. A.D. Rogers, H. Nekvasil, Feldspathic rocks on Mars: compositional constraints from infrared spectroscopy and possible formation mechanisms. Geophys. Res. Lett. 42(8), 2619–2626 (2015) ADSCrossRefGoogle Scholar
  153. I. Romeo, Monte Carlo models of the interaction between impact cratering and volcanic resurfacing on Venus: the effect of the Beta-Atla-Themis anomaly. Planet. Space Sci. 87, 157–172 (2013) ADSCrossRefGoogle Scholar
  154. I. Romeo, R. Capote, Tectonic evolution of Ovda Regio: an example of highly deformed continental crust on Venus. Planet. Space Sci. 59, 1428–1445 (2011) ADSCrossRefGoogle Scholar
  155. I. Romeo, D.L. Turcotte, Pulsating continents on Venus: an explanation for crustal plateaus and tessera terrains. Earth Planet. Sci. Lett. 276, 85–97 (2008) ADSCrossRefGoogle Scholar
  156. G.G. Schaber et al., Geology and distribution of impact craters on Venus: What are they telling us? J. Geophys. Res. 97(E8), 13257–13302 (1992) ADSCrossRefGoogle Scholar
  157. L. Schaefer, B. Fegley Jr., Atmospheric chemistry of Venus-like exoplanets. Astrophys. J. 729, 6 (2011). doi: 10.1088/0004-637X/729/1/6 ADSCrossRefGoogle Scholar
  158. A. Seiff, J.T. Schofield, A.J. Kliore, F.W. Taylor, S.S. Limaye, H.E. Revercomb, L.A. Sromovsky, V.V. Kerzhanovich, V.I. Moroz, M.Ya. Marov, Models of the structure of the atmosphere of Venus from the surface to 100 kilometers altitude. Adv. Space Res. 5, 3–58 (1985) ADSCrossRefGoogle Scholar
  159. E.V. Shalygin, W.J. Markiewicz, A.T. Basilevsky, D.V. Titov, N.I. Ignatiev, J.W. Head, Active volcanism on Venus in the Ganiki Chasma rift zone. Geophys. Res. Lett. 42, 4762–4769 (2015). doi: 10.1002/2015GL064088 ADSCrossRefGoogle Scholar
  160. J.G. Shellnutt, Petrological modeling of basaltic rocks from Venus: a case for the presence of silicic rocks. J. Geophys. Res., Planets 118(6), 1350–1364 (2013) ADSCrossRefGoogle Scholar
  161. J.G. Shellnutt, Mantle potential temperature estimates of basalt from the surface of Venus. Icarus 277, 98–102 (2016) ADSCrossRefGoogle Scholar
  162. M.K. Shepard, R.E. Arvidson, R.A. Brackett, B. Fegley, A ferroelectric model for the low emissivity highlands on Venus. Geophys. Res. Lett. 21(6), 469–472 (1994) ADSCrossRefGoogle Scholar
  163. Y.G. Shkuratov, M.A. Kreslavskii, O.V. Nikolaeva, Albedo-color diagram of the Venusian surface and its interpretation. Sol. Syst. Res. 21(2), 152–164 (1987) Google Scholar
  164. Y.I. Sidorov, Mathematical simulation of complex natural systems. Geochem. Int. 44(1), 94–107 (2006) CrossRefGoogle Scholar
  165. R.A. Simpson, G.L. Tyler, B. Häusler, R. Mattei, M. Pätzold, Venus Express bistatic radar: high-elevation anomalous reflectivity. J. Geophys. Res., Planets 114(9), E00B41 (2009) Google Scholar
  166. S.E. Smrekar, L. Elkins-Tanton, J.J. Leitner, A. Lenardic, S. Mackwell, L. Moresi, C. Sotin, E.R. Stofan, Tectonic and volcanic evolution of Venus and the role of volatiles: implications for understanding the terrestrial planets, in Exploring Venus as a Terrestrial Planet, ed. by L.W. Esposito et al.. AGU Geophysical Monograph Series, vol. 176 (2007), pp. 45–71 CrossRefGoogle Scholar
  167. S.E. Smrekar, E.R. Stofan, N. Mueller, A. Treiman, L. Elkins-Tanton, J. Helbert, G. Piccolini, P. Drossart, Recent hotspot volcanism on Venus from VIRTIS emissivity data. Science 328, 605–608 (2010). doi: 10.1126/science.1186785 ADSCrossRefGoogle Scholar
  168. S.E. Smrekar, E.R. Stofan, N. Mueller, Venus: surface and interior, in Encyclopedia of the Solar System, ed. by T. Spohn, D. Breuer, T.V. Johnson (Elsevier, Amsterdam, 2014), pp. 323–341 CrossRefGoogle Scholar
  169. V.S. Solomatov, L–N. Moresi, Stagnant lid convection on Venus. J. Geophys. Res. 101, 4737–4753 (1996) ADSCrossRefGoogle Scholar
  170. S.C. Solomon, A tectonic resurfacing model for Venus. Lunar Planet. Sci. Conf. 24, 1331 (1993) ADSGoogle Scholar
  171. S.D. Spulber, M.J. Rutherford, The origin of rhyolite and plagiogranite in oceanic crust: an experimental study. J. Petrol. 24, 1–25 (1983) ADSCrossRefGoogle Scholar
  172. E.R. Stofan et al., Global distribution and characteristics of coronae and related features on Venus: implications for origin and relation to mantle processes. J. Geophys. Res. 97, 13347–13378 (1992) ADSCrossRefGoogle Scholar
  173. P.H. Stone, The dynamics of the atmosphere of Venus. J. Atmos. Sci. 32, 1005–1016 (1975) ADSCrossRefGoogle Scholar
  174. B.L. Straley, M.S. Gilmore, Mapping and structural analysis of SW Tellus Regio, Venus. Lunar Planet. Sci. Conf. Abstr. 38, 1657 (2007) ADSGoogle Scholar
  175. R.G. Strom, G.G. Schaber, D.D. Dawson, The global resurfacing of Venus. J. Geophys. Res. 99, 10899–10926 (1994) ADSCrossRefGoogle Scholar
  176. T. Sweetser, J. Cameron, G-S. Chen, J. Cutts, R. Gershmann, M.S. Gilmore, J. Hall, V. Kerzhanovich, A. McRonald, E. Nilsen, W. Petrick, D. Rodgers, B. Wilcox, A. Yavrouian, W. Zimmerman, JPL Advanced Projects Design Team, Venus surface sample return: a weighty high-pressure challenge. Adv. Astronaut. Sci. 103(3), 831–844 (2000). Proc. AAS/AIAA Astrodynamics Conf., Aug. 16–19, 1999, Girdwood, Alaska Google Scholar
  177. F.W. Taylor, Climate variability on Venus and Titan. Space Sci. Rev. 125, 445–455 (2006) ADSCrossRefGoogle Scholar
  178. F.W. Taylor, D. Crisp, B. Bézard, Near-infrared sounding of the lower atmosphere of Venus, in Venus II, ed. by S.W. Bougher, D.M. Hunten, R. Phillips (University of Arizona Press, Tuscon, 1997), pp. 325–351 Google Scholar
  179. K.L. Tanaka, D.A. Senske, M. Price, R.L. Kirk, Physiography, geomorphic/geologic mapping and stratigraphy of Venus, in Venus II: Geology, Geophysics, Atmosphere, and Solar Wind Environment, ed. by S.W. Bougher et al.(University of Arizona Press, Tucson, 1997), pp. 667–694 Google Scholar
  180. A.H. Treiman, Geochemistry of Venus’ surface: current limitations as future opportunities, in Exploring Venus as a Terrestrial Planet, ed. by L.W. Esposito, E.R. Stofan, T.E. Cravens. AGU Monograph Series, vol. 176 (2007), pp. 7–22 CrossRefGoogle Scholar
  181. A.H. Treiman, C.C. Allen, Chemical weathering on Venus: preliminary results on the interaction of basalt and CO2. Lunar Planet. Sci. XXV, 1415–1416 (1994) ADSGoogle Scholar
  182. A.H. Treiman, M.A. Bullock, Mineral reaction buffering of Venus’ atmosphere: a thermochemical constraint and implications for Venus-like planets. Icarus 217, 534–541 (2012) ADSCrossRefGoogle Scholar
  183. A.H. Treiman, S.P. Schwenzer, Basalt–atmosphere interaction on Venus: preliminary results on weathering of minerals and bulk rock, in Venus Geochemistry: Progress, Prospects, and New Missions, Abstract #2011 (2009) Google Scholar
  184. A. Treiman, E. Harrington, V. Sharpton, Venus’ radar bright highlands: different signatures and materials on Ovda Regio and on Maxwell Montes. Icarus 280, 172–182 (2016) ADSCrossRefGoogle Scholar
  185. C.C.C. Tsang, P.G.J. Irwin, F.W. Taylor, C.F. Wilson, A correlated-k model of radiative transfer in the near-infrared windows of Venus. J. Quant. Spectrosc. Radiat. Transf. 109, 1118–1135 (2008) ADSCrossRefGoogle Scholar
  186. M.E. Tucker, V.P. Wright, Carbonate Sedimentology (Blackwell, Oxford, 1990), 496 pp. CrossRefGoogle Scholar
  187. D.L. Turcotte, G. Morein, D. Roberts, B.D. Malamud, Catastrophic resurfacing and episodic subduction on Venus. Icarus 139, 49–54 (1999) ADSCrossRefGoogle Scholar
  188. G.L. Tyler et al., Magellan: electrical and physical properties of Venus’ surface. Science 252, 265–270 (1991) ADSCrossRefGoogle Scholar
  189. H.C. Urey, The Planets (Yale University Press, New Haven, 1952) Google Scholar
  190. V.P. Volkov, M.Yu. Zolotov, I.L. Khodakovsky, Lithospheric-atmospheric interaction on Venus, in Chemistry and Physics of the Terrestrial Planets, ed. by S.K. Savena (Springer, New York, 1986), pp. 136–190 CrossRefGoogle Scholar
  191. M.J. Way et al., Was Venus the first habitable world of our solar system? Geophys. Res. Lett. 43, 8376–8383 (2016) ADSCrossRefGoogle Scholar
  192. J.J. Wray et al., Prolonged magmatic activity on Mars inferred from the detection of felsic rocks. Nat. Geosci. 6, 1013–1017 (2013) ADSCrossRefGoogle Scholar
  193. C.M. Weitz, A.T. Basilevsky, Magellan observations of the Venera and Vega landing site regions. J. Geophys. Res. 98, 17069–17097 (1993) ADSCrossRefGoogle Scholar
  194. M. Weller, M. Duncan, Insight into terrestrial planetary evolution via mantle potential temperatures. Lunar Planet. Sci. Conf. Abstr. 46, 2749 (2015) ADSGoogle Scholar
  195. M. Whitaker, H. Nekvasil, D.H. Lindsley, Potential magmatic diversity on Mars. Lunar Planet. Sci. 36, 1440 (2005) ADSGoogle Scholar
  196. J.L. Whitten, B.A. Campbell, Recent volcanic resurfacing of Venusian craters. Geology (2016). doi: 10.1130/G37681.1 Google Scholar
  197. J.A. Wood, Rock weathering on the surface of Venus, in Venus II: Geology, Geophysics, Atmosphere and Solar Wind Environment, ed. by S.W. Bougher, D.M. Hunten, R.J. Philips (University of Arizona Press, Tucson, 1997), pp. 637–664 Google Scholar
  198. J.A. Wood, R. Brett, Comment on “The rate of pyrite decomposition on the surface of Venus”. Icarus 128, 472–473 (1997) ADSCrossRefGoogle Scholar
  199. Y. Yamanoi, S. Nakashima, M. Katsura, Temperature dependence of reflectance spectra and color values of hematite by in situ, high-temperature visible micro-spectroscopy. Am. Mineral. 94, 90–97 (2009) ADSCrossRefGoogle Scholar
  200. M.Y. Zolotov, A model of thermochemical equilibrium in the near-surface atmosphere of Venus. Geochem. Int. 11, 80–100 (1996) Google Scholar
  201. M.Yu. Zolotov, Solid planet-atmosphere interactions, in Treatise on Geophysics, vol. 10, ed. by G. Schubert (Elsevier, Amsterdam, 2007), pp. 349–369 CrossRefGoogle Scholar
  202. M.Y. Zolotov, I.L. Khodakovsky, Exogenic processes, in The Planet Venus: Atmosphere, Surface, Interior Structure, ed. by Y.L. Barsukov, Y. Volkov (Nauka, Moscow, 1989), pp. 262–290 Google Scholar
  203. M.Y. Zolotov, B. Fegley Jr., K. Lodders, Hydrous silicates and water on Venus. Icarus 130(2), 475–494 (1997) ADSCrossRefGoogle Scholar
  204. M.Y. Zolotov, B. Fegley Jr., K. Lodders, Stability of micas on the surface of Venus. Planet. Space Sci. 47, 245–260 (1999) ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Martha Gilmore
    • 1
  • Allan Treiman
    • 2
  • Jörn Helbert
    • 3
  • Suzanne Smrekar
    • 4
  1. 1.Dept. of Earth and Environmental SciencesWesleyan UniversityMiddletownUSA
  2. 2.Lunar and Planetary InstituteHoustonUSA
  3. 3.Institute for Planetary Research, DLRBerlinGermany
  4. 4.Jet Propulsion LaboratoryPasadenaUSA

Personalised recommendations