Space Science Reviews

, Volume 212, Issue 3–4, pp 985–1039 | Cite as

Anthropogenic Space Weather

  • T. I. GombosiEmail author
  • D. N. Baker
  • A. Balogh
  • P. J. Erickson
  • J. D. Huba
  • L. J. Lanzerotti
Part of the following topical collections:
  1. The Scientific Foundation of Space Weather


Anthropogenic effects on the space environment started in the late 19th century and reached their peak in the 1960s when high-altitude nuclear explosions were carried out by the USA and the Soviet Union. These explosions created artificial radiation belts near Earth that resulted in major damages to several satellites. Another, unexpected impact of the high-altitude nuclear tests was the electromagnetic pulse (EMP) that can have devastating effects over a large geographic area (as large as the continental United States). Other anthropogenic impacts on the space environment include chemical release experiments, high-frequency wave heating of the ionosphere and the interaction of VLF waves with the radiation belts. This paper reviews the fundamental physical process behind these phenomena and discusses the observations of their impacts.


High-altitude nuclear explosions Artificial radiation belts Electromagnetic pulse (EMP) Damage to satellites Space Debris Chemical releases HF heating VLF waves and radiation belts 



The authors thank the International Space Science Institute, Bern, Switzerland and its staff for organizing and supporting the Workshop on the Scientific Foundations of Space Weather that motivated the work in this paper. The work performed at the University of Michigan was supported by National Science Foundation grant AGS-1322543. JDH was supported by NRL Base Funds. Work at the Massachusetts Institute of Technology was sponsored by US National Science Foundation grant AGS-1242204. Work at the University of Colorado/LASP was supported by funding from NASA and the National Science Foundation. The authors thank Vaughn Hoxie, Scot Elkington, Hong Zhao, and Tom Mason for extraordinary efforts in adapting and portraying data from the Explorer XV and Van Allen Probes missions.


  1. B. Abel, R.M. Thorne, Electron scattering loss in Earth’s inner magnetosphere: 1. Dominant physical processes. J. Geophys. Res. 103(A2), 2385–2396 (1998). doi: 10.1029/97JA02919 ADSCrossRefGoogle Scholar
  2. L. Allen, J.L. Beavers, W.A. Whitaker, J.A. Welch, R.B. Walton, Project Jason measurement of trapped electrons from a nuclear device by sounding rockets. Proc. Natl. Acad. Sci. USA 45(8), 1171–1190 (1959) ADSCrossRefGoogle Scholar
  3. D.N. Baker, How to cope with space weather. Science 297(5586), 1486–1487 (2002). doi: 10.1126/science.1074956 CrossRefGoogle Scholar
  4. R.C. Baker, W.M. Strome, Magnetic disturbance from a high-altitude nuclear explosion. J. Geophys. Res. 67(12), 4927–4928 (1962) ADSCrossRefGoogle Scholar
  5. D.N. Baker, R. Balstad, J.M. Bodeau, E. Cameron, J.F. Fennell, G.M. Fisher, K.F. Forbes, P.M. Kintner, L.G. Leffler, W.S. Lewis, J.B. Reagan, A.A. Small III, T.A. Stansell, L. Strachan Jr., Severe Space Weather Events-Understanding Societal and Economic Impacts Workshop Report. Technical report ISBN: 0-309-12770-X, Committee on the Societal and Economic Impacts of Severe Space Weather Events, National Research Council (2008) Google Scholar
  6. D.N. Baker, A.N. Jaynes, V.C. Hoxie, R.M. Thorne, J.C. Foster, X. Li, J.F. Fennell, J.R. Wygant, S.G. Kanekal, P.J. Erickson, W. Kurth, W. Li, Q. Ma, Q. Schiller, L. Blum, D.M. Malaspina, A. Gerrard, L.J. Lanzerotti, An impenetrable barrier to ultrarelativistic electrons in the Van Allen radiation belts. Nature 515(7528), 531–534 (2014). doi: 10.1038/nature13956 ADSCrossRefGoogle Scholar
  7. D.N. Baker, A.N. Jaynes, S.G. Kanekal, J.C. Foster, P.J. Erickson, J.F. Fennell, J.B. Blake, H. Zhao, X. Li, S.R. Elkington, M.G. Henderson, G.D. Reeves, H.E. Spence, C.A. Kletzing, J.R. Wygant, Highly relativistic radiation belt electron acceleration, transport, and loss: large solar storm events of March and June 2015. J. Geophys. Res. 121(7), 6647–6660 (2016). doi: 10.1002/2016JA022502 CrossRefGoogle Scholar
  8. R.C. Baumann, Ariel I: The First International Satellite. Technical report NASA SP-43, NASA (1963) Google Scholar
  9. T.F. Bell, H.G. James, U.S. Inan, J.P. Katsufrakis, The apparent spectral broadening of VLF transmitter signals during transionospheric propagation. J. Geophys. Res. 88(A6), 4813 (1983). doi: 10.1029/JA088iA06p04813 ADSCrossRefGoogle Scholar
  10. P.A. Bernhardt, R.A. Roussel-Dupre, M.B. Pongratz, G. Haerendel, A. Valenzuela, D.A. Gurnett, R.R. Anderson, Observations and theory of the AMPTE magnetotail barium releases. J. Geophys. Res. 92(A6), 5777–5794 (1987). doi: 10.1029/JA092iA06p05777 ADSCrossRefGoogle Scholar
  11. P.A. Bernhardt, L.M. Duncan, C.A. Tepley, Artificial airglow excited by high-power radio waves. Science 242(4881), 1022–1027 (1988). doi: 10.1126/science.242.4881.1022 ADSCrossRefGoogle Scholar
  12. P.A. Bernhardt, L.M. Duncan, C.A. Tepley, Heater-induced cavities as optical tracers of plasma drifts. J. Geophys. Res. 94(A6), 7003–7010 (1989). doi: 10.1029/JA094iA06p07003 ADSCrossRefGoogle Scholar
  13. W.K. Berthold, A.K. Harris, H.J. Hope, World-wide effects of hydromagnetic waves due to Argus. J. Geophys. Res. 65(8), 2233–2239 (1960) ADSCrossRefGoogle Scholar
  14. L. Biermann, Kometenschweife und Solare Korpuskularstrahlung. Z. Astrophys. 29, 274–286 (1951) ADSGoogle Scholar
  15. H.A. Bomke, I.A. Balton, H.H. Grote, A.K. Harris, Near and distant observations of the 1962 Johnston Island high-altitude nuclear tests. J. Geophys. Res. 69(15), 3125–3136 (1964) ADSCrossRefGoogle Scholar
  16. H.A. Bomke, A.K. Harris, J.W. Walker, W.J. Ramm, The nature of worldwide geomagnetic disturbances generated by the Starfish explosion of July 9, 1962. J. Geophys. Res. 71(11), 2777–2789 (1966). doi: 10.1029/JZ071i011p02777 ADSCrossRefGoogle Scholar
  17. S. Breiner, Effect of nuclear detonation on the geomagnetic field at Palo Alto, California. J. Geophys. Res. 68(1), 335–337 (1963). doi: 10.1029/JZ068i001p00335 ADSCrossRefGoogle Scholar
  18. W.L. Brown, in Observations of the Transient Behavior of Electrons in the Artificial Radiation Belts, ed. by B.M. McCormac (Springer, Dordrecht, 1966), pp. 610–633. doi: 10.1007/978-94-010-3553-8_44 Google Scholar
  19. W.L. Brown, J.D. Gabbe, The electron distribution in the Earth’s radiation belts during July 1962 as measured by Telstar. J. Geophys. Res. 68(3), 607–618 (1963). doi: 10.1029/JZ068i003p00607 ADSCrossRefGoogle Scholar
  20. W.L. Brown, J.D. Gabbe, W. Rosenzweig, Results of the Telstar radiation experiments. Bell Syst. Tech. J. 42(4), 1505–1560 (1963) CrossRefGoogle Scholar
  21. K. Bullough, Satellite observations of power line harmonic radiation. Space Sci. Rev. 35(2), 175–183 (1983). doi: 10.1007/BF00242242 ADSCrossRefGoogle Scholar
  22. B. Caner, Prompt world-wide geomagnetic effects of high-latitude nuclear explosions, Master’s thesis, The University of British Columbia, Vancouver, BC Canada, 1964.
  23. D.L. Carpenter, Whistler studies of the plasmapause in the magnetosphere: 1. Temporal variations in the position of the knee and some evidence on plasma motions near the knee. J. Geophys. Res. 71(3), 693–709 (1966). doi: 10.1029/JZ071i003p00693 ADSCrossRefGoogle Scholar
  24. D.L. Carpenter, Very Low Frequency Space Radio Research at Stanford 1950–1990, 1st edn. (, Stanford, 2015). ISBN 9781329884106 Google Scholar
  25. D. Carpenter, J. Lemaire, The plasmasphere boundary layer. Ann. Geophys. 22, 4291–4298 (2004) ADSCrossRefGoogle Scholar
  26. M. Casaverde, A. Giesecke, R. Cohen, Effects of the nuclear explosion over Johnston Island observed in Peru on July 9, 1962. J. Geophys. Res. 68(9), 2603–2611 (1963). doi: 10.1029/JZ068i009p02603 ADSCrossRefGoogle Scholar
  27. D.M. Chapin, C.S. Fuller, G.L. Pearson, A new silicon p-n junction photocell for converting solar radiation into electrical power. J. Appl. Phys. 25(5), 676–677 (1954). doi: 10.1063/1.1721711 ADSCrossRefGoogle Scholar
  28. N. Christofilos, The Argus experiment. Proc. Natl. Acad. Sci. 45, 1144–1152 (1959a) ADSCrossRefGoogle Scholar
  29. N.C. Christofilos, The Argus experiment. J. Geophys. Res. 64(8), 869–875 (1959b). doi: 10.1029/JZ064i008p00869 ADSCrossRefGoogle Scholar
  30. M.A. Clilverd, C.J. Rodger, N.R. Thomson, J.B. Brundell, T. Ulich, J. Lichtenberger, N. Cobbett, A.B. Collier, F.W. Menk, A. Seppälä, P.T. Verronen, E. Turunen, Remote sensing space weather events: Antarctic-Arctic Radiation-Belt (Dynamic) Deposition-VLF Atmospheric Research Konsortium network. Space Weather 7(4), S04001 (2009). doi: 10.1029/2008SW000412 ADSCrossRefGoogle Scholar
  31. M.B. Cohen, N.G. Lehtinen, U.S. Inan, Models of ionospheric VLF absorption of powerful ground based transmitters. Geophys. Res. Lett. 39(24), L24101 (2012). doi: 10.1029/2012GL054437 ADSCrossRefGoogle Scholar
  32. S.A. Colgate, The phenomenology of the mass motion of a high altitude nuclear explosion. J. Geophys. Res. 70(13), 3161–3173 (1965). doi: 10.1029/jz070i013p03161 ADSCrossRefGoogle Scholar
  33. E.E. Conrad, G.A. Gurtman, G. Kweder, M.J. Mandell, W.W. White, Collateral Damage to Satellites from an EMP Attack. Technical report DTRA-IR-10-22, Defense Threat Reduction Agency, Fort Belvoir, Virginia (2010) Google Scholar
  34. A.L. Cullington, A man-made or artifical aurora. Nature 182(4646), 1365–1366 (1958). doi: 10.1038/1821365a0 ADSCrossRefGoogle Scholar
  35. R.J. Danchik, An overview of transit development. APL Tech. Dig. 1(1), 18–26 (1998) Google Scholar
  36. R.G. D’Arcy, S.A. Colgate, Measurements at the southern magnetic conjugate region of the fission debris from the Starfish nuclear detonation. J. Geophys. Res. 70(13), 3147–3159 (1965). doi: 10.1029/JZ070i013p03147 ADSCrossRefGoogle Scholar
  37. A.C. Dickieson, The Telstar experiment. Bell Syst. Tech. J. 42, 739–746 (1963) CrossRefGoogle Scholar
  38. A.C. Durney, H. Elliot, R.J. Hynds, J.J. Quenby, Satellite observations of the energetic particle flux produced by the high-altitude nuclear explosion of July 9, 1962. Nature 195, 1245–1248 (1962). doi: 10.1038/1951245a0 ADSCrossRefGoogle Scholar
  39. A.C. Durney, H. Elliot, R.J. Hynds, J.J. Quenby, The artificial radiation belt produced by the Starfish nuclear explosion. Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci. 281(1384), 565–583 (1964) ADSCrossRefGoogle Scholar
  40. P. Dyal, Particle and field measurements of the starfish diamagnetic cavity. J. Geophys. Res. 111(A12), 12211 (2006). doi: 10.1029/2006JA011827 CrossRefGoogle Scholar
  41. P.J. Edwards, J.S. Reid, Effects of nuclear explosion starfish prime observed at Hobart, Tasmania, July 9, 1962. J. Geophys. Res. 69(17), 3607–3612 (1964). doi: 10.1029/JZ069i017p03607 ADSCrossRefGoogle Scholar
  42. H. Elliot, in Some Cosmic Ray and Radiation Belt Observations Based on Data from the Anton 302 G-M Counter in Ariel I, ed. by B.M. McCormac (Springer, Dordrecht, 1966), pp. 76–99. doi: 10.1007/978-94-010-3553-8_7 Google Scholar
  43. H. Elliot, J.J. Quenby, The Samoan artificial aurora. Nature 83, 810 (1959). doi: 10.1038/183810a0 ADSCrossRefGoogle Scholar
  44. J.F. Fennell, H.C. Koons, J.L. Roeder, J.B. Blake, Spacecraft charging: observations and relationship to satellite anomalies, in Spacecraft Charging Technology, Proceedings of the Seventh International Conference, ed. by R.A. Harris (European Space Agency ESTEC, Noordwijk, 2001), pp. 279–285 Google Scholar
  45. J.F. Fennell, S.G. Claudepierre, J.B. Blake, T.P. O’Brien, J.H. Clemmons, D.N. Baker, H.E. Spence, G.D. Reeves, Van Allen probes show that the inner radiation zone contains no MeV electrons: ECT/MagEIS data. Geophys. Res. Lett. 42(5), 1283–1289 (2015). doi: 10.1002/2014GL062874 ADSCrossRefGoogle Scholar
  46. A. Finkbeiner, The Jasons: The Secret History of Science’s Postwar Elite (Viking, New York, 2006) Google Scholar
  47. R.E. Fischell, Effect of the artificial radiation belt on solar power systems. APL Tech. Dig. 2(2), 8–13 (1962a) Google Scholar
  48. R.E. Fischell, The TRAAC satellite. APL Tech. Dig. 1(3), 2–9 (1962b) Google Scholar
  49. J.C. Foster, T.J. Rosenberg, Electron precipitation and VLF emissions associated with cyclotron resonance interactions near the plasmapause. J. Geophys. Res. 81(13), 2183–2192 (1976). doi: 10.1029/JA081i013p02183 ADSCrossRefGoogle Scholar
  50. J.S. Foster, E. Gjelde, W.R. Graham, R.J. Hermann, H.M. Kluepfel, R.L. Lawson, G.K. Soper, L.L. Wood, J.B. Woodard, Report of the Commission to Assess the Threat to the United States from Electromagnetic Pulse (EMP) Attack: Executive Report. Technical report, United States Congress, Washington, DC (2004) Google Scholar
  51. J.S. Foster, E. Gjelde, W.R. Graham, R.J. Hermann, H.M. Kluepfel, R.L. Lawson, G.K. Soper, L.L. Wood, J.B. Woodard, Report of the Commission to Assess the Threat to the United States from Electromagnetic Pulse (EMP) Attack: Critical National Infrastructures. Technical report A2473, United States Congress, Washington, DC (2008) Google Scholar
  52. J.C. Foster, P.J. Erickson, D.N. Baker, A.N. Jaynes, E.V. Mishin, J.F. Fennel, X. Li, M.G. Henderson, S.G. Kanekal, Observations of the impenetrable barrier, the plasmapause, and the VLF bubble during the 17 March 2015 storm. J. Geophys. Res. Space Phys. 121(6), 5537–5548 (2016). doi: 10.1002/2016JA022509 ADSCrossRefGoogle Scholar
  53. A.C. Fraser-Smith, A weekend increase in geomagnetic activity. J. Geophys. Res. 84(A5), 2089–2096 (1979). doi: 10.1029/JA084iA05p02089 ADSCrossRefGoogle Scholar
  54. A.C. Fraser-Smith, Effects of man on geomagnetic activity and pulsations. Adv. Space Res. 1(2), 455–466 (1981). doi: 10.1016/0273-1177(81)90321-5 ADSCrossRefGoogle Scholar
  55. A.C. Fraser-Smith, D.B. Coates, Large-amplitude ULF electromagnetic fields from bart. Radio Sci. 13(4), 661–668 (1978). doi: 10.1029/RS013i004p00661 ADSCrossRefGoogle Scholar
  56. J.F. Gabites, D.S. Rowles, Summary of visual observations of the aurora following the nuclear explosion above Johnston island on 9 July 1962. N.Z. J. Geol. Geophys. 5(6), 920–924 (1962). doi: 10.1080/00288306.1962.10420041 CrossRefGoogle Scholar
  57. Y.I. Galperin, A.D. Boliunova, Recording of effects of high-altitude thermonuclear explosion of July 9, 1962, on the Cosmos 5 satellite. Kosm. Issled. (Cosm. Res.) 2(5), 763–772 (1964) Google Scholar
  58. L.A. Gebhard, Evolution of Naval Radio-Electronics and Contributions of the Naval Research Laboratory. Technical report, Naval Research Laboratory, Washington, DC (1979) Google Scholar
  59. J. Gilbert, J. Kapperman, W. Radasky, E. Savage, The Late Time (E3) High-Altitude Electromagnetic Pulse (HEMP) and Its Impact on the US Power Grid. Technical report Meta-R-321, Metatech Corporation, Goleta, California (2010) Google Scholar
  60. J.L. Green, S. Boardsen, L. Garcia, W.W.L. Taylor, S.F. Fung, B.W. Reinisch, On the origin of whistler mode radiation in the plasmasphere. J. Geophys. Res. 110(A3), 03201 (2005). doi: 10.1029/2004JA010495 CrossRefGoogle Scholar
  61. G. Haerendel, A. Valenzuela, O.H. Bauer, M. Ertl, H. Foppl, K.-H. Kaiser, W. Lieb, J. Loidl, F. Melzner, B. Merz, H. Neuss, P. Parigger, E. Rieger, R. Schoning, J. Stocker, E. Wiezorrek, E. Molona, The Li/Ba release experiments of the ion release module. IEEE Trans. Geosci. Remote Sens. GE-23(3), 253–258 (1985). doi: 10.1109/TGRS.1985.289523 ADSCrossRefGoogle Scholar
  62. D. Hambling, US Air Force wants to plasma bomb the sky using tiny satellites. New Sci. (August 20, 2016) Google Scholar
  63. J.B. Harold, A.B. Hassam, Two ion fluid numerical investigations of solar wind gas releases. J. Geophys. Res. 99(A10), 19325–19340 (1994). doi: 10.1029/94JA00790 ADSCrossRefGoogle Scholar
  64. A.B. Hassam, J.D. Huba, Structuring of the AMPTE magnetotail barium releases. Geophys. Res. Lett. 14(1), 60–63 (1987). doi: 10.1029/GL014i001p00060 ADSCrossRefGoogle Scholar
  65. R.A. Helliwell, Whistlers and Related Ionospheric Phenomena, 1st edn. (Stanford University Press, Stanford, 1965). ISBN 0486445720 Google Scholar
  66. R.A. Helliwell, VLF wave stimulation experiments in the magnetosphere from Siple Station, Antarctica. Rev. Geophys. 26(3), 551 (1988). doi: 10.1029/RG026i003p00551 ADSCrossRefGoogle Scholar
  67. R. Helliwell, E. Gehrels, Observations of magneto-ionic duct propagation using man-made signals of very low frequency. Proc. Inst. Radio Eng. 46(4), 785–787 (1958) Google Scholar
  68. R.A. Helliwell, J.P. Katsufrakis, M.L. Trimpi, Whistler-induced amplitude perturbation in VLF propagation. J. Geophys. Res. 78(22), 4679–4688 (1973). doi: 10.1029/JA078i022p04679 ADSCrossRefGoogle Scholar
  69. R.A. Helliwell, J.P. Katsufrakis, T.F. Bell, R. Raghuram, VLF line radiation in the Earth’s magnetosphere and its association with power system radiation. J. Geophys. Res. 80(31), 4249–4258 (1975). doi: 10.1029/JA080i031p04249 ADSCrossRefGoogle Scholar
  70. W.N. Hess, The artificial radiation belt made on July 9, 1962. J. Geophys. Res. 68(3), 667–683 (1963). doi: 10.1029/JZ068i003p00667 ADSCrossRefGoogle Scholar
  71. W.N. Hess, P. Nakada, Artificial radiation belt discussed in symposium at Goddard Space Center. Science 138(3536), 53–54 (1962) ADSCrossRefGoogle Scholar
  72. R.L. Heyborne, R.L. Smith, R.A. Helliwell, Latitudinal cutoff of VLF signals in the ionosphere. J. Geophys. Res. 74(9), 2393–2397 (1969). doi: 10.1029/JA074i009p02393 ADSCrossRefGoogle Scholar
  73. R.B. Horne, M. Lam, J.C. Green, Energetic electron precipitation from the outer radiation belt during geomagnetic storms. Geophys. Res. Lett. 36(19), L19104 (2009). doi: 10.1029/2009gl040236 ADSCrossRefGoogle Scholar
  74. W.L. Imhof, H.D. Voss, M. Walt, E.E. Gaines, J. Mobilia, D.W. Datlowe, J.B. Reagan, Slot region electron precipitation by lightning, VLF chorus, and plasmaspheric hiss. J. Geophys. Res. 91(A8), 8883 (1986). doi: 10.1029/JA091iA08p08883 ADSCrossRefGoogle Scholar
  75. U.S. Inan, R.A. Helliwell, DE-1 observations of VLF transmitter signals and wave-particle interactions in the magnetosphere. Geophys. Res. Lett. 9(9), 917–920 (1982). doi: 10.1029/GL009i009p00917 ADSCrossRefGoogle Scholar
  76. U.S. Inan, T.F. Bell, D.L. Carpenter, R.R. Anderson, Explorer 45 and Imp 6 observations in the magnetosphere of injected waves from the Siple Station VLF transmitter. J. Geophys. Res. 82(7), 1177–1187 (1977). doi: 10.1029/JA082i007p01177 ADSCrossRefGoogle Scholar
  77. U.S. Inan, T.F. Bell, H.C. Chang, Particle precipitation induced by short-duration VLF waves in the magnetosphere. J. Geophys. Res. 87(A8), 6243 (1982). doi: 10.1029/JA087iA08p06243 ADSCrossRefGoogle Scholar
  78. U.S. Inan, H.C. Chang, R.A. Helliwell, Electron precipitation zones around major ground-based VLF signal sources. J. Geophys. Res. 89(A5), 2891 (1984). doi: 10.1029/JA089iA05p02891 ADSCrossRefGoogle Scholar
  79. U.S. Inan, H.C. Chang, R.A. Helliwell, W.L. Imhof, J.B. Reagan, M. Walt, Precipitation of radiation belt electrons by man-made waves: a comparison between theory and measurement. J. Geophys. Res. 90(A1), 359–369 (1985). doi: 10.1029/JA090iA01p00359 ADSCrossRefGoogle Scholar
  80. U.S. Inan, J.V. Rodriguez, S. Lev-Tov, J. Oh, ionospheric modification with a VLF transmitter. Geophys. Res. Lett. 19(20), 2071–2074 (1992). doi: 10.1029/92GL02378 ADSCrossRefGoogle Scholar
  81. U.S. Inan, T.F. Bell, J. Bortnik, J.M. Albert, Controlled precipitation of radiation belt electrons. J. Geophys. Res. 108(A5), 051186 (2003). doi: 10.1029/2002JA009580 CrossRefGoogle Scholar
  82. A.N. Jaynes, D.N. Baker, H.J. Singer, J.V. Rodriguez, T.M. Loto’aniu, A.F. Ali, S.R. Elkington, X. Li, S.G. Kanekal, S.G. Claudepierre, J.F. Fennell, W. Li, R.M. Thorne, C.A. Kletzing, H.E. Spence, G.D. Reeves, Source and seed populations for relativistic electrons: their roles in radiation belt changes. J. Geophys. Res. 120(9), 7240–7254 (2015). doi: 10.1002/2015JA021234 CrossRefGoogle Scholar
  83. C.B. Jones, M.K. Doyle, L.H. Berkhouse, F.S. Calhoun, E.J. Martin, Operation ARGUS 1958, Technical report DNA 6039F, Defense Nuclear Agency, Washington, DC (1982) Google Scholar
  84. S.L. Kahalas, P. Newman, Interpretation of early magnetic transients caused by high-altitude nuclear detonations. J. Res. Natl. Bur. Stand. D 69, 1179–1183 (1965) Google Scholar
  85. A. Karinen, K. Mursula, T. Ulich, J. Manninen, Does the magnetosphere behave differently on weekends? Ann. Geophys. 20(8), 1137–1142 (2002). doi: 10.5194/angeo-20-1137-2002 ADSCrossRefGoogle Scholar
  86. W.J. Karzas, R. Latter, Electromagnetic radiation from a nuclear explosion in space. Phys. Rev. 126, 1919–1926 (1962). doi: 10.1103/PhysRev.126.1919 ADSzbMATHCrossRefGoogle Scholar
  87. P.J. Kellogg, E.P. Ney, J.R. Winckler, Geophysical effects associated with high-altitude explosions. Nature 183(4658), 358–361 (1959). doi: 10.1038/183358a0 ADSCrossRefGoogle Scholar
  88. D.J. Kessler, B.G. Cour-Palais, Collision frequency of artificial satellites: the creation of a debris belt. J. Geophys. Res. 83(A6), 2637–2646 (1978). doi: 10.1029/JA083iA06p02637 ADSCrossRefGoogle Scholar
  89. G. Klawitter, K. Herold, M. Oexner, Langwellen- und Längstwellenfunk, 3rd edn. (Siebel: Verlag für Technik und Handwerk,, 2000). ISBN 3896320432 Google Scholar
  90. C.A. Kletzing, W.S. Kurth, M. Acuna, R.J. MacDowall, R.B. Torbert, T. Averkamp, D. Bodet, S.R. Bounds, M. Chutter, J. Connerney, D. Crawford, J.S. Dolan, R. Dvorsky, G.B. Hospodarsky, J. Howard, V. Jordanova, R.A. Johnson, D.L. Kirchner, B. Mokrzycki, G. Needell, J. Odom, D. Mark, R. Pfaff, J.R. Phillips, C.W. Piker, S.L. Remington, D. Rowland, O. Santolik, R. Schnurr, D. Sheppard, C.W. Smith, R.M. Thorne, J. Tyler, The Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) on RBSP, in The Van Allen Probes Mission (Springer, Boston, 2013), pp. 127–181. doi: 10.1007/978-1-4899-7433-4_5 CrossRefGoogle Scholar
  91. H. Klinkrad, Space Debris (Wiley, New York, 2010). doi: 10.1002/9780470686652.eae325 CrossRefGoogle Scholar
  92. H.C. Koons, B.C. Edgar, A.L. Vampola, Precipitation of inner zone electrons by whistler mode waves from the VLF transmitters UMS and NWC. J. Geophys. Res. 86(A2), 640 (1981). doi: 10.1029/JA086iA02p00640 ADSCrossRefGoogle Scholar
  93. S.M. Krimigis, G. Haerendel, G. Gloeckler, R.W. Mcentire, E.G. Shelley, R.B. Decker, G. Paschmann, A. Valenzuela, T.A. Potemra, F.L. Scarf, A.L. Brinca, H. Lühr, AMPTE lithium tracer releases in the solar wind: observations inside the magnetosphere. J. Geophys. Res. 91(A2), 1339–1353 (1986). doi: 10.1029/JA091iA02p01339 ADSCrossRefGoogle Scholar
  94. P. Kulkarni, U.S. Inan, T.F. Bell, J. Bortnik, Precipitation signatures of ground-based VLF transmitters. J. Geophys. Res. Space Phys. 113(A7), A07214 (2008). doi: 10.1029/2007JA012569 ADSGoogle Scholar
  95. M.F. Larsen, Winds and shears in the mesosphere and lower thermosphere: results from four decades of chemical release wind measurements. J. Geophys. Res. 107(A8), 28–12814 (2002). doi: 10.1029/2001JA000218 CrossRefGoogle Scholar
  96. J.A. Lawrie, V.B. Gerard, P.J. Gill, Magnetic effects resulting from the Johnston island high altitude nuclear explosions. N.Z. J. Geol. Geophys. 4(2), 109–124 (1961). doi: 10.1080/00288306.1961.10423131 CrossRefGoogle Scholar
  97. J. Leiphart, R. Zeek, L. Bearce, E. Toth, Penetration of the ionosphere by very-low-frequency radio signals-interim results of the LOFTI I experiment. Proc. IRE 50(1), 6–17 (1962). doi: 10.1109/JRPROC.1962.288269 CrossRefGoogle Scholar
  98. X. Li, R.S. Selesnick, D.N. Baker, A.N. Jaynes, S.G. Kanekal, Q. Schiller, L. Blum, J. Fennell, J.B. Blake, Upper limit on the inner radiation belt MeV electron intensity. J. Geophys. Res. 120(2), 1215–1228 (2015). doi: 10.1002/2014JA020777 CrossRefGoogle Scholar
  99. C.L. Longmire, Justification and Verification of High-Altitude EMP Theory: Part I. Technical report Technical Note 368, Mission Research Corporation, Santa Barbara, California (1986) Google Scholar
  100. J.P. Luette, C.G. Park, R.A. Helliwell, The control of the magnetosphere by power line radiation. J. Geophys. Res. 84(A6), 2657–2660 (1979). doi: 10.1029/JA084iA06p02657 ADSCrossRefGoogle Scholar
  101. R. Lüst, in Barium Cloud Experiments in the Upper Atmosphere, ed. by J.A.M. Bleeker, J. Geiss, M.C.E. Huber (Springer, Dordrecht, 2001), pp. 179–187. doi: 10.1007/978-94-010-0320-9_6 Google Scholar
  102. H. Maeda, Geomagnetic disturbances due to nuclear explosion. J. Geophys. Res. 64(7), 863–864 (1959). doi: 10.1029/JZ064i007p00863 ADSCrossRefGoogle Scholar
  103. B.H. Mauk, N.J. Fox, S.G. Kanekal, R.L. Kessel, D.G. Sibeck, A. Ukhorskiy, Science objectives and rationale for the Radiation Belt Storm Probes mission. Space Sci. Rev. 179(1–4), 3–27 (2013). doi: 10.1007/s11214-012-9908-y ADSCrossRefGoogle Scholar
  104. J.S. Mayo, H. Mann, F.J. Witt, D.S. Peck, H.K. Gummel, W.L. Brown, The command system malfunction. Bell Syst. Tech. J. 42, 1631–1657 (1963) CrossRefGoogle Scholar
  105. C.E. McIlwain, Coordinates for mapping the distribution of magnetically trapped particles. J. Geophys. Res. 66(11), 3681–3691 (1961). doi: 10.1029/JZ066i011p03681 ADSCrossRefGoogle Scholar
  106. C.E. McIlwain, The radiation belts, natural and artificial. Science 142(3590), 355–361 (1963). doi: 10.1126/science.142.3590.355 ADSCrossRefGoogle Scholar
  107. K.G. McKay, A germanium counter. Phys. Rev. 76, 1537 (1949). doi: 10.1103/PhysRev.76.1537 ADSCrossRefGoogle Scholar
  108. R.R. Meier, M.H. Stevens, J.M.C. Plane, J.T. Emmert, G. Crowley, I. Azeem, L.J. Paxton, A.B. Christensen, A study of space shuttle plumes in the lower thermosphere. J. Geophys. Res. 116(A12), 12322 (2011). doi: 10.1029/2011JA016987 CrossRefGoogle Scholar
  109. S.B. Mende, G.R. Swenson, S.P. Geller, J.H. Doolittle, G. Haerendel, A. Valenzuela, O.H. Bauer, Dynamics of a barium release in the magnetospheric tail. J. Geophys. Res. 94(A12), 17063–17083 (1989). doi: 10.1029/JA094iA12p17063 ADSCrossRefGoogle Scholar
  110. M. Mendillo, The effect of rocket launches on the ionosphere. Adv. Space Res. 1(2), 275–290 (1981). doi: 10.1016/0273-1177(81)90302-1 ADSCrossRefGoogle Scholar
  111. M. Mendillo, J. Baumgardner, D.P. Allen, J. Foster, J. Holt, G.R.A. Ellis, A. Klekociuk, G. Reber, Spacelab-2 plasma depletion experiments for ionospheric and radio astronomical studies. Science 238(4831), 1260–1264 (1987). doi: 10.1126/science.238.4831.1260 ADSCrossRefGoogle Scholar
  112. D.P. Miles, R.P. Lepping, Magnetic disturbances due to the high-altitude nuclear explosion of July 9, 1962. J. Geophys. Res. 69(3), 547–548 (1964). doi: 10.1029/JZ069i003p00547 ADSCrossRefGoogle Scholar
  113. S. Millman (ed.), A History of Engineering and Science in the Bell System: Physical Sciences (1925–1980) (Bell Telephone Laboratories, New Jersey, 1983) Google Scholar
  114. O. Molchanov, A. Rozhnoi, M. Solovieva, O. Akentieva, J.J. Berthelier, M. Parrot, F. Lefeuvre, P.F. Biagi, L. Castellana, M. Hayakawa, Global diagnostics of the ionospheric perturbations related to the seismic activity using the VLF radio signals collected on the DEMETER satellite. Nat. Hazards Earth Syst. Sci. 6(5), 745–753 (2006) ADSCrossRefGoogle Scholar
  115. R.C. Moore, U.S. Inan, T.F. Bell, E.J. Kennedy, ELF waves generated by modulated HF heating of the auroral electrojet and observed at a ground distance of ∼4400 km. J. Geophys. Res. 112(A5), 05309 (2007). doi: 10.1029/2006JA012063 CrossRefGoogle Scholar
  116. B.J. O’Brien, C.D. Laughlin, J.A. Van Allen, Geomagnetically trapped radiation produced by a high-altitude nuclear explosion on July 9, 1962. Nature 195(4845), 939–943 (1962a). doi: 10.1038/195939a0 ADSCrossRefGoogle Scholar
  117. B.J. O’Brien, C.D. Laughlin, J.A. Van Allen, L.A. Frank, Measurements of the intensity and spectrum of electrons at 1000-kilometer altitude and high latitudes. J. Geophys. Res. 67(4), 1209–1225 (1962b). doi: 10.1029/JZ067i004p01209 ADSCrossRefGoogle Scholar
  118. Y. Omura, D. Nunn, H. Matsumoto, M.J. Rycroft, A review of observational, theoretical, and numerical studies of VLF triggered emissions. J. Atmos. Terr. Phys. 53(5), 351–368 (1991) ADSCrossRefGoogle Scholar
  119. K. Papadopoulos, A.S. Sharma, C.L. Chang, On the efficient operation of a plasma ELF antenna driven by modulation of ionospheric currents. Comments Plasma Phys. Control. Fusion 13, 1 (1989) Google Scholar
  120. C.G. Park, R.A. Helliwell, Whistler precursors: a possible catalytic role of power line radiation. J. Geophys. Res. 82(25), 3634–3642 (1977). doi: 10.1029/JA082i025p03634 ADSCrossRefGoogle Scholar
  121. C.G. Park, T.R. Miller, Sunday decreases in magnetospheric VLF wave activity. J. Geophys. Res. 84(A3), 943–950 (1979). doi: 10.1029/JA084iA03p00943 ADSCrossRefGoogle Scholar
  122. M. Parrot, World map of ELF/VLF emissions as observed by a low-orbiting satellite. Ann. Geophys., Atmos. Hydrospheres Space Sci. 8(2), 135–146 (1990) Google Scholar
  123. M. Parrot, Observations of power line harmonic radiation by the low-altitude AUREOL 3 satellite. J. Geophys. Res. 99(A3), 3961–3969 (1994). doi: 10.1029/93JA02544 ADSCrossRefGoogle Scholar
  124. M. Parrot, Y. Zaslavski, Physical mechanisms of man-made influences on the magnetosphere. Surv. Geophys. 17(1), 67–100 (1996). doi: 10.1007/BF01904475 ADSCrossRefGoogle Scholar
  125. M. Parrot, J.A. Sauvaud, J.J. Berthelier, J.P. Lebreton, First in-situ observations of strong ionospheric perturbations generated by a powerful VLF ground-based transmitter. Geophys. Res. Lett. 34(11), 11111 (2007). doi: 10.1029/2007GL029368 ADSCrossRefGoogle Scholar
  126. T.R. Pedersen, E.A. Gerken, Creation of visible artificial optical emissions in the aurora by high-power radio waves. Nature 433(7025), 498–500 (2005). doi: 10.1038/nature03243 ADSCrossRefGoogle Scholar
  127. T. Pedersen, B. Gustavsson, E. Mishin, E. MacKenzie, H.C. Carlson, M. Starks, T. Mills, Optical ring formation and ionization production in high-power HF heating experiments at HAARP. Geophys. Res. Lett. 36(18), 18107 (2009). doi: 10.1029/2009GL040047 ADSCrossRefGoogle Scholar
  128. G.F. Pieper, Injun: a radiation research satellite. APL Tech. Dig. 1(1), 3–7 (1961) Google Scholar
  129. G.F. Pieper, The artificial radiation belt. APL Tech. Dig. 2(2), 3–7 (1962) Google Scholar
  130. G.F. Pieper, A second radiation belt from the July 9, 1962, nuclear detonation. J. Geophys. Res. 68(3), 651–655 (1963). doi: 10.1029/JZ068i003p00651 ADSCrossRefGoogle Scholar
  131. P.R. Pisharoty, Geomagnetic disturbances associated with the nuclear explosion of July 9. Nature 196, 822–824 (1962). doi: 10.1038/196822b0 ADSCrossRefGoogle Scholar
  132. R. Raghuram, T.F. Bell, R.A. Helliwell, J.P. Katsufrakis, A quiet band produced by VLF transmitter signals in the magnetosphere. Geophys. Res. Lett. 4(5), 199–202 (1977). doi: 10.1029/GL004i005p00199 ADSCrossRefGoogle Scholar
  133. K. Rastani, U.S. Inan, R.A. Helliwell, DE 1 observations of siple transmitter signals and associated sidebands. J. Geophys. Res. 90(A5), 4128 (1985). doi: 10.1029/JA090iA05p04128 ADSCrossRefGoogle Scholar
  134. D.L. Reasoner, Chemical-release mission of CRRES. J. Spacecr. Rockets 29(4), 580–584 (1992). doi: 10.2514/3.25502 ADSCrossRefGoogle Scholar
  135. C.S. Roberts, Coordinates for the study of particles trapped in the Earth’s magnetic field: a method of converting from B, L to R, \(\lambda\) coordinates. J. Geophys. Res. 69(23), 5089–5090 (1964). doi: 10.1029/JZ069i023p05089 ADSCrossRefGoogle Scholar
  136. C.J. Rodger, M.A. Clilverd, T. Ulich, P.T. Verronen, E. Turunen, N.R. Thomson, The atmospheric implications of radiation belt remediation. Ann. Geophys. 24(7), 2025–2041 (2006). doi: 10.5194/angeo-24-2025-2006 ADSCrossRefGoogle Scholar
  137. J. Roquet, R. Schlich, E. Selzer, Evidence of two distinct synchronous world impetuses for the magnetic effects of the nuclear high-altitude detonation of July 9, 1962. J. Geophys. Res. 68(12), 3731–3732 (1963). doi: 10.1029/JZ068i012p03731 ADSCrossRefGoogle Scholar
  138. W. Rosenzweig, H.K. Gummel, F.M. Smits, Solar cell degradation under 1 MeV electron bombardment. Bell Syst. Tech. J. 42(2), 399–414 (1963) CrossRefGoogle Scholar
  139. J.A. Sauvaud, T. Moreau, R. Maggiolo, J.-P. Treilhou, C. Jacquey, A. Cros, J. Coutelier, J. Rouzaud, E. Penou, M. Gangloff, High-energy electron detection onboard DEMETER: the IDP spectrometer, description and first results on the inner belt. Planet. Space Sci. 54(5), 502–511 (2006). doi: 10.1016/j.pss.2005.10.019 ADSCrossRefGoogle Scholar
  140. J.-A. Sauvaud, R. Maggiolo, C. Jacquey, M. Parrot, J.-J. Berthelier, R.J. Gamble, C.J. Rodger, Radiation belt electron precipitation due to VLF transmitters: satellite observations. Geophys. Res. Lett. 35(9), 09101 (2008). doi: 10.1029/2008GL033194 ADSCrossRefGoogle Scholar
  141. E. Savage, J. Gilbert, W. Radasky, The Early Time (E1) High-Altitude Electromagnetic Pulse (HEMP) and Its Impact on the US Power Grid. Technical report Meta-R-320, Metatech Corporation, Goleta, California (2010) Google Scholar
  142. R.R. Scarabucci, Interpretation of VLF Signals Observed on the OGO-4 Satellite (Stanford University, Stanford, 1969) Google Scholar
  143. R.L. Smith, Propagation characteristics of whistlers trapped in field-aligned columns of enhanced ionization. J. Geophys. Res. 66(11), 3699–3707 (1961). doi: 10.1029/JZ066i011p03699 ADSCrossRefGoogle Scholar
  144. A.J. Smith, M.A. Clilverd, Magnetic storm effects on the mid-latitude plasmasphere. Planet. Space Sci. 39(7), 1069–1079 (1991). doi: 10.1016/0032-0633(91)90114-P ADSCrossRefGoogle Scholar
  145. V.S. Sonwalkar, U.S. Inan, Measurements of siple transmitter signals on the DE 1 satellite: wave normal direction and antenna effective length. J. Geophys. Res. 91(A1), 154 (1986). doi: 10.1029/JA091iA01p00154 ADSCrossRefGoogle Scholar
  146. V.S. Sonwalkar, U.S. Inan, T.F. Bell, R.A. Helliwell, V.M. Chmyrev, Y.P. Sobolev, O.Y. Ovcharenko, V. Selegej, Simultaneous observations of VLF ground transmitter signals on the DE 1 and COSMOS 1809 satellites: detection of a magnetospheric caustic and a duct. J. Geophys. Res. 99(A9), 17511 (1994). doi: 10.1029/94JA00866 ADSCrossRefGoogle Scholar
  147. M.J. Starks, R.A. Quinn, G.P. Ginet, J.M. Albert, G.S. Sales, B.W. Reinisch, P. Song, Illumination of the plasmasphere by terrestrial very low frequency transmitters: model validation. J. Geophys. Res. Space Phys. 113(A9), A09320 (2008). doi: 10.1029/2008JA013112 ADSGoogle Scholar
  148. M.J. Starks, T.F. Bell, R.A. Quinn, U.S. Inan, D. Piddyachiy, M. Parrot, Modeling of Doppler-shifted terrestrial VLF transmitter signals observed by DEMETER. Geophys. Res. Lett. 36(12), 12103 (2009). doi: 10.1029/2009GL038511 ADSCrossRefGoogle Scholar
  149. A.V. Streltsov, M. Gołkowski, U.S. Inan, K.D. Papadopoulos, Propagation of whistler mode waves with a modulated frequency in the magnetosphere. J. Geophys. Res. 115(A9), 09209 (2010). doi: 10.1029/2009JA015155 CrossRefGoogle Scholar
  150. B.T. Tsurutani, R.M. Thorne, A skeptic’s view of PLR effects in the magnetosphere. Adv. Space Res. 1(2), 439–444 (1981). doi: 10.1016/0273-1177(81)90318-5 ADSCrossRefGoogle Scholar
  151. B.T. Tsurutani, E.J. Smith, S.R. Church, R.M. Thorne, R.E. Holzer, in Does ELF Chorus Show Evidence of Power Line Stimulation? ed. by P.J. Palmadesso, K. Papadopoulos (Springer, Dordrecht, 1979), pp. 51–54. doi: 10.1007/978-94-009-9500-0_5 Google Scholar
  152. R.R. Unterberger, P.E. Byerly, Magnetic effects of a high-altitude nuclear explosion. J. Geophys. Res. 67(12), 4929–4932 (1962). doi: 10.1029/JZ067i012p04929 ADSCrossRefGoogle Scholar
  153. A.L. Vampola, Electron precipitation in the vicinity of a VLF transmitter. J. Geophys. Res. 92(A5), 4525 (1987). doi: 10.1029/JA092iA05p04525 ADSCrossRefGoogle Scholar
  154. A.L. Vampola, In-situ observations of magnetospheric electron scattering by a VLF transmitter. J. Atmos. Terr. Phys. 52(5), 377–384 (1990). doi: 10.1016/0021-9169(90)90106-W ADSCrossRefGoogle Scholar
  155. J.A. Van Allen, The geomagnetically trapped corpuscular radiation. J. Geophys. Res. 64(11), 1683–1689 (1959). doi: 10.1029/JZ064i011p01683 ADSCrossRefGoogle Scholar
  156. J.A. Van Allen, Lifetimes of geomagnetically trapped electrons of several MeV energy. Nature 203(4949), 1006–1007 (1964). doi: 10.1038/2031006a0. ADSCrossRefGoogle Scholar
  157. J.A. Van Allen, in Spatial Distribution and Time Decay of the Intensities of Geomagnetically Trapped Electrons from the High Altitude Nuclear Burst of July 1962, ed. by B.M. McCormac (Springer, Dordrecht, 1966), pp. 575–592. doi: 10.1007/978-94-010-3553-8_42 Google Scholar
  158. J.A. Van Allen, in Energetic Particles in the Earth’s External Magnetic Field, ed. by C.S. Gillmor, J.R. Spreiter (American Geophysical Union, Washington, 1997), pp. 235–251. doi: 10.1029/HG007p0235 Google Scholar
  159. J.A. Van Allen, L.A. Frank, Radiation around the Erth to a radial distance of 107,400 km. Nature 183(4659), 430–434 (1959). doi: 10.1038/183430a0 ADSCrossRefGoogle Scholar
  160. J.A. Van Allen, G.H. Ludwig, E.C. Ray, C.E. McIlwain, Observation of high intensity radiation by satellites 1958 alpha and gamma (Explorers I and III). Jet Propuls. 28(9), 588–592 (1958). doi: 10.2514/8.7396 CrossRefGoogle Scholar
  161. J.A. Van Allen, C.E. McIlwain, G.H. Ludwig, Satellite observations of electrons artificially injected into the geomagnetic field. Proc. Natl. Acad. Sci. USA 45(8), 1152–1171 (1959a) ADSCrossRefGoogle Scholar
  162. J.A. Van Allen, C.E. McIlwain, G.H. Ludwig, Radiation observations with satellite 1958 \(\varepsilon\). J. Geophys. Res. 64(3), 271–286 (1959b). doi: 10.1029/JZ064i003p00271 ADSCrossRefGoogle Scholar
  163. J.A. Van Allen, C.E. McIlwain, G.H. Ludwig, Satellite observations of electrons artificially injected into the geomagnetic field. J. Geophys. Res. 64(8), 877–891 (1959c). doi: 10.1029/JZ064i008p00877 ADSCrossRefGoogle Scholar
  164. J.A. Van Allen, L.A. Frank, B.J. O’Brien, Satellite observations of the artificial radiation belt of July 1962. J. Geophys. Res. 68(3), 619–627 (1963). doi: 10.1029/JZ068i003p00619 ADSCrossRefGoogle Scholar
  165. C.N. Vittitoe, Did high-altitude EMP cause the Hawaiian streetlight incident? System Design and Assessment Notes (1989) Google Scholar
  166. J. Wait, Propagation of ELF electromagnetic waves and project Sanguine/Seafarer. IEEE J. Ocean. Eng. 2(2), 161–172 (1977). doi: 10.1109/JOE.1977.1145337 CrossRefGoogle Scholar
  167. M. Walt, The effects of atmospheric collisions on geomagnetically trapped electrons. J. Geophys. Res. 69(19), 3947–3958 (1964). doi: 10.1029/jz069i019p03947. ADSCrossRefGoogle Scholar
  168. M. Walt, in From Nuclear Physics to Space Physics by Way of High Altitude Nuclear Tests, ed. by C.S. Gillmor, J.R. Spreiter (American Geophysical Union, Washington 1997), pp. 253–263. doi: 10.1029/HG007p0253 Google Scholar
  169. E.P. Wenaas, Spacecraft Charging Effects on Satellites Following Starfish Events. Technical report RE-78-2044-057, JAYCOR, Alexandria, Virginia (1978) Google Scholar
  170. Wikipedia Contributors, High-altitude nuclear explosion (Wikipedia, The Free Encyclopedia, 2016) Google Scholar
  171. D.J. Williams, J.F. Arens, L.J. Lanzerotti, Observations of trapped electrons at low and high altitudes. J. Geophys. Res. 73(17), 5673–5696 (1968). doi: 10.1029/ja073i017p05673 ADSCrossRefGoogle Scholar
  172. G. Xin, F. Zhan-zu, C. Xin-yu, Y. Sheng-sheng, Z. Lei, Performance evaluation and prediction of single-junction and triple-junction GaAs solar cells induced by electron and proton irradiations. IEEE Trans. Nucl. Sci. 61(4), 1838–1842 (2014). doi: 10.1109/TNS.2014.2306991 ADSCrossRefGoogle Scholar
  173. K.A. Zawdie, J.D. Huba, D.P. Drob, P.A. Bernhardt, A coupled ionosphere-raytrace model for high-power HF heating. Geophys. Res. Lett. 42(22), 9650–9656 (2015). doi: 10.1002/2015GL066673 ADSCrossRefGoogle Scholar
  174. A.J. Zmuda, B.W. Shaw, C.R. Haave, VLF disturbances caused by the nuclear detonation of October 26, 1962. J. Geophys. Res. 68(13), 4105–4114 (1963). doi: 10.1029/JZ068i013p04105 ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • T. I. Gombosi
    • 1
    Email author
  • D. N. Baker
    • 2
  • A. Balogh
    • 3
  • P. J. Erickson
    • 4
  • J. D. Huba
    • 5
  • L. J. Lanzerotti
    • 6
    • 7
  1. 1.University of MichiganAnn ArborUSA
  2. 2.University of ColoradoBoulderUSA
  3. 3.Imperial CollegeLondonUK
  4. 4.MIT Haystack ObservatoryWestfordUSA
  5. 5.Naval Research LaboratoryWashingtonUSA
  6. 6.New Jersey Institute of TechnologyNewarkUSA
  7. 7.Alcatel Lucent Bell LaboratoriesMurray HillUSA

Personalised recommendations