Skip to main content
Log in

A Hitch-hiker’s Guide to Stochastic Differential Equations

Solution Methods for Energetic Particle Transport in Space Physics and Astrophysics

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

In this review, an overview of the recent history of stochastic differential equations (SDEs) in application to particle transport problems in space physics and astrophysics is given. The aim is to present a helpful working guide to the literature and at the same time introduce key principles of the SDE approach via “toy models”. Using these examples, we hope to provide an easy way for newcomers to the field to use such methods in their own research. Aspects covered are the solar modulation of cosmic rays, diffusive shock acceleration, galactic cosmic ray propagation and solar energetic particle transport. We believe that the SDE method, due to its simplicity and computational efficiency on modern computer architectures, will be of significant relevance in energetic particle studies in the years to come.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Notes

  1. As with any review paper, some references will inadvertently fall through the cracks and we would like to apologize for this in advance.

  2. The terms convection and advection are usually used interchangeably without any consensus on their potentially different meaning (e.g. an active vs. passive process). We do not attempt to use one over the other rigorously in this text.

  3. Various different types of SDEs exist, such as the widely used Stratonovich stochastic formulation. Here we choose to be as brief as possible and refer the interested reader to e.g. Gardiner (1983) for a comprehensive review of these different formulations. It must necessary be kept in mind that, due to the different temporal discretizations used in these SDE formulations, the numerical methods described here may not be applicable to solve SDE that are not of the Itō-type; this is certainly true for the Stratonovich formulation.

  4. As \(b_{ij}\) is basically the square root of \(C_{ij}\), calculating \(b_{ij}\) for some scenarios can be very tricky in higher dimensions, but is always possible as \(C_{ij}\) is a positive definite tensor (Gardiner 1983), and usually also symmetric (Kopp et al. 2012). It is also interesting to note that \(b_{ij}\) is not unique but different choices of \(b_{ij}\) lead to the same solution as they are all mathematically equivalent.

  5. Of course, the relative efficiency of both approaches depends on the relative sizes of the source and boundary surfaces compared to the size of the effective observer. As suggested by Milstein et al. (2004), some solutions are also hard to evaluate in the time backward scenario.

  6. Although for some of the simple problems that are considered here, some (semi) analytic solutions exist, we decided not to include them here, to keep the focus on the numerical approach.

  7. Earlier, Jokipii and Levy (1977) used the first- and second-order moments of the TPE to construct a random walk model for CRs. However, as this model did not implement a Wiener process, but rather a uniform distribution of random numbers, it is not an SDE model in a strict sense.

  8. A shock is, however, not a prerequisite for Fermi I acceleration to occur. See, e.g., the SDE modeling by Armstrong et al. (2012) and the references therein, where a beam of CRs can be accelerated via Fermi I acceleration when waves, traveling in a preferred direction, are present.

  9. Zhang (2000) explores a technique for simulating DSA, at a discontinuous TS by means of SDEs using what is termed to be “skew Brownian motion”, where the spatial coordinates are rescaled in order to remove the discontinuity.

  10. In an earlier paper by Jokipii (2001), the use of a Dirichlet boundary condition was motivated by analytical considerations.

References

  • A. Achterberg, W.M. Krülls, A fast simulation method for particle acceleration. Astron. Astrophys. 265, 13–16 (1992)

    ADS  Google Scholar 

  • A. Achterberg, K.M. Schure, A more accurate numerical scheme for diffusive shock acceleration. Mon. Not. R. Astron. Soc. 411, 2628–2636 (2011). doi:10.1111/j.1365-2966.2010.17868.x

    Article  ADS  Google Scholar 

  • D. Adams, The Hitchhiker’s Guide to the Galaxy (Pan Books, London, 1979)

    Google Scholar 

  • K. Alanko-Huotari, I.G. Usoskin, K. Mursula, G.A. Kovaltsov, Stochastic simulation of cosmic ray modulation including a wavy heliospheric current sheet. J. Geophys. Res. 112, 08101 (2007)

    Article  Google Scholar 

  • C.K. Armstrong, Y.E. Litvinenko, I.J.D. Craig, Modeling focused acceleration of cosmic-ray particles by stochastic methods. Astrophys. J. 757, 165 (2012). doi:10.1088/0004-637X/757/2/165

    Article  ADS  Google Scholar 

  • B. Ball, M. Zhang, H. Rassoul, T. Linde, Galactic cosmic-ray modulation using a solar minimum MHD heliosphere: a stochastic particle approach. Astrophys. J. 634, 1116–1125 (2005)

    Article  ADS  Google Scholar 

  • D.D. Barbosa, Stochastic acceleration of solar flare protons. Astrophys. J. 233, 383–394 (1979). doi:10.1086/157399

    Article  ADS  Google Scholar 

  • P. Blasi, E. Amato, Diffusive propagation of cosmic rays from supernova remnants in the galaxy. I: spectrum and chemical composition. J. Cosmol. Astropart. Phys. 1, 10 (2012). doi:10.1088/1475-7516/2012/01/010

    Article  ADS  Google Scholar 

  • P. Bobik, K. Kudela, M. Boschini, D. Grandi, M. Gervasi, P.G. Rancoita, Solar modulation model with reentrant particles. Adv. Space Res. 41, 339–342 (2008). doi:10.1016/j.asr.2007.02.085

    Article  ADS  Google Scholar 

  • P. Bobik, G. Boella, M.J. Boschini, C. Consolandi, S. Della Torre, M. Gervasi, D. Grandi, M. Elmo, K. Kudela, E. Memola, S. Pensotti, P.G. Rancoita, D. Rozza, M. Tacconi, Energy loss for electrons in the heliosphere and local interstellar spectrum for solar modulation, in Cosmic Rays for Particle and Astroparticle Physics, ed. by S. Giani, C. Leroy, P.G. Rancoita, 2011, pp. 482–489

    Chapter  Google Scholar 

  • P. Bobik, G. Boella, M.J. Boschini, C. Consolandi, S. Della Torre, M. Gervasi, D. Grandi, K. Kudela, S. Pensotti, P.G. Rancoita, M. Tacconi, Systematic investigation of solar modulation of galactic protons for solar cycle 23 using a Monte Carlo approach with particle drift effects and latitudinal dependence. Astrophys. J. 745, 132 (2012). doi:10.1088/0004-637X/745/2/132

    Article  ADS  Google Scholar 

  • P. Bobik, M.J. Boschini, S.D. Torre, M. Gervasi, D. Grandi, G.L. Vacca, S. Pensotti, M. Putis, P.G. Rancoita, D. Rozza, M. Tacconi, M. Zannoni, On the forward-backward-in-time approach for Monte Carlo solution of Parker’s transport equation: 1-dimensional case. J. Geophys. Res. (2016). doi:10.1002/2015JA022237. http://dx.doi.org/10.1002/2015JA022237

    Google Scholar 

  • D. Breitschwerdt, J.F. McKenzie, H.J. Voelk, Galactic winds. I—Cosmic ray and wave-driven winds from the galaxy. Astron. Astrophys. 245, 79–98 (1991)

    ADS  Google Scholar 

  • R.A. Burger, M.S. Potgieter, The calculation of neutral sheet drift in two-dimensional cosmic-ray modulation models. Astrophys. J. 339, 501–511 (1989)

    Article  ADS  Google Scholar 

  • R.A. Burger, H. Moraal, G.M. Webb, Drift theory of charged particles in electric and magnetic fields. Astrophys. Space Sci. 116, 107–129 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  • I. Büsching, M.S. Potgieter, The variability of the proton cosmic ray flux on the Sun’s way around the galactic center. Adv. Space Res. 42, 504–509 (2008). doi:10.1016/j.asr.2007.05.051

    Article  ADS  Google Scholar 

  • I. Büsching, A. Kopp, M. Pohl, R. Schlickeiser, C. Perrot, I. Grenier, Cosmic-ray propagation properties for an origin in supernova remnants. Astrophys. J. 619, 314–326 (2005). doi:10.1086/426537

    Article  ADS  Google Scholar 

  • I. Büsching, O.C. de Jager, M.S. Potgieter, C. Venter, A cosmic-ray positron anisotropy due to two middle-aged, nearby pulsars? Astrophys. J. Lett. 678, 39–42 (2008). doi:10.1086/588465

    Article  ADS  Google Scholar 

  • S.V. Chalov, H.J. Fahr, V. Izmodenov, Spectra of energized pick-up ions upstream. of the heliospheric termination shock I. The role of Alfvenic turbulences. Astron. Astrophys. 304, 609 (1995)

    ADS  Google Scholar 

  • S. Chandrasekhar, Stochastic problems in physics and astronomy. Rev. Mod. Phys. 15, 1–89 (1943). doi:10.1103/RevModPhys.15.1

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • D.L. Chenette, The propagation of Jovian electrons to Earth. J. Geophys. Res. 85, 2243–2256 (1980)

    Article  ADS  Google Scholar 

  • C. Corti, V. Bindi, C. Consolandi, K. Whitman, Solar modulation of the local interstellar spectrum with voyager 1, AMS-02, PAMELA, and BESS. Astrophys. J. 829, 8 (2016). doi:10.3847/0004-637X/829/1/8

    Article  ADS  Google Scholar 

  • R. Courant, K. Friedrichs, H. Lewy, Über die partiellen differenzengleichungen der mathematischen physik. Math. Ann. 100, 32–74 (1928)

    Article  MATH  MathSciNet  Google Scholar 

  • R.B. Decker, S.M. Krimigis, E.C. Roelof, M.E. Hill, T.P. Armstrong, G. Gloeckler, D.C. Hamilton, L.J. Lanzerotti, Voyager 1 in the foreshock, termination shock, and heliosheath. Science 309, 2020–2024 (2005)

    Article  ADS  Google Scholar 

  • S. Della Torre, P. Bobik, M.J. Boschini, C. Consolandi, M. Gervasi, D. Grandi, K. Kudela, S. Pensotti, P.G. Rancoita, D. Rozza, M. Tacconi, Effects of solar modulation on the cosmic ray positron fraction. Adv. Space Res. 49, 1587–1592 (2012). doi:10.1016/j.asr.2012.02.017

    Article  ADS  Google Scholar 

  • N. Dresing, R. Gómez-Herrero, A. Klassen, B. Heber, Y. Kartavykh, W. Dröge, The large longitudinal spread of solar energetic particles during the 17 January 2010 solar event. Sol. Phys. 281, 281–300 (2012). doi:10.1007/s11207-012-0049-y

    ADS  Google Scholar 

  • W. Dröge, Y.Y. Kartavykh, B. Klecker, G.A. Kovaltsov, Anisotropic three-dimensional focused transport of solar energetic particles in the inner heliosphere. Astrophys. J. 709, 912–919 (2010). doi:10.1088/0004-637X/709/2/912

    Article  ADS  Google Scholar 

  • W. Dröge, Y.Y. Kartavykh, N. Dresing, B. Heber, A. Klassen, Wide longitudinal distribution of interplanetary electrons following the 7 February 2010 solar event: observations and transport modeling. J. Geophys. Res. Space Phys. 119, 6074–6094 (2014). doi:10.1002/2014JA019933

    Article  ADS  Google Scholar 

  • L. Drury, On particle acceleration in supernova remnants. Space Sci. Rev. 36, 57–60 (1983)

    Article  ADS  Google Scholar 

  • P. Dunzlaff, R.D. Strauss, M.S. Potgieter, A stochastic differential equation code for multidimensional Fokker-Planck type problems. Comput. Phys. Commun. 192, 156–165 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  • F. Effenberger, Energetic particle transport with stochastic differential equations: general methods and the extension to anomalous diffusion regimes, in 8th International Conference of Numerical Modeling of Space Plasma Flows (ASTRONUM 2013), ed. by N.V. Pogorelov, E. Audit, G.P. Zank Astronomical Society of the Pacific Conference Series, vol. 488, 2014, p. 201

    Google Scholar 

  • F. Effenberger, Y.E. Litvinenko, The diffusion approximation versus the telegraph equation for modeling solar energetic particle transport with adiabatic focusing. I. Isotropic pitch-angle scattering. Astrophys. J. 783, 15 (2014). doi:10.1088/0004-637X/783/1/15

    Article  ADS  Google Scholar 

  • F. Effenberger, H. Fichtner, K. Scherer, S. Barra, J. Kleimann, R.D. Strauss, A generalized diffusion tensor for fully anisotropic diffusion of energetic particles in the heliospheric magnetic field. Astrophys. J. 750, 108 (2012a)

    Article  ADS  Google Scholar 

  • F. Effenberger, H. Fichtner, K. Scherer, I. Büsching, Anisotropic diffusion of Galactic cosmic ray protons and their steady-state azimuthal distribution. Astron. Astrophys. 547, 120 (2012b). doi:10.1051/0004-6361/201220203

    Article  ADS  Google Scholar 

  • N.E. Engelbrecht, R.A. Burger, An Ab initio model for cosmic-ray modulation. Astrophys. J. 772, 46 (2013). doi:10.1088/0004-637X/772/1/46

    Article  ADS  Google Scholar 

  • J.E. Everett, Q.G. Schiller, E.G. Zweibel, Synchrotron constraints on a hybrid cosmic-ray and thermally driven galactic wind. Astrophys. J. 711, 13–24 (2010). doi:10.1088/0004-637X/711/1/13

    Article  ADS  Google Scholar 

  • A. Farahat, M. Zhang, H. Rassoul, J.J. Connell, Cosmic ray transport and production in the galaxy: a stochastic propagation simulation approach. Astrophys. J. 681, 1334–1340 (2008). doi:10.1086/588374

    Article  ADS  Google Scholar 

  • E. Fermi, On the origin of the cosmic radiation. Phys. Rev. 75, 1169–1174 (1949). doi:10.1103/PhysRev.75.1169

    Article  ADS  MATH  Google Scholar 

  • H. Fichtner, Anomalous cosmic rays: messengers from the outer heliosphere. Space Sci. Rev. 95, 639–754 (2001)

    Article  ADS  Google Scholar 

  • H. Fichtner, H.J. Fahr, W. Neutsch, R. Schlickeiser, A. Crusius-Wätzel, H. Lesch, Cosmic-ray-driven galactic wind. Nuovo Cimento B 106, 909–925 (1991). doi:10.1007/BF02723185

    Article  ADS  Google Scholar 

  • H. Fichtner, J.A. Le Roux, U. Mall, D. Rucinski, On the transport of pick-up ions in the heliosphere. Astron. Astrophys. 314, 650–662 (1996)

    ADS  Google Scholar 

  • L. Fletcher, On the generation of loop-top impulsive hard X-ray sources. Astron. Astrophys. 303, 9 (1995)

    ADS  Google Scholar 

  • L. Fletcher, Numerical simulations of coronal particle trapping. Astron. Astrophys. 326, 1259–1267 (1997)

    ADS  Google Scholar 

  • V. Florinski, N.V. Pogorelov, Four-dimensional transport of galactic cosmic rays in the outer heliosphere and heliosheath. Astrophys. J. 701, 642–651 (2009)

    Article  ADS  Google Scholar 

  • V. Florinski, J.R. Jokipii, F. Alouani-Bibi, J.A. le Roux, Energetic particle anisotropies at the heliospheric boundary. Astrophys. J. Lett. 776, 37 (2013). doi:10.1088/2041-8205/776/2/L37

    Article  ADS  Google Scholar 

  • C.W. Gardiner, Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences (Springer, Berlin, 1983)

    Book  MATH  Google Scholar 

  • C.W. Gardiner, Stochastic Methods: A Handbook for the Natural and Social Sciences (Springer, Berlin, 2009)

    MATH  Google Scholar 

  • M. Gervasi, P.G. Rancoita, I.G. Usoskin, G.A. Kovaltsov, Monte-Carlo approach to galactic cosmic ray propagation in the heliosphere. Nucl. Phys. 78, 26–31 (1999)

    Google Scholar 

  • X. Guo, V. Florinski, Corotating interaction regions and the 27 day variation of galactic cosmic rays intensity at 1 AU during the cycle 23/24 solar minimum. J. Geophys. Res. Space Phys. 119, 2411–2429 (2014a). doi:10.1002/2013JA019546

    Article  ADS  Google Scholar 

  • X. Guo, V. Florinski, Galactic cosmic-ray modulation near the heliopause. Astrophys. J. 793, 18 (2014b). doi:10.1088/0004-637X/793/1/18

    Article  ADS  Google Scholar 

  • D.A. Gurnett, W.S. Kurth, L.F. Burlaga, N.F. Ness, In situ observations of interstellar plasma with voyager 1. Science 341, 1489–1492 (2013)

    Article  ADS  Google Scholar 

  • M. Hanasz, K. Otmianowska-Mazur, G. Kowal, H. Lesch, Cosmic-ray-driven dynamo in galactic disks. A parameter study. Astron. Astrophys. 498, 335–346 (2009). doi:10.1051/0004-6361/200810279

    Article  ADS  Google Scholar 

  • K. Herbst, B. Heber, A. Kopp, O. Sternal, F. Steinhilber, The local interstellar spectrum beyond the heliopause: what can be learned from voyager in the inner heliosheath? Astrophys. J. 761, 17 (2012)

    Article  ADS  Google Scholar 

  • A.M. Hillas, Cosmic Rays: Recent Progress and some Current Questions. ArXiv Astrophysics e-prints (2006)

  • N.L.S. Jeffrey, E.P. Kontar, N.H. Bian, A.G. Emslie, On the variation of solar flare coronal X-ray source sizes with energy. Astrophys. J. 787, 86 (2014). doi:10.1088/0004-637X/787/1/86

    Article  ADS  Google Scholar 

  • L.W. Johnson, R.D. Riess, J.T. Arnold, Introduction to Linear Algebra, 5th ed. (Addison-Wesley, New York, 2002)

    MATH  Google Scholar 

  • J.R. Jokipii, Cosmic-ray propagation. I. Charged particles in a random magnetic field. Astrophys. J. 146, 480–487 (1966)

    Article  ADS  Google Scholar 

  • J.R. Jokipii, Acceleration of galactic and anomalous cosmic rays in the heliosheath, in The Outer Heliosphere: The Next Frontiers, ed. by K. Scherer, H. Fichtner, H.-J. Fahr, E. Marsch COSPAR Colloquia Series, vol. 11, 2001, p. 227

    Google Scholar 

  • J.R. Jokipii, D.A. Kopriva, Effects of particle drift on the transport of cosmic rays. III—Numerical models of galactic cosmic-ray modulation. Astrophys. J. 234, 384–392 (1979)

    Article  ADS  Google Scholar 

  • J.R. Jokipii, E.H. Levy, Effects of particle drifts on the solar modulation of galactic cosmic rays. Astrophys. J. Lett. 213, 85–88 (1977). doi:10.1086/182415

    Article  ADS  Google Scholar 

  • J.R. Jokipii, E.H. Levy, W.B. Hubbard, Effects of particle drift on cosmic-ray transport. I—General properties, application to solar modulation. Astrophys. J. 213, 861–868 (1977)

    Article  ADS  Google Scholar 

  • Y.Y. Kartavykh, W. Dröge, M. Gedalin, Simulation of energetic particle transport and acceleration at shock waves in a focused transport model: implications for mixed solar particle events. Astrophys. J. 820, 24 (2016). doi:10.3847/0004-637X/820/1/24

    Article  ADS  Google Scholar 

  • R. Kissmann, PICARD: a novel code for the Galactic Cosmic Ray propagation problem. Astropart. Phys. 55, 37–50 (2014). doi:10.1016/j.astropartphys.2014.02.002

    Article  ADS  Google Scholar 

  • R. Kissmann, M. Werner, O. Reimer, A.W. Strong, Propagation in 3D spiral-arm cosmic-ray source distribution models and secondary particle production using PICARD. Astropart. Phys. 70, 39–53 (2015). doi:10.1016/j.astropartphys.2015.04.003

    Article  ADS  Google Scholar 

  • P.E. Kloeden, E. Platen, Numerical Solution of Stochastic Differential Equations (Springer, Berlin, 1999)

    MATH  Google Scholar 

  • P.E. Kloeden, E. Platen, H. Schurz, Numerical Solution of SDE Through Computer Experiments (Springer, Berlin, 1994)

    Book  MATH  Google Scholar 

  • A. Kopp, I. Büsching, R.D. Strauss, M.S. Potgieter, A stochastic differential equation code for multidimensional Fokker-Planck type problems. Comput. Phys. Commun. 183, 530–542 (2012)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • A. Kopp, I. Büsching, M.S. Potgieter, R.D. Strauss, A stochastic approach to Galactic proton propagation: influence of the spiral arm structure. New Astron. 30, 32–37 (2014). doi:10.1016/j.newast.2014.01.006

    Article  ADS  Google Scholar 

  • J. Kóta, J.R. Jokipii, Are cosmic rays modulated beyond the heliopause? Astrophys. J. 782, 24 (2014). doi:10.1088/0004-637X/782/1/24

    Article  ADS  Google Scholar 

  • S.M. Krimigis, R.B. Decker, E.C. Roelof, M.E. Hill, T.P. Armstrong, G. Gloeckler, D.C. Hamilton, L.J. Lanzerotti, Search for the exit: voyager 1 at heliosphere’s border with the galaxy. Science 341, 144–147 (2013). doi:10.1126/science.1235721

    Article  ADS  Google Scholar 

  • W.M. Krülls, A. Achterberg, Computation of cosmic-ray acceleration by Ito’s stochastic differential equations. Astron. Astrophys. 286, 314–327 (1994)

    ADS  Google Scholar 

  • T. Laitinen, A. Kopp, F. Effenberger, S. Dalla, M.S. Marsh, Solar Energetic Particle Access to Distant Longitudes via Turbulent Field-Line Meandering. ArXiv e-prints (2015)

  • J.A. le Roux, M.S. Potgieter, V.S. Ptuskin, A transport model for the diffusive shock acceleration and modulation of anomalous cosmic rays in the heliosphere. J. Geophys. Res. 101, 4791–4804 (1996). doi:10.1029/95JA03472

    Article  ADS  Google Scholar 

  • D.S. Lemons, An Introduction to Stochastic Processes in Physics. Johns Hopkins Paperback (Johns Hopkins University Press, Baltimore, 2002)

    MATH  Google Scholar 

  • Y.E. Litvinenko, Effects of non-isotropic scattering, magnetic helicity, and adiabatic focusing on diffusive transport of solar energetic particles. Astrophys. J. 752, 16 (2012). doi:10.1088/0004-637X/752/1/16

    Article  ADS  Google Scholar 

  • Y.E. Litvinenko, P.L. Noble, A numerical study of diffusive cosmic-ray transport with adiabatic focusing. Astrophys. J. 765, 31 (2013). doi:10.1088/0004-637X/765/1/31

    Article  ADS  Google Scholar 

  • Y.E. Litvinenko, F. Effenberger, R. Schlickeiser, The telegraph approximation for focused cosmic-ray transport in the presence of boundaries. Astrophys. J. 806, 217 (2015). doi:10.1088/0004-637X/806/2/217

    Article  ADS  Google Scholar 

  • X. Luo, M. Zhang, H.K. Rassoul, N.V. Pogorelov, Cosmic-ray modulation by the global merged interaction region in the heliosheath. Astrophys. J. 730, 13 (2011). doi:10.1088/0004-637X/730/1/13

    Article  ADS  Google Scholar 

  • X. Luo, M. Zhang, H.K. Rassoul, N.V. Pogorelov, J. Heerikhuisen, Galactic cosmic-ray modulation in a realistic global magnetohydrodynamic heliosphere. Astrophys. J. 764, 85 (2013)

    Article  ADS  Google Scholar 

  • X. Luo, M. Zhang, M. Potgieter, X. Feng, N.V. Pogorelov, A numerical simulation of cosmic-ray modulation near the heliopause. Astrophys. J. 808, 82 (2015). doi:10.1088/0004-637X/808/1/82

    Article  ADS  Google Scholar 

  • L. Maccione, Low energy cosmic ray positron fraction explained by charge-sign dependent solar modulation. Phys. Rev. Lett. 110(8), 081101 (2013). doi:10.1103/PhysRevLett.110.081101

    Article  ADS  Google Scholar 

  • A.L. MacKinnon, I.J.D. Craig, Stochastic simulation of fast particle diffusive transport. Astron. Astrophys. 251, 693–699 (1991)

    ADS  Google Scholar 

  • M. Magdziarz, A. Weron, Competition between subdiffusion and Lévy flights: a Monte Carlo approach. Phys. Rev. E 75(5), 056702 (2007). doi:10.1103/PhysRevE.75.056702

    Article  ADS  Google Scholar 

  • K. Mannheim, R. Schlickeiser, Interactions of cosmic ray nuclei. Astron. Astrophys. 286, 983–996 (1994)

    ADS  Google Scholar 

  • A. Marcowith, J.G. Kirk, Computation of diffusive shock acceleration using stochastic differential equations. Astron. Astrophys. 347, 391–400 (1999)

    ADS  Google Scholar 

  • G. Maruyama, Continuous Markov processes and stochastic equations. Rend. Circ. Mat. Palermo 4, 48–90 (1955)

    Article  MATH  MathSciNet  Google Scholar 

  • M. Matsumoto, T. Nishimura, Mersenne twister: a 623-dimensionally equidistributed uniform pseudorandom number generator. ACM Trans. Model. Comput. Simul. 31, 1192–1201 (1988)

    Google Scholar 

  • W.H. Matthaeus, G. Qin, J.W. Bieber, G.P. Zank, Nonlinear collisionless perpendicular diffusion of charged particles. Astrophys. J. Lett. 590, 53–56 (2003)

    Article  ADS  Google Scholar 

  • P. Mertsch, Cosmic ray electrons and positrons from discrete stochastic sources. J. Cosmol. Astropart. Phys. 2, 31 (2011). doi:10.1088/1475-7516/2011/02/031

    Article  ADS  Google Scholar 

  • J.A. Miller, D.A. Roberts, Stochastic proton acceleration by cascading Alfven waves in impulsive solar flares. Astrophys. J. 452, 912 (1995). doi:10.1086/176359

    Article  ADS  Google Scholar 

  • G.N. Milstein, J.G.M. Schoenmakers, V. Spokoiny, Transition density estimation for stochastic differential equations via forward-reverse representations. Bernoulli 10, 281–312 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  • S. Miyake, S. Yanagita, Effects of the tilted and wavy current sheet on the solar modulation of galactic cosmic rays, in International Cosmic Ray Conference Proceedings, vol. 2, 2005, pp. 203–207

    Google Scholar 

  • S. Miyake, H. Muraishi, S. Yanagita, A stochastic simulation of the propagation of Galactic cosmic rays reflecting the discreteness of cosmic ray sources Age and path length distribution. Astron. Astrophys. 573, 134 (2015). doi:10.1051/0004-6361/201424442

    Article  ADS  Google Scholar 

  • D. Moses, Jovian electrons at 1 AU—1978–1984. Astrophys. J. 313, 471–486 (1987)

    Article  ADS  Google Scholar 

  • I.V. Moskalenko, A.W. Strong, J.F. Ormes, M.S. Potgieter, Secondary antiprotons and propagation of cosmic rays in the galaxy and heliosphere. Astrophys. J. 565, 280–296 (2002)

    Article  ADS  Google Scholar 

  • B. Øksendal, Stochastic Differential Equations: An Introduction with Applications (Springer, Berlin, 2003)

    Book  MATH  Google Scholar 

  • S. Oughton, W.H. Matthaeus, C.W. Smith, B. Breech, P.A. Isenberg, Transport of solar wind fluctuations: a two-component model. J. Geophys. Res. 116, 08105 (2011)

    Article  Google Scholar 

  • R. Pakmor, C. Pfrommer, C.M. Simpson, V. Springel, Galactic winds driven by isotropic and anisotropic cosmic ray diffusion in disk galaxies. ArXiv e-prints (2016)

  • B.T. Park, V. Petrosian, Fokker-Planck equations of stochastic acceleration: a study of numerical methods. Astrophys. J. Suppl. Ser. 103, 255 (1996). doi:10.1086/192278

    Article  ADS  Google Scholar 

  • E.N. Parker, Dynamics of the interplanetary gas and magnetic fields. Astrophys. J. 128, 664–676 (1958)

    Article  ADS  Google Scholar 

  • E.N. Parker, The passage of energetic charged particles through interplanetary space. Planet. Space Sci. 13, 9–49 (1965)

    Article  ADS  Google Scholar 

  • E.N. Parker, The effect of adiabatic deceleration on the cosmic ray spectrum in the solar system. Planet. Space Sci. 14, 371–380 (1966)

    Article  ADS  Google Scholar 

  • C. Pei, J.W. Bieber, R.A. Burger, Three-dimensional wavy current sheet drifts. Astrophys. J. 744(2) 170–175 (2012)

    Article  ADS  Google Scholar 

  • C. Pei, J. Bieber, R.A. Burger, J. Clem, A general time dependent stochastic method for solving Parker’s equation in spherical coordinates. J. Geophys. Res. 115, 12107 (2010)

    Google Scholar 

  • D. Perrone, R.O. Dendy, I. Furno, R. Sanchez, G. Zimbardo, A. Bovet, A. Fasoli, K. Gustafson, S. Perri, P. Ricci, F. Valentini, Nonclassical transport and particle-field coupling: from laboratory plasmas to the solar wind. Space Sci. Rev. 178, 233–270 (2013). doi:10.1007/s11214-013-9966-9

    Article  ADS  Google Scholar 

  • V. Petrosian, Stochastic acceleration by turbulence. Space Sci. Rev. 173, 535–556 (2012). doi:10.1007/s11214-012-9900-6

    Article  ADS  Google Scholar 

  • V. Petrosian, S. Liu, Stochastic acceleration of electrons and protons. I. Acceleration by parallel-propagating waves. Astrophys. J. 610, 550–571 (2004). doi:10.1086/421486

    Article  ADS  Google Scholar 

  • M. Potgieter, Solar modulation of cosmic rays. Living Rev. Sol. Phys. 10, 3 (2013)

    Article  ADS  Google Scholar 

  • M.S. Potgieter, H. Moraal, A drift model for the modulation of galactic cosmic rays. Astrophys. J. 294, 425–440 (1985)

    Article  ADS  Google Scholar 

  • G. Qin, Y. Wang, Simulations of a gradual solar energetic particle event observed by helios 1, helios 2, and IMP 8. Astrophys. J. 809, 177 (2015). doi:10.1088/0004-637X/809/2/177

    Article  ADS  Google Scholar 

  • G. Qin, M. Zhang, J.R. Dwyer, H.K. Rassoul, G.M. Mason, The model dependence of solar energetic particle mean free paths under weak scattering. Astrophys. J. 627, 562–566 (2005). doi:10.1086/430136

    Article  ADS  Google Scholar 

  • J.L. Raath, R.D. Strauss, M.S. Potgieter, New insights from modeling the neutral heliospheric current sheet. Astrophys. Space Sci. 360, 24 (2015). doi:10.1007/s10509-015-2556-4

    Article  Google Scholar 

  • J.L. Raath, M.S. Potgieter, R.D. Strauss, A. Kopp, The effects of magnetic field modifications on the solar modulation of cosmic rays with a SDE-based model. Adv. Space Res. 57, 1965–1977 (2016). doi:10.1016/j.asr.2016.01.017

    Article  ADS  Google Scholar 

  • D.V. Reames, The two sources of solar energetic particles. Space Sci. Rev. 175, 53–92 (2013). doi:10.1007/s11214-013-9958-9

    Article  ADS  Google Scholar 

  • E.C. Roelof, Propagation of solar cosmic rays in the interplanetary magnetic field, in Lectures in High-Energy Astrophysics, ed. by H. Ögelman, J.R. Wayland, 1969, p. 111

    Google Scholar 

  • D. Ruffolo, Effect of adiabatic deceleration on the focused transport of solar cosmic rays. Astrophys. J. 442, 861–874 (1995). doi:10.1086/175489

    Article  ADS  Google Scholar 

  • K. Scherer, H. Fichtner, S.E.S. Ferreira, I. Büsching, M.S. Potgieter, Are anomalous cosmic rays the main contribution to the low-energy galactic cosmic ray spectrum? Astrophys. J. Lett. 680, 105 (2008). doi:10.1086/589969

    Article  ADS  Google Scholar 

  • K. Scherer, H. Fichtner, R.D. Strauss, S.E.S. Ferreira, M.S. Potgieter, H.-J. Fahr, On cosmic ray modulation beyond the heliopause: where is the modulation boundary? Astrophys. J. 735, 128 (2011)

    Article  ADS  Google Scholar 

  • K. Scherer, A. van der Schyff, D.J. Bomans, S.E.S. Ferreira, H. Fichtner, J. Kleimann, R.D. Strauss, K. Weis, T. Wiengarten, T. Wodzinski, Cosmic rays in astrospheres. Astron. Astrophys. 576, 97 (2015). doi:10.1051/0004-6361/201425091

    Article  Google Scholar 

  • R. Schlickeiser, Cosmic-ray transport and acceleration. I—Derivation of the kinetic equation and application to cosmic rays in static cold media. II—Cosmic rays in moving cold media with application to diffusive shock wave acceleration. Astrophys. J. 336, 243–293 (1989). doi:10.1086/167009

    Article  ADS  Google Scholar 

  • R. Schlickeiser, Cosmic Ray Astrophysics (Springer, Germany, 2002)

    Book  Google Scholar 

  • R. Schlickeiser, Cosmic ray transport in astrophysical plasmas. Phys. Plasmas 22(9), 091502 (2015). doi:10.1063/1.4928940

    Article  ADS  Google Scholar 

  • R. Schlickeiser, J. Steinacker, Particle acceleration in impulsive solar flares. II—Nonrelativistic protons and ions. Sol. Phys. 122, 29–52 (1989). doi:10.1007/BF00162827

    Article  ADS  Google Scholar 

  • U.K. Senanayake, V. Florinski, Is the acceleration of anomalous cosmic rays affected by the geometry of the termination shock? Astrophys. J. 778, 122 (2013). doi:10.1088/0004-637X/778/2/122

    Article  ADS  Google Scholar 

  • A. Shalchi, Nonlinear Cosmic Ray Diffusion Theories. Astrophysics and Space Science Library, vol. 362 2009. doi:10.1007/978-3-642-00309-7

    Google Scholar 

  • J. Skilling, Cosmic rays in the galaxy: convection or diffusion? Astrophys. J. 170, 265 (1971). doi:10.1086/151210

    Article  ADS  Google Scholar 

  • O. Stawicki, On solar wind magnetic fluctuations on their influence on the transport of charged particles in the heliosphere, PhD thesis, Ruhr Universität, Bochum, Germany, 2003

  • R. Stern, F. Effenberger, H. Fichtner, T. Schäfer, The space-fractional diffusion-advection equation: analytical solutions and critical assessment of numerical solutions. Fract. Calc. Appl. Anal. 17(1), 171–190 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  • E.C. Stone, A.C. Cummings, F.B. McDonald, B.C. Heikkila, N. Lal, W.R. Webber, Voyager 1 explores the termination shock region and the heliosheath beyond. Science 309, 2017–2020 (2005)

    Article  ADS  Google Scholar 

  • E.C. Stone, A.C. Cummings, F.B. McDonald, B.C. Heikkila, N. Lal, W.R. Webber, Voyager 1 observes low-energy galactic cosmic rays in a region depleted of heliospheric ions. Science 341, 150–153 (2013). doi:10.1126/science.1236408

    Article  ADS  Google Scholar 

  • R.D. Strauss, H. Fichtner, Cosmic ray anisotropies near the heliopause. Astron. Astrophys. 572, 3 (2014). doi:10.1051/0004-6361/201424842

    Article  ADS  Google Scholar 

  • R.D. Strauss, H. Fichtner, On aspects pertaining to the perpendicular diffusion of solar energetic particles. Astrophys. J. 801, 29 (2015). doi:10.1088/0004-637X/801/1/29

    Article  ADS  Google Scholar 

  • R.D. Strauss, M.S. Potgieter, S.E.S. Ferreira, Modeling ground and space based cosmic ray observations. Adv. Space Res. 49, 392 (2012)

    Article  ADS  Google Scholar 

  • R.D. Strauss, M.S. Potgieter, S.E.S. Ferreira, Modelling and observing Jovian electron propagation times in the inner heliosphere. Adv. Space Res. 51, 339–349 (2013)

    Article  ADS  Google Scholar 

  • R.D. Strauss, M.S. Potgieter, S.E.S. Ferreira, M.E. Hill, Modelling anomalous cosmic ray oxygen in the heliosheath. Astron. Astrophys. 522, 35 (2010). doi:10.1051/0004-6361/201014528

    Article  ADS  Google Scholar 

  • R.D. Strauss, M.S. Potgieter, I. Büsching, A. Kopp, Modeling the modulation of galactic and Jovian electrons by stochastic processes. Astrophys. J. 735, 83–96 (2011a)

    Article  ADS  Google Scholar 

  • R.D. Strauss, M.S. Potgieter, A. Kopp, I. Büsching, On the propagation times and energy losses of cosmic rays in the heliosphere. J. Geophys. Res. 116, 12105 (2011b)

    Article  Google Scholar 

  • R.D. Strauss, M.S. Potgieter, I. Büsching, A. Kopp, Modelling heliospheric current sheet drift in stochastic transport models. Astrophys. Space Sci. 339, 223–236 (2012)

    Article  ADS  Google Scholar 

  • R.D. Strauss, M.S. Potgieter, S.E.S. Ferreira, H. Fichtner, K. Scherer, Cosmic ray modulation beyond the heliopause: a hybrid modelling approach. Astrophys. J. Lett. 765, 18 (2013)

    Article  ADS  Google Scholar 

  • A.W. Strong, I.V. Moskalenko, Propagation of cosmic-ray nucleons in the galaxy. Astrophys. J. 509, 212–228 (1998). doi:10.1086/306470

    Article  ADS  Google Scholar 

  • A.W. Strong, I.V. Moskalenko, V.S. Ptuskin, Cosmic-ray propagation and interactions in the galaxy. Annu. Rev. Nucl. Part. Sci. 57, 285–327 (2007). doi:10.1146/annurev.nucl.57.090506.123011

    Article  ADS  Google Scholar 

  • A.W. Strong, E. Orlando, T.R. Jaffe, The interstellar cosmic-ray electron spectrum from synchrotron radiation and direct measurements. Astron. Astrophys. 534, 54 (2011)

    Article  ADS  Google Scholar 

  • A.V. Usmanov, M.L. Goldstein, W.H. Matthaeus, Three-fluid, three-dimensional magnetohydrodynamic solar wind model with eddy viscosity and turbulent resistivity. Astrophys. J. 788, 43 (2014). doi:10.1088/0004-637X/788/1/43

    Article  ADS  Google Scholar 

  • J.P. Vallée, The Milky Way’s spiral arms traced by magnetic fields, dust, gas, and stars. Astrophys. J. 454, 119 (1995). doi:10.1086/176470

    Article  ADS  Google Scholar 

  • J.P. Vallée, The spiral arms of the Milky Way: the relative location of each different arm tracer within a typical spiral arm width. Astron. J. 148, 5 (2014). doi:10.1088/0004-6256/148/1/5

    Article  ADS  Google Scholar 

  • A. Vogt, P. Dunzlaff, B. Heber, A. Kopp, P. Kühl, R.D. Strauss, Jovian electrons in the inner heliosphere: a parameter study on intensity profiles near Earth, in Proceedings, 34th International Cosmic Ray Conference (ICRC 2015), 2015

    Google Scholar 

  • E.E. Vos, M.S. Potgieter, New modeling of galactic proton modulation during the minimum of solar cycle 23/24. Astrophys. J. 815, 119 (2015). doi:10.1088/0004-637X/815/2/119

    Article  ADS  Google Scholar 

  • A. Wawrzynczak, R. Modzelewska, A. Gil, Stochastic approach to the numerical solution of the non-stationary Parker’s transport equation. J. Phys. Conf. Ser. 574(1), 012078 (2015a). doi:10.1088/1742-6596/574/1/012078

    Article  Google Scholar 

  • A. Wawrzynczak, R. Modzelewska, M. Kluczek, Numerical methods for solution of the stochastic differential equations equivalent to the non-stationary Parkers transport equation. J. Phys. Conf. Ser. 633(1), 012058 (2015b). doi:10.1088/1742-6596/633/1/012058

    Article  Google Scholar 

  • G.M. Webb, L.J. Gleeson, Green’s theorem and Green’s function for the steady-state cosmic-ray equation of transport. Astrophys. Space Sci. 50, 205–223 (1977)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • G.M. Webb, L.J. Gleeson, On the equation of transport for cosmic-ray particles in the interplanetary region. Astrophys. Space Sci. 60, 335–351 (1979)

    Article  ADS  Google Scholar 

  • M. Werner, R. Kissmann, A.W. Strong, O. Reimer, Spiral arms as cosmic ray source distributions. Astropart. Phys. 64, 18–33 (2015). doi:10.1016/j.astropartphys.2014.10.005

    Article  ADS  Google Scholar 

  • Y. Yamada, S. Yanagita, T. Yoshida, A stochastic view of the solar modulation phenomena of cosmic rays. Geophys. Res. Lett. 25, 2353–2356 (1998)

    Article  ADS  Google Scholar 

  • Y. Yamada, S. Yanagita, T. Yoshida, A stochastic simulation method for the solar cycle modulation of cosmic rays. Adv. Space Res. 23, 505–508 (1999). doi:10.1016/S0273-1177(99)00114-3

    Article  ADS  Google Scholar 

  • G.P. Zank, A. Dosch, P. Hunana, V. Florinski, W.H. Matthaeus, G.M. Webb, The transport of low-frequency turbulence in astrophysical flows. I. Governing equations. Astrophys. J. 745, 35 (2012)

    Article  ADS  Google Scholar 

  • M. Zhang, A Markov stochastic process theory of cosmic-ray modulation. Astrophys. J. 513, 409–420 (1999)

    Article  ADS  Google Scholar 

  • M. Zhang, Calculation of diffusive shock acceleration of charged particles by skew Brownian motion. Astrophys. J. 541, 428–435 (2000). doi:10.1086/309429

    Article  ADS  Google Scholar 

  • M. Zhang, X. Luo, N. Pogorelov, Where is the cosmic-ray modulation boundary of the heliosphere? Phys. Plasmas 22(9), 091501 (2015). doi:10.1063/1.4928945

    Article  ADS  Google Scholar 

  • M. Zhang, G. Qin, H. Rassoul, Propagation of solar energetic particles in three-dimensional interplanetary magnetic fields. Astrophys. J. 692, 109–132 (2009). doi:10.1088/0004-637X/692/1/109

    Article  ADS  Google Scholar 

  • G. Zimbardo, E. Amato, A. Bovet, F. Effenberger, A. Fasoli, H. Fichtner, I. Furno, K. Gustafson, P. Ricci, S. Perri, Superdiffusive transport in laboratory and astrophysical plasmas. J. Plasma Phys. 81(6), 495810601 (2015). doi:10.1017/S0022377815001117

    Article  Google Scholar 

  • P. Zuo, M. Zhang, H.K. Rassoul, The role of cross-shock potential on pickup ion shock acceleration in the framework of focused transport theory. Astrophys. J. 776, 93 (2013). doi:10.1088/0004-637X/776/2/93

    Article  ADS  Google Scholar 

  • P. Zuo, M. Zhang, K. Gamayunov, H. Rassoul, X. Luo, Energy spectrum of energetic particles accelerated by shock waves: from focused transport to diffusive acceleration. Astrophys. J. 738, 168 (2011). doi:10.1088/0004-637X/738/2/168

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank Horst Fichtner for his careful reading of the draft manuscript and Marius Potgieter, Ingo Büsching, Andreas Kopp, Yuri Litvinenko and Phillip Dunzlaff for collaborating on different aspects of SDE modeling. RDS is funded through the National Research Foundation (NRF) of South Africa. Opinions expressed and conclusions arrived at are those of the authors and are not necessarily to be attributed to the NRF. Partial financial support from the Alexander von Humboldt Foundation and the Fulbright Visiting Scholar Program are acknowledged. FE is supported by NASA grant NNX14AG03G and part of the work was completed during a fellowship at the University of Waikato.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frederic Effenberger.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Strauss, R.D.T., Effenberger, F. A Hitch-hiker’s Guide to Stochastic Differential Equations. Space Sci Rev 212, 151–192 (2017). https://doi.org/10.1007/s11214-017-0351-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11214-017-0351-y

Keywords

Navigation