Skip to main content
Log in

Simulations of Seismic Wave Propagation on Mars

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

We present global and regional synthetic seismograms computed for 1D and 3D Mars models based on the spectral-element method. For global simulations, we implemented a radially-symmetric Mars model with a 110 km thick crust (Sohl and Spohn in J. Geophys. Res., Planets 102(E1):1613–1635, 1997). For this 1D model, we successfully benchmarked the 3D seismic wave propagation solver SPECFEM3D_GLOBE (Komatitsch and Tromp in Geophys. J. Int. 149(2):390–412, 2002a; 150(1):303–318, 2002b) against the 2D axisymmetric wave propagation solver AxiSEM (Nissen-Meyer et al. in Solid Earth 5(1):425–445, 2014) at periods down to 10 s. We also present higher-resolution body-wave simulations with AxiSEM down to 1 s in a model with a more complex 1D crust, revealing wave propagation effects that would have been difficult to interpret based on ray theory. For 3D global simulations based on SPECFEM3D_GLOBE, we superimposed 3D crustal thickness variations capturing the distinct crustal dichotomy between Mars’ northern and southern hemispheres, as well as topography, ellipticity, gravity, and rotation. The global simulations clearly indicate that the 3D crust speeds up body waves compared to the reference 1D model, whereas it significantly changes surface waveforms and their dispersive character depending on its thickness. We also perform regional simulations with the solver SES3D (Fichtner et al. Geophys. J. Int. 179:1703–1725, 2009) based on 3D crustal models derived from surface composition, thereby addressing the effects of various distinct crustal features down to 2 s. The regional simulations confirm the strong effects of crustal variations on waveforms. We conclude that the numerical tools are ready for examining more scenarios, including various other seismic models and sources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • D. Al-Attar, J.H. Woodhouse, Calculation of seismic displacement fields in self-gravitating Earth models—applications of minors vectors and symplectic structure. Geophys. J. Int. 175(3), 1176–1208 (2008). doi:10.1111/j.1365-246X.2008.03961.x

    Article  ADS  Google Scholar 

  • D.L. Anderson, W.F. Miller, G.V. Latham, Y. Nakamura, M.N. Toksoz, A.M. Dainty, F.K. Duennebier, A.R. Lazarewicz, R.L. Kovach, T.C.D. Knight, Seismology on Mars. J. Geophys. Res. 82, 4524–4546 (1977)

    Article  ADS  Google Scholar 

  • W.B. Banerdt, S. Smrekar, P. Lognonné, T. Spohn, S.W. Asmar, D. Banfield, L. Boschi, U. Christensen, V. Dehant, W. Folkner, D. Giardini, W. Goetze, M. Golombek, M. Grott, T. Hudson, C. Johnson, G. Kargl, N. Kobayashi, J. Maki, D. Mimoun, A. Mocquet, P. Morgan, M. Panning, W.T. Pike, J. Tromp, T. van Zoest, R. Weber, M.A. Wieczorek, R. Garcia, K. Hurst, InSight: a discovery mission to explore the interior of Mars, in Lunar and Planetary Science Conference. Lunar and Planetary Inst. Technical Report, vol. 44, 2013, p. 1915

    Google Scholar 

  • D. Baratoux, H. Samuel, C. Michaut, M.J. Toplis, M. Monnereau, M. Wieczorek, R. Garcia, K. Kurita, Petrological constraints on the density of the martian crust. J. Geophys. Res., Planets 119(7), 1707–1727 (2014). doi:10.1002/2014JE004642

    Article  ADS  Google Scholar 

  • C. Bassin, G. Laske, G. Masters, The current limits of resolution for surface wave tomography in North America, in EOS, vol. F897, 2000, p. 81

    Google Scholar 

  • B.G. Bills, G.A. Neumann, D.E. Smith, M.T. Zuber, Improved estimate of tidal dissipation within Mars from MOLA observations of the shadow of Phobos. J. Geophys. Res., Planets 110, 7004 (2005). doi:10.1029/2004JE002376

    Article  ADS  Google Scholar 

  • B.A. Bolt, J.S. Derr, Free bodily vibrations of the terrestrial planets. Vistas Astron. 11(1), 69–102 (1969)

    Article  ADS  Google Scholar 

  • M. Böse, J. Clinton, S. Ceylan, F. Euchner, M. van Driel, A. Khan, D. Giardini, A probabilistic framework for single-station location of seismicity on Earth and Mars. Phys. Earth Planet. Sci. 262, 48–65 (2017)

    Article  ADS  Google Scholar 

  • E. Bozdağ, J. Trampert, On crustal corrections in surface wave tomography. Geophys. J. Int. 172, 1066–1082 (2008). doi:10.1111/j.1365-246X.2007.03690.x

    Article  ADS  Google Scholar 

  • Y. Capdeville, J.-J. Marigo, Second order homogenization of the elastic wave equation for non-periodic layered media. Geophys. J. Int. 170, 823–838 (2007). doi:10.1111/j.1365-246X.2007.03462.x

    Article  ADS  Google Scholar 

  • Y. Capdeville, E. Chaljub, J.P. Vilotte, J.P. Montagner, Coupling the spectral element method with a modal solution for elastic wave propagation in global Earth models. Geophys. J. Int. 152, 34–67 (2003)

    Article  ADS  Google Scholar 

  • S. Ceylan, M. van Driel, F. Euchner, A. Khan, J. Clinton, L. Krischer, M. Böse, D. Giardini, From initial models of seismicity, structure and noise to synthetic seismograms for Mars. Space Sci. Rev. (2017), this issue, in review

  • E. Chaljub, B. Valette, Spectral element modelling of three-dimensional wave propagation in a self-gravitating Earth with an arbitrarily stratified outer core. Geophys. J. Int. 158, 131–141 (2004)

    Article  ADS  Google Scholar 

  • E. Chaljub, Y. Capdeville, J.P. Vilotte, Solving elastodynamics in a fluid-solid heterogeneous sphere: a parallel spectral-element approximation on non-conforming grids. J. Comput. Phys. 187(2), 457–491 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • J.A.D. Connolly, The geodynamic equation of state: what and how. Geochem. Geophys. Geosyst. 10(10), (2009). Q10014. doi:10.1029/2009GC002540

    Article  ADS  Google Scholar 

  • T.G. Cowling, The non-radial oscillations of polytropic stars. Mon. Not. R. Astron. Soc. 101, 369–373 (1941)

    Article  ADS  Google Scholar 

  • H.P. Crotwell, T.J. Owens, J. Ritsema, The taup toolkit: flexible seismic travel-time and ray-path utilities. Seismol. Res. Lett. 70(2), 154–160 (1999). doi:10.1785/gssrl.70.2.154

    Article  Google Scholar 

  • F.A. Dahlen, J. Tromp, Theoretical Global Seismology (Princeton Univ. Press,, Princeton, NJ, USA, 1998)

    Google Scholar 

  • G. Dreibus, H. Wänke, Mars, a volatile-rich planet. Meteoritics 20, 367–381 (1985)

    ADS  Google Scholar 

  • M. Drilleau, Ã. Beucler, A. Mocquet, O. Verhoeven, G. Moebs, G. Burgos, J.-P. Montagner, P. Vacher, A Bayesian approach to infer radial models of temperature and anisotropy in the transition zone from surface wave dispersion curves. Geophys. J. Int. 195(2), 1165–1183 (2013). doi:10.1093/gji/ggt284. http://gji.oxfordjournals.org/content/195/2/1165.abstract

    Article  ADS  Google Scholar 

  • A.M. Dziewonski, D.L. Anderson, Preliminary reference Earth model. Phys. Earth Planet. Inter. 25(4), 297–356 (1981). doi:10.1016/0031-9201(81)90046-7. http://www.sciencedirect.com/science/article/pii/0031920181900467

    Article  ADS  Google Scholar 

  • A. Fichtner, B.L.N. Kennett, H. Igel, H.-P. Bunge, Full seismic waveform tomography for upper-mantle structure in the Australasian region using adjoint methods. Geophys. J. Int. 179, 1703–1725 (2009)

    Article  ADS  Google Scholar 

  • W.M. Folkner, C.F. Yoder, D.N. Yuan, E.M. Standish, R.A. Preston, Interior structure and seasonal mass redistribution of Mars from radio tracking of Mars pathfinder. Science 278(5344), 1749–1752 (1997). doi:10.1126/science.278.5344.1749. http://science.sciencemag.org/content/278/5344/1749

    Article  ADS  Google Scholar 

  • W.M. Folkner, S.W. Asmar, V. Dehant, R.W. Warwick, The rotation and interior structure experiment (RISE) for the InSight mission to Mars, in 43rd Lunar and Planetary Science Conference, Lunar and Planetary Inst., Houston, TX, 2012, p. 1721. http://www.lpi.usra.edu/meetings/lpsc2012/pdf/1721.pdf

    Google Scholar 

  • A. Genova, S. Goossensc, F.G. Lemoineb, E. Mazaricob, G.A. Neumannb, D.E. Smitha, M.T. Zubera, Seasonal and static gravity field of Mars from MGS, Mars Odyssey and MRO radio science. Icarus 272, 228–245 (2016)

    Article  ADS  Google Scholar 

  • F. Gilbert, Excitation of normal modes of the Earth by earthquake sources. Geophys. J. R. Astron. Soc. 22, 223–226 (1971)

    Article  ADS  Google Scholar 

  • M.P. Golombek, W.B. Banerdt, T.L. Tanaka, D.M. Tralli, A prediction of Mars seismicity from surface faulting. Science 258, 979–981 (1992)

    Article  ADS  Google Scholar 

  • T.V. Gudkova, V.N. Zharkov, Mars: interior structure and excitation of free oscillations. Phys. Earth Planet. Inter. 142, 1–22 (2004)

    Article  ADS  Google Scholar 

  • T.V. Hoolst, V. Dehant, F. Roosbeek, P. Lognonné, Tidally induced surface displacements, external potential variations, and gravity variations on Mars. Icarus 161, 281–296 (2003)

    Article  ADS  Google Scholar 

  • A. Khan, J.A.D. Connolly, Constraining the composition and thermal state of Mars from inversion of geophysical data. J. Geophys. Res., Planets 113, 7003 (2008). doi:10.1029/2007JE002996

    Article  ADS  Google Scholar 

  • A. Khan, J.A.D. Connolly, A. Pommier, J. Noir, Geophysical evidence for melt in the deep lunar interior and implications for lunar evolution. J. Geophys. Res., Planets 119, 2197–2221 (2014). doi:10.1002/2014JE004661

    Article  ADS  Google Scholar 

  • A. Khan, M. van Driel, M. Böse, D. Giardini, S. Ceylan, J. Yan, J. Clinton, F. Euchner, P. Lognonné, N. Murdoch, D. Mimoun, M. Panning, M. Knapmeyer, W.B. Banerdt, Single-station and single-event marsquake location and inversion for structure using synthetic martian waveforms. Phys. Earth Planet. Inter. 258, 28–42 (2016). doi:10.1016/j.pepi.2016.05.017. http://www.sciencedirect.com/science/article/pii/S0031920116300875

    Article  ADS  Google Scholar 

  • M. Knapmeyer, J. Oberst, E. Hauber, M. Wählisch, C. Deuchler, R. Wagner, Working models for spatial distribution and level of Mars’ seismicity. J. Geophys. Res. E, Planets 111(11), 1–23 (2006). doi:10.1029/2006JE002708

    Google Scholar 

  • D. Komatitsch, J. Tromp, Introduction to the spectral element method for three-dimensional seismic wave propagation. Geophys. J. Int. 139(3), 806–822 (1999). http://doi.wiley.com/10.1046/j.1365-246x.1999.00967.x

    Article  ADS  Google Scholar 

  • D. Komatitsch, J. Tromp, Spectral-element simulations of global seismic wave propagation-I. Validation. Geophys. J. Int. 149(2), 390–412 (2002a). http://doi.wiley.com/10.1046/j.1365-246X.2002.01653.x

    Article  ADS  Google Scholar 

  • D. Komatitsch, J. Tromp, Spectral-element simulations of global seismic wave propagation—II. Three-dimensional models, oceans, rotation and self-gravitation. Geophys. J. Int. 150(1), 303–318 (2002b). http://doi.wiley.com/10.1046/j.1365-246X.2002.01716.x

    Article  ADS  Google Scholar 

  • A.S. Konopliv, S.W. Asmar, W.M. Folkner, Ö. Karatekin, D.C. Nunes, S.E. Smrekar, C.F. Yoder, M.T. Zuber, Mars high resolution gravity fields from MRO, Mars seasonal gravity, and other dynamical parameters. Icarus 211(1), 401–428 (2011). doi:10.1016/j.icarus.2010.10.004. http://www.sciencedirect.com/science/article/pii/S0019103510003830

    Article  ADS  Google Scholar 

  • A.S. Konopliv, R.S. Park, W.M. Folkner, An improved {JPL} Mars gravity field and orientation from Mars orbiter and lander tracking data. Icarus 274, 253–260 (2016). doi:10.1016/j.icarus.2016.02.052. http://www.sciencedirect.com/science/article/pii/S0019103516001305

    Article  ADS  Google Scholar 

  • O.L. Kuskov, V.A. Kronrod, H. Annersten, Inferring upper-mantle temperatures from seismic and geochemical constraints: implications for Kaapvaal craton. Earth Planet. Sci. Lett. 244(12), 133–154 (2006). http://www.sciencedirect.com/science/article/pii/S0012821X06001403

    Article  ADS  Google Scholar 

  • V. Lainey, V. Dehant, M. Pätzold, First numerical ephemerides of the Martian moons. Astron. Astrophys. 465, 1075–1084 (2007). doi:10.1051/0004-6361:20065466

    Article  ADS  Google Scholar 

  • C. Larmat, J.-P. Montagner, Y. Capdeville, W.B. Banerdt, P. Lognonné, Numerical assessment of the effects of topography and crustal thickness on martian seismograms using a coupled modal solution-spectral element method. Icarus 196, 78–89 (2008)

    Article  ADS  Google Scholar 

  • P. Lognonné, C. Johnson, 10.03—planetary seismology, in Treatise on Geophysics, ed. by G. Schubert (Elsevier, Amsterdam, 2007), pp. 69–122. 978-0-444-52748-6. doi:10.1016/B978-044452748-6.00154-1

    Chapter  Google Scholar 

  • P. Lognonné, B. Mosser, Planetary seismology. Surv. Geophys. 14(3), 239–302 (1993)

    Article  ADS  Google Scholar 

  • P. Lognonné, W.T. Pike, Planetary seismometry, in Extraterrestrial Seismology (2015), pp. 36–48. doi:10.1017/CBO9781107300668.006, Chap. 3

    Chapter  Google Scholar 

  • P. Lognonne, J.G. Beyneix, W.B. Banerdt, S. Cacho, J.F. Karczewski, M. Morand, Ultra broad band seismology on InterMarsNet. Planet. Space Sci. 44, 1237–1249 (1996)

    Article  ADS  Google Scholar 

  • P. Lognonne, W.B. Banerdt, K. Hurst, D. Mimoun, R. Garcia, M. Lefeuvre, J. Gagnepain-Beyneix, M. Wieczorek, A. Mocquet, M. Panning, E. Beucler, S. Deraucourt, D. Giardini, L. Boschi, U. Christensen, W. Goetz, T. Pike, C. Johnson, R. Weber, C. Larmat, N. Kobayashi, J. Tromp, Insight and single-station broadband seismology: from signal and noise to interior structure determination, in Lunar and Planetary Institute Science Conference Abstracts, vol. 43, (2012), p. 1493

    Google Scholar 

  • J.C. Marty, G. Balmino, J. Duron, P. Rosenblatt, S.L. Maistre, A. Rivoldini, V. Dehant, T.V. Hoolst, Martian gravity field model and its time variations from {MGS} and odyssey data. Planet. Space Sci. 57(3), 350–363 (2009). doi:10.1016/j.pss.2009.01.004. http://www.sciencedirect.com/science/article/pii/S0032063309000178

    Article  ADS  Google Scholar 

  • H.Y. McSween Jr., What we have learned about Mars from SNC meteorites. Meteoritics 29, 757–779 (1994)

    Article  ADS  Google Scholar 

  • N. Metthez, Analysing effects of heterogeneities on Martian synthetic waveforms using full waveform and thermodynamic modeling. MSc thesis, ETH Z ”urich (2016)

  • D. Mimoun, P. Lognonne, W.B. Banerdt, K. Hurst, S. Deraucourt, J. Gagnepain-Beyneix, T. Pike, S. Calcutt, M. Bierwirth, R. Roll, P. Zweifel, D. Mance, O. Robert, T. Nebut, S. Tillier, P. Laudet, L. Kerjean, R. Perez, D. Giardini, U. Christenssen, R. Garcia, The InSight SEIS experiment, in Lunar and Planetary Institute Science Conference Abstracts, vol. 43, (2012), p. 1493

    Google Scholar 

  • D. Mimoun, N. Murdoch, P. Lognonne, W.T. Pike, K. Hurst, the SEIS Team, The seismic noise model of the insight mission to Mars. Space Sci. Rev. (2017), this issue, in review

  • A. Mocquet, P. Vacher, O.G.C. Sotin, Theoretical seismic models of Mars: the importance of the iron content of the mantle. Planet. Space Sci. 44(11), 1251–1268 (1996)

    Article  ADS  Google Scholar 

  • J. Montagner, N. Jobert, Vectorial tomography—II. Application to the Indian Ocean. Geophys. J. Int. 94, 309–344 (1988)

    Article  ADS  Google Scholar 

  • Y., Nakamura, Planetary seismology: early observational results, in Extraterrestrial Seismology (2015), pp. 36–48. doi:10.1017/CBO9781107300668.006, Chap. 3

    Google Scholar 

  • G, A. Neumann, M.T. Zuber, M.A. Wieczorek, P.J. McGovern, F.G. Lemoine, Crustal structure of Mars from gravity and topography. J. Geophys. Res., Planets 109(E8), E08002 (2004). doi:10.1029/2004JE002262

    Article  ADS  Google Scholar 

  • F. Nimmo, U.H. Faul, Dissipation at tidal and seismic frequencies in a melt-free, anhydrous Mars. J. Geophys. Res., Planets 118, 2558–2569 (2013). doi:10.1002/2013JE004499

    Article  ADS  Google Scholar 

  • T. Nissen-Meyer, M. van Driel, S. Stähler, K. Hosseini, S. Hempel, L. Auer, A. Colombi, A. Fournier, AxiSEM: broadband 3-D seismic wavefields in axisymmetric media. Solid Earth 5(1), 425–445 (2014). doi:10.5194/se-5-425-2014

    Article  ADS  Google Scholar 

  • E.A. Okal, D.L. Anderson, Theoretical models for Mars and their seismic properties. Icarus 33, 514–528 (1978)

    Article  ADS  Google Scholar 

  • M.P. Panning, V. Lekić, B. Romanowicz, Importance of crustal corrections in the development of a new global model of radial anisotropy. J. Geophys. Res. 115, 12325 (2010)

    Article  ADS  Google Scholar 

  • M.P. Panning, É. Beucler, M. Drilleau, A. Mocquet, P. Lognonné, W.B. Banerdt, Verifying single-station seismic approaches using Earth-based data: preparation for data return from the InSight mission to Mars. Icarus 248, 230–242 (2015). doi:10.1016/j.icarus.2014.10.035

    Article  ADS  Google Scholar 

  • M. Panning, P. Lognonne, B.W. Banerdt, R. Garcia, M. Golombek, S. Kedar, B. Knapmeyer-Endrun, A. Mocquet, N.A. Teanby, J. Tromp, R. Weber, E. Beucler, J.-F. Blanchette-Guertin, E. Bozdağ, M. Drilleau, T. Gudkova, S. Hempel, A. Khan, V. Lekic, N. Murdoch, A.-C. Plesa, A. Rivoldini, N. Schmerr, Y. Ruan, O. Verhoeven, C. Gao, U. Christensen, J. Clinton, V. Dehant, D. Giardini, D. Mimoun, W.T. Pike, S. Smrekar, M. Wieczorek, M. Knapmeyer, J. Wookey, Planned products of the Mars structure service for the InSight mission to Mars. Space Sci. Rev. (2017). doi:10.1007/s11214-016-0317-5, this issue

    Google Scholar 

  • D. Peter, D. Komatitsch, Y. Luo, R. Martin, N. Le Goff, E. Casarotti, P. Le Loher, F. Magnoni, Q. Liu, C. Blitz, T. Nissen-Meyer, P. Basini, J. Tromp, Forward and adjoint simulations of seismic wave propagation on fully unstructured hexahedral meshes. Geophys. J. Int. 186(2), 721–739 (2011). http://doi.wiley.com/10.1111/j.1365-246X.2011.05044.x

    Article  ADS  Google Scholar 

  • A.-C. Plesa, M. Grott, N. Tosi, D. Breuer, T. Spohn, M.A. Wieczorek, How large are present-day heat flux variations across the surface of Mars? J. Geophys. Res., Planets 121, 2386–2403 (2016). doi:10.1002/2016JE005126

    Article  ADS  Google Scholar 

  • J. Ritsema, H.-J. van Heijst, J.H. Woodhouse, A. Deauss, Long-period body-wave traveltimes through the crust: implication for crustal corrections and seismic tomography. Geophys. J. Int. 179, 1255–1261 (2009). doi:10.1111/j.1365246X.2009.04365.x

    Article  ADS  Google Scholar 

  • A. Rivoldini, T. Van Hoolst, O. Verhoeven, A. Mocquet, V. Dehant, Geodesy constraints on the interior structure and composition of Mars. Icarus 213, 451–472 (2011). doi:10.1016/j.icarus.2011.03.024

    Article  ADS  Google Scholar 

  • D.E. Smith, M.T. Zuber, S.C. Solomon, R.J. Phillips, J.W. Head, J.B. Garvin, W.B. Banerdt, D.O. Muhleman, G.H. Pettengill, G.A. Neumann, F.G. Lemoine, J.B. Abshire, O. Aharonson, C. Brown David, S.A. Hauck, A.B. Ivanov, P.J. McGovern, H.J. Zwally, T.C. Duxbury, The global topography of Mars and implications for surface evolution. Science 284(5419), 1495–1503 (1999). doi:10.1126/science.284.5419.1495. http://science.sciencemag.org/content/284/5419/1495

    Article  ADS  Google Scholar 

  • F. Sohl, T. Spohn, The interior structure of Mars: implications from SNC meteorites. J. Geophys. Res., Planets 102(E1), 1613–1635 (1997). doi:10.1029/96JE03419

    Article  ADS  Google Scholar 

  • T. Spohn, M. Grott, S. Smrekar, C. Krause, T.L. Hudson, the HP3 instrument team, Measuring the martian heat using the heat and physical properties package (HP3), in 45th Lunar and Planetary Science Conference, Lunar and Planetary Inst., Houston, TX, (2014), p. 1916. http://www.hou.usra.edu/meetings/lpsc2014/pdf/1916.pdf

    Google Scholar 

  • G.J. Taylor, The bulk composition of Mars. Chem. Erde/Geochem. 73, 401–420 (2013). doi:10.1016/j.chemer.2013.09.006

    ADS  Google Scholar 

  • N.A. Teanby, J. Wookey, Seismic detection of meteorite impacts on Mars. Phys. Earth Planet. Inter. 186, 70–80 (2011)

    Article  ADS  Google Scholar 

  • A.H. Treiman, The parental magma of the Nakhla achondrite: ultrabasic volcanism on the shergottite parent body. Geochim. Cosmochim. Acta 50, 1061–1070 (1986). doi:10.1016/0016-7037(86)90388-1

    Article  ADS  Google Scholar 

  • J. Tromp, D. Komatitsch, V. Hjörleifsdóttir, Q.L.H. Zhu, D. Peter, E. Bozdag, D. McRitchie, P. Friberg, C. Trabant, A. Hutko, Near real-time simulations of global CMT earthquakes. Geophys. J. Int. 183, 381–389 (2010). doi:10.1111/j.1365-246X.2010.04734.x

    Article  ADS  Google Scholar 

  • M. van Driel, L. Krischer, S.C. Stähler, K. Hosseini, T. Nissen-Meyer, Instaseis: instant global seismograms based on a broadband waveform database. Solid Earth 6(2), 701–717 (2015). doi:10.5194/se-6-701-2015

    Article  ADS  Google Scholar 

  • O. Verhoeven, A. Rivoldini, P. Vacher, A. Mocquet, G. Choblet, M. Menvielle, V. Dehant, T. Van Hoolst, J. Sleewaegen, J.-P. Barriot, P. Lognonné, Interior structure of terrestrial planets: modeling Mars’ mantle and its electromagnetic, geodetic, and seismic properties. J. Geophys. Res., Planets 110, 4009 (2005). doi:10.1029/2004JE002271

    Article  ADS  Google Scholar 

  • H. Wänke, G. Dreibus, Chemistry and accretion of Mars. Philos. Trans. R. Soc. Lond. A 349, 2134–2137 (1994)

    Article  Google Scholar 

  • M.A. Wieczorek, M.T. Zuber, Thickness of the martian crust: Improved constraints from geoid-to-topography ratios. J. Geophys. Res., Planets 109(E1), E01009 (2004). doi:10.1029/2003JE002153

    Article  ADS  Google Scholar 

  • C.F. Yoder, A.S. Konopliv, D.N. Yuan, E.M. Standish, W.M. Folkner, Fluid core size of Mars from detection of the solar tide. Science 300(5617), 299–303 (2003)

    Article  ADS  Google Scholar 

  • V.N. Zharkov, T.V. Gudkova, Planetary seismology. Planet. Space Sci. 45(4), 401–407 (1997)

    Article  ADS  Google Scholar 

  • V.N. Zharkov, T.V. Gudkova, Construction of martian interior model. Sol. Syst. Res. 39(5), 343–373 (2005)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge editor Christopher Russel and two anonymous reviewers for constructive comments which improved the manuscript. The open source spectral-element software package SPECFEM3D_GLOBE is freely available via the Computational Infrastructure for Geodynamics (CIG; geodynamics.org) and the Mars version used in this study is available on github.com/SeismoMars/SPECFEM3D_MARS. For SPECFEM3D_GLOBE simulations computational resources were provided by the Princeton Institute for Computational Science & Engineering (PICSciE). The AxiSEM and SES3D parts were supported by grants from the Swiss National Science Foundation (SNF-ANR project 157133 ”Seismology on Mars”) and from the Swiss National Supercomputing Centre (CSCS) under project ID s628.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ebru Bozdağ.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bozdağ, E., Ruan, Y., Metthez, N. et al. Simulations of Seismic Wave Propagation on Mars. Space Sci Rev 211, 571–594 (2017). https://doi.org/10.1007/s11214-017-0350-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11214-017-0350-z

Keywords

Navigation