MWR: Microwave Radiometer for the Juno Mission to Jupiter

  • M. A. Janssen
  • J. E. Oswald
  • S. T. Brown
  • S. Gulkis
  • S. M. Levin
  • S. J. Bolton
  • M. D. Allison
  • S. K. Atreya
  • D. Gautier
  • A. P. Ingersoll
  • J. I. Lunine
  • G. S. Orton
  • T. C. Owen
  • P. G. Steffes
  • V. Adumitroaie
  • A. Bellotti
  • L. A. Jewell
  • C. Li
  • L. Li
  • S. Misra
  • F. A. Oyafuso
  • D. Santos-Costa
  • E. Sarkissian
  • R. Williamson
  • J. K. Arballo
  • A. Kitiyakara
  • A. Ulloa-Severino
  • J. C. Chen
  • F. W. Maiwald
  • A. S. Sahakian
  • P. J. Pingree
  • K. A. Lee
  • A. S. Mazer
  • R. Redick
  • R. E. Hodges
  • R. C. Hughes
  • G. Bedrosian
  • D. E. Dawson
  • W. A. Hatch
  • D. S. Russell
  • N. F. Chamberlain
  • M. S. Zawadski
  • B. Khayatian
  • B. R. Franklin
  • H. A. Conley
  • J. G. Kempenaar
  • M. S. Loo
  • E. T. Sunada
  • V. Vorperion
  • C. C. Wang
Article

Abstract

The Juno Microwave Radiometer (MWR) is a six-frequency scientific instrument designed and built to investigate the deep atmosphere of Jupiter. It is one of a suite of instruments on NASA’s New Frontiers Mission Juno launched to Jupiter on August 5, 2011. The focus of this paper is the description of the scientific objectives of the MWR investigation along with the experimental design, observational approach, and calibration that will achieve these objectives, based on the Juno mission plan up to Jupiter orbit insertion on July 4, 2016. With frequencies distributed approximately by octave from 600 MHz to 22 GHz, the MWR will sample the atmospheric thermal radiation from depths extending from the ammonia cloud region at around 1 bar to pressure levels as deep as 1000 bars. The primary scientific objectives of the MWR investigation are to determine the presently unknown dynamical properties of Jupiter’s subcloud atmosphere and to determine the global abundance of oxygen and nitrogen, present in the atmosphere as water and ammonia deep below their respective cloud decks. The MWR experiment is designed to measure both the thermal radiation from Jupiter and its emission-angle dependence at each frequency relative to the atmospheric local normal with high accuracy. The antennas at the four highest frequencies (21.9, 10.0, 5.2, and 2.6 GHz) have ∼12° beamwidths and will achieve a spatial resolution approaching 600 km near perijove. The antennas at the lowest frequencies (0.6 and 1.25 GHz) are constrained by physical size limitations and have 20° beamwidths, enabling a spatial resolution of as high as 1000 km to be obtained. The MWR will obtain Jupiter’s brightness temperature and its emission-angle dependence at each point along the subspacecraft track, over angles up to 60° from the normal over most latitudes, during at least six perijove passes after orbit insertion. The emission-angle dependence will be obtained for all frequencies to an accuracy of better than one part in \(10^{3}\), sufficient to detect small variations in atmospheric temperature and absorber concentration profiles that distinguish dynamical and compositional properties of the deep Jovian atmosphere.

Keywords

Jupiter Microwave radiometry Synchrotron emission Atmosphere Atmospheric composition Atmospheric dynamics 

References

  1. V. Adumitroaie, S.M. Levin, D. Santos-Costa, S. Gulkis, M.A. Janssen, in Aerospace Conference 2016 (IEEE, New York,2016), pp. 1–11 CrossRefGoogle Scholar
  2. K. Altwegg et al., Science 347, 1261952 (2015) CrossRefGoogle Scholar
  3. M. Asplund, N. Grevesse, J. Sauval, P. Scott, Annu. Rev. Astron. Astrophys. 47, 481–522 (2009) ADSCrossRefGoogle Scholar
  4. S.K. Atreya, Atmospheres and Ionospheres of the Outer Planets and Their Satellites (Springer, New York, 1986) CrossRefGoogle Scholar
  5. S.K. Atreya, M.H. Wong, T.C. Owen, P.R. Mahaffy, H.B. Niemann, I. de Pater, Planet. Space Sci. 47, 1243–1262 (1999) ADSCrossRefGoogle Scholar
  6. S.K. Atreya, P.R. Mahaffy, H.B. Niemann, T.C. Owen, in Highlights of Astronomy, vol. 12, ed. by H. Rickman (Springer, New York, 2002), pp. 597–601 Google Scholar
  7. S.K. Atreya, A. Crida, T. Guillot, J.I. Lunine, N. Madhusudhan, M. Mousis, in Saturn in the 21st Century, ed. by K. Baines, M. Flasar, N. Krupp, T. Stallard (Cambridge Univ. Press, Cambridge, 2017 Google Scholar
  8. J.W.M. Baars, R. Genzel, I.I.K. Pauliny-Toth, A. Witzel, Astron. Astrophys. 61, 99–106 (1977) ADSGoogle Scholar
  9. J.J. Barnes, D.A. Kring, R. Tartese, I.A. Franchi, M. Anand, S.S. Russell, Nat. Commun. 7, 11684 (2016) ADSCrossRefGoogle Scholar
  10. A. Bellotti, P.G. Steffes, G. Chinsomboon, Icarus 280, 255–267 (2016) ADSCrossRefGoogle Scholar
  11. G.L. Berge, S. Gulkis, in Jupiter, ed. by T. Gehrels (Univ. of Arizona Press, Tucson, 1976), pp. 621–692 Google Scholar
  12. G.L. Bjoraker, M.H. Wong, I. de Pater, M. Ádámkovics, Astrophys. J. (2015). doi:10.1088/0004-637X/810/2/122, astro-ph.EP Google Scholar
  13. S.T. Brown, S. Desai, W. Lu, A. Tanner, IEEE Trans. Geosci. Remote Sens. 45(7), 1908–1920 (2007). doi:10.1109/TGRS.2006.888098 ADSCrossRefGoogle Scholar
  14. S.T. Brown, IEEE Trans. Geosci. Remote Sens. 51, 1531–1543 (2013) ADSCrossRefGoogle Scholar
  15. N.F. Chamberlain, J.C. Chen, R.E. Hodges, R.C. Hughes, J.K. Jakoboski, in IEEE APS/URSI Conference, Toronto, Canada (2010) Google Scholar
  16. J.E.P. Connerney, M. Benn, J.B. Bjarno, T. Denver, j. Espley, J.L. Jorgensen, P.S. Jorgensen, P. Lawton, A. Malinnikova, J.M. Merayo, S. Murphy, J. Odom, R. Oliversen, R. Schurr, D. Sheppard, E.J. Smith, Space Sci. Rev. (2017). doi:10.1007/s11214-017-0334-z Google Scholar
  17. I. de Pater, S.T. Massie, Icarus 62, 143–171 (1985) ADSCrossRefGoogle Scholar
  18. I. de Pater, J.R. Dickel, Astrophys. J. 308, 459–471 (1986) ADSCrossRefGoogle Scholar
  19. I. de Pater, D. Dunn, P. Romani, K. Zahnle, Icarus 149, 66–78 (2001) ADSCrossRefGoogle Scholar
  20. I. de Pater, D. DeBoer, M. Marley, R. Freedman, R. Young, Icarus 173, 425–438 (2005) ADSCrossRefGoogle Scholar
  21. I. de Pater, R.J. Sault, B. Butler, D. DeBoer, M.H. Wong, Science 352, 1198–1201 (2016) ADSCrossRefGoogle Scholar
  22. K. Devaraj, P.G. Steffes, D. Duong, Icarus 241, 165–179 (2014) ADSCrossRefGoogle Scholar
  23. D.T. Duong, P.G. Steffes, S. Noorizadeh, Icarus 229, 121–131 (2014) ADSCrossRefGoogle Scholar
  24. G.B. Field, J. Geophys. Res. 64, 1169–1177 (1959) ADSCrossRefGoogle Scholar
  25. W.M. Folkner, R. Woo, S. Nandi, J. Geophys. Res. 103(E10), 22,847–22,855 (1998) ADSCrossRefGoogle Scholar
  26. J. Gibson, W.J. Welch, I. de Pater, Icarus 173, 439–446 (2005) ADSCrossRefGoogle Scholar
  27. H.B. Garrett, S.M. Levin, S.J. Bolton, R.W. Evans, B. Bhattacharya, Geophys. Res. Lett. 32, 4104–4108 (2005) ADSCrossRefGoogle Scholar
  28. D. Gautier, F. Hersant, O. Mousis, J.I. Lunine, Astrophys. J. 550, L227–L230 (2001) ADSCrossRefGoogle Scholar
  29. S. Gulkis, T.R. McDonough, H. Craft, Icarus 10, 421–427 (1969) ADSCrossRefGoogle Scholar
  30. S. Gulkis, R. Poynter, Phys. Earth Planet. Inter. 6, 36–43 (1972) ADSCrossRefGoogle Scholar
  31. T.R. Hanley, P.G. Steffes, B.M. Karpowicz, Icarus 202, 316–335 (2009) ADSCrossRefGoogle Scholar
  32. J. Harrington, I. de Pater, S.H. Brecht, D. Deming, V. Meadows, K. Zahnle, P.D. Nicholson, in Jupiter. The Planet, Satellites and Magnetosphere, ed. by F. Bagenal, T.E. Dowling, W.B. McKinnon (Cambridge Univ. Press, Cambridge, 2004), p. 159–184 Google Scholar
  33. M. Heimpel, T. Gastine, J. Wicht, Nat. Geosci. 9, 19–23 (2016) ADSCrossRefGoogle Scholar
  34. F. Hersant, D. Gautier, J.I. Lunine, Planet. Space Sci. 52, 623–641 (2004) ADSCrossRefGoogle Scholar
  35. M.A. Janssen, Atmospheric Remote Sensing by Microwave Radiometry (Wiley, New York, 1993) Google Scholar
  36. M.A. Janssen, C.S. Ruf, S.J. Keihm, IEEE Trans. Geosci. Remote Sens. 33, 138–146 (1995) ADSCrossRefGoogle Scholar
  37. M.A. Janssen, M.D. Hofstadter, S. Gulkis, A.P. Ingersoll, M. Allison, S.J. Bolton, L.W. Kamp, Icarus 173, 447–453 (2005) ADSCrossRefGoogle Scholar
  38. M.A. Janssen, A. Ingersoll, M.D. Allison, S. Gulkis, A. Laraia, K. Baines, S. Edgington, Y. Anderson, K. Kelleher, Icarus 226, 522–535 (2013) ADSCrossRefGoogle Scholar
  39. B.M. Karpowicz, P.G. Steffes, Icarus 212, 210–223 (2011a) ADSCrossRefGoogle Scholar
  40. B.M. Karpowicz, P.G. Steffes, Icarus 214, 783 (2011b) ADSCrossRefGoogle Scholar
  41. K.I. Kellerman, Astron. Astrophys. 500, 143–144 (2009) ADSCrossRefGoogle Scholar
  42. S.M. Levin, S. Bolton, B. Bhattacharya, S. Gulkis, M. Klein, R. Thorne, Geophys. Res. Lett. 28, 903–906 (2001) ADSCrossRefGoogle Scholar
  43. Y. Lian, A.P. Showman, Icarus 207, 373–393 (2010) ADSCrossRefGoogle Scholar
  44. G.F. Lindal, G.E. Wood, G.S. Levy, J.D. Anderson, D.N. Sweetnam, H.B. Hotz, B.J. Buckles, D.P. Holmes, P.E. Doms, V.R. Eshleman, G.L. Tyler, T.A. Croft, J. Geophys. Res. 86, 8721 (1981) ADSCrossRefGoogle Scholar
  45. C.H. Lineweaver, L. Tenario, G.F. Smoot, P. Keegstra, A.J. Banday, P. Lubin, Astrophys. J. 470, 38–42 (1996) ADSCrossRefGoogle Scholar
  46. J. Liu, T. Schneider, J. Atmos. Sci. 67, 3652–3672 (2010) ADSCrossRefGoogle Scholar
  47. J.J. Liu, T. Schneider, J. Atmos. Sci. 72, 389–408 (2015) ADSCrossRefGoogle Scholar
  48. E. Lorenz, Tellus 7, 157–167 (1955) ADSCrossRefGoogle Scholar
  49. J.I. Lunine, D.J. Stevenson, Astrophys. J. Suppl. Ser. 58, 493–531 (1985) ADSCrossRefGoogle Scholar
  50. V. Lucarini, S. Pascale, R. Boschi, E. Kirk, N. Iro, Astron. Nachr. 334, 576–588 (2013) ADSCrossRefGoogle Scholar
  51. P.R. Mahaffy, H.B. Niemann, J.E. Demick, Bull. Am. Astron. Soc. 31, 5205 (1999) Google Scholar
  52. P.R. Mahaffy, H.B. Niemann, A. Alpert, S.K. Atreya, J. Demick, T.M. Donahue, D.N. Harpold, T.C. Owen, J. Geophys. Res., Planets 105(E6), 15061–15071 (2000) ADSCrossRefGoogle Scholar
  53. B. Marty, Earth Planet. Sci. Lett. 313, 56–66 (2012) ADSCrossRefGoogle Scholar
  54. E.C. Morris, R.W. Parsons, Aust. J. Phys. 23, 335–349 (1970) ADSGoogle Scholar
  55. H.B. Niemann, S.K. Atreya, G.R. Carignan, T.M. Donahue, J.A. Haberman, D.N. Harpold, R.E. Hartle, D.M. Hunten, W.T. Kasprzak, P.R. Mahaffy, T.C. Owen, N.W. Spencer, S.H. Way, Science 272, 846–849 (1996) ADSCrossRefGoogle Scholar
  56. H.B. Niemann et al., J. Geophys. Res., Planets 103, 22831–22845 (1998) ADSCrossRefGoogle Scholar
  57. T. Owen, A. Barnun, I. Kleinfeld, Nature 358, 43–46 (1992) ADSCrossRefGoogle Scholar
  58. T. Owen, A. Barnum, Icarus 116, 215–226 (1995) ADSCrossRefGoogle Scholar
  59. T.C. Owen, P.R. Mahaffy, H.B. Niemann, S.K. Atreya, T.M. Donahue, A. Bar-Nun, I. de Pater, Nature 402, 269–270 (1999) ADSCrossRefGoogle Scholar
  60. B.M. Partridge, B.M. Lopez-Caniego, R.A. Perley, J. Stevens, B.J. Butler, G. Rocha, B. Waler, A. Zacchei, arXiv:1506.02892 [astro-ph.CO] (2016)
  61. J.P. Peixoto, A.H. Oort, Physics of Climate (Am. Inst. of Physics, New York, 1992) Google Scholar
  62. J. Peng, C.S. Ruf, S.T. Brown, J. Piepmeier, in IEEE International Geoscience and Remote Sensing Symposium, Barcelona (2007), pp. 2416–2418 Google Scholar
  63. R.A. Perley, B.J. Butler, Astrophys. J. Suppl. Ser. 204, 1–20 (2013) ADSCrossRefGoogle Scholar
  64. J.B. Pollack, O. Hubickyj, P. Bodenheimer, J. Lissauer, M. Podolak, Y. Greenzweig, Icarus 124, 62–85 (1996) ADSCrossRefGoogle Scholar
  65. D. Santos-Costa, S.J. Bolton, Planet. Space Sci. 56, 326–345 (2009) ADSCrossRefGoogle Scholar
  66. D. Santos-Costa, I. de Pater, R.J. Sault, M.A. Janssen, S.M. Levin, S.J. Bolton, Astron. Astrophys. 568(A61), 1–11 (2014) Google Scholar
  67. R.J. Sault, C. Engel, I. de Pater, Icarus 168, 336–343 (2004) ADSCrossRefGoogle Scholar
  68. G. Schubert, J. Mitchell, in Comparative Climatology of Terrestrial Planets, ed. by S.J. Mackwell, A.A. Simon-Miller, J.W. Harder, M.A. Bullock (Univ. of Arizona Press, Tuscon, 2013), pp. 181–191 Google Scholar
  69. A. Seiff, D.B. Kirk, T.C.D. Knight, R.E. Young, J.D. Mihalov, L.A. Young, F.S. Milos, G. Schubert, R.C. Blanchard, D. Atkinson, J. Geophys. Res. 103, 22857 (1998) ADSCrossRefGoogle Scholar
  70. A.P. Showman, I. de Pater, Icarus 174, 192–204 (2005) ADSCrossRefGoogle Scholar
  71. S.S. Sobjaerg, N. Skou, J.E. Balling, IEEE Trans. Geosci. Remote Sens. 47(9), 3134–3139 (2009) ADSCrossRefGoogle Scholar
  72. P.G. Steffes, T.R. Hanley, B.M. Karpowicz, K. Devaraj, S. Noorizadeh, D. Duong, G. Chinsomboon, A. Bellotti, M.A. Janssen, S.J. Bolton, Space Sci. Rev. (2017). doi:10.1007/s11214-016-0265-0 Google Scholar
  73. L.A. Sromovsky, A.D. Collard, P.M. Fry, G.S. Orton, M.T. Lemmon, M.G. Tomasko, R.S. Freedman, J. Geophys. Res. 103, 22929–22978 (1998) ADSCrossRefGoogle Scholar
  74. K. Sugiyama, K. Nakajima, M. Odaka, K. Kuramoto, Y.Y. Hayashi, Icarus 229, 71–91 (2014) ADSCrossRefGoogle Scholar
  75. F. Tabataba-Vakili, P.L. Read, S.R. Lewis, L. Montabone, T. Ruan, Y. Wang, A. Valeanu, R. Young, Geophys. Res. Lett. 42, 8320–8327 (2015) ADSCrossRefGoogle Scholar
  76. S.I. Thomson, M.E. McIntyre, J. Atmos. Sci. 73, 1119–1141 (2016) ADSCrossRefGoogle Scholar
  77. A.R. Vasavada, A.P. Showman, Rep. Prog. Phys. 68, 1935–1996 (2005) ADSCrossRefGoogle Scholar
  78. F. Wentz, D. Levine, Remote sensing systems. Technical report 011811 (2011) Google Scholar
  79. M.H. Weatherspoon, L.P. Dunleavy, IEEE Trans. Microw. Theory Tech. 54(2), 608–614 (2006) ADSCrossRefGoogle Scholar
  80. M.H. Wong, P.R. Mahaffy, S.K. Atreya, H.B. Niemann, T.C. Owen, Icarus 171, 153–170 (2004) ADSCrossRefGoogle Scholar
  81. G.T. Wrixon, W.J. Welch, D. Thornton, Astrophys. J. 169, 171–183 (1971) ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • M. A. Janssen
    • 1
  • J. E. Oswald
    • 1
  • S. T. Brown
    • 1
  • S. Gulkis
    • 1
  • S. M. Levin
    • 1
  • S. J. Bolton
    • 2
  • M. D. Allison
    • 3
  • S. K. Atreya
    • 4
  • D. Gautier
    • 5
  • A. P. Ingersoll
    • 6
  • J. I. Lunine
    • 7
  • G. S. Orton
    • 1
  • T. C. Owen
    • 8
  • P. G. Steffes
    • 9
  • V. Adumitroaie
    • 1
  • A. Bellotti
    • 9
  • L. A. Jewell
    • 1
  • C. Li
    • 1
  • L. Li
    • 10
  • S. Misra
    • 1
  • F. A. Oyafuso
    • 1
  • D. Santos-Costa
    • 2
  • E. Sarkissian
    • 1
  • R. Williamson
    • 1
  • J. K. Arballo
    • 1
  • A. Kitiyakara
    • 1
  • A. Ulloa-Severino
    • 1
  • J. C. Chen
    • 1
  • F. W. Maiwald
    • 1
  • A. S. Sahakian
    • 1
  • P. J. Pingree
    • 1
  • K. A. Lee
    • 1
  • A. S. Mazer
    • 1
  • R. Redick
    • 1
  • R. E. Hodges
    • 1
  • R. C. Hughes
    • 1
  • G. Bedrosian
    • 1
  • D. E. Dawson
    • 1
  • W. A. Hatch
    • 1
  • D. S. Russell
    • 1
  • N. F. Chamberlain
    • 1
  • M. S. Zawadski
    • 1
  • B. Khayatian
    • 1
  • B. R. Franklin
    • 1
  • H. A. Conley
    • 1
  • J. G. Kempenaar
    • 1
  • M. S. Loo
    • 1
  • E. T. Sunada
    • 1
  • V. Vorperion
    • 1
  • C. C. Wang
    • 1
  1. 1.Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaUSA
  2. 2.Southwest Research InstituteSan AntonioUSA
  3. 3.Goddard Institute for Space StudiesNew YorkUSA
  4. 4.University of MichiganAnn ArborUSA
  5. 5.Observitoire de Paris-Site de MeudonMeudon CedexFrance
  6. 6.California Institute of TechnologyPasadenaUSA
  7. 7.Cornell UniversityIthacaUSA
  8. 8.Institute for AstronomyUniversity of HawaiiHonoluluUSA
  9. 9.Georgia Institute of TechnologyAtlantaUSA
  10. 10.University of HoustonHoustonUSA

Personalised recommendations