Advertisement

Space Science Reviews

, Volume 211, Issue 1–4, pp 239–258 | Cite as

Experimental Investigation of InSight HP3 Mole Interaction with Martian Regolith Simulant

Quasi-Static and Dynamic Penetration Testing
  • Jason P. Marshall
  • Troy L. Hudson
  • José E. Andrade
Article

Abstract

The InSight mission launches in 2018 to characterize several geophysical quantities on Mars, including the heat flow from the planetary interior. This quantity will be calculated by utilizing measurements of the thermal conductivity and the thermal gradient down to 5 meters below the Martian surface. One of the components of InSight is the Mole, which hammers into the Martian regolith to facilitate these thermal property measurements. In this paper, we experimentally investigated the effect of the Mole’s penetrating action on regolith compaction and mechanical properties. Quasi-static and dynamic experiments were run with a 2D model of the 3D cylindrical mole. Force resistance data was captured with load cells. Deformation information was captured in images and analyzed using Digitial Image Correlation (DIC). Additionally, we used existing approximations of Martian regolith thermal conductivity to estimate the change in the surrounding granular material’s thermal conductivity due to the Mole’s penetration. We found that the Mole has the potential to cause a high degree of densification, especially if the initial granular material is relatively loose. The effect on the thermal conductivity from this densification was found to be relatively small in first-order calculations though more complete thermal models incorporating this densification should be a subject of further investigation. The results obtained provide an initial estimate of the Mole’s impact on Martian regolith thermal properties.

Keywords

Penetrator Regolith DIC Dynamic Quasi-static Thermal conductivity 

Notes

Acknowledgements

The authors would like to gratefully acknowledge the many helpful comments from Matthias Grott at the German aerospace center DLR (Deutsches Zentrum für Luft- und Raumfahrt) and an anonymous reviewer that greatly improved the manuscript. Part of the research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

Supplementary material

11214_2016_329_MOESM1_ESM.mp4 (14.1 mb)
(MP4 14.1 MB)
11214_2016_329_MOESM2_ESM.mp4 (14.5 mb)
(MP4 14.5 MB)
11214_2016_329_MOESM3_ESM.mp4 (15.3 mb)
(MP4 15.3 MB)
11214_2016_329_MOESM4_ESM.mp4 (28.2 mb)
(MP4 28.2 MB)
11214_2016_329_MOESM5_ESM.mp4 (27.9 mb)
(MP4 27.9 MB)
11214_2016_329_MOESM6_ESM.mp4 (29.7 mb)
(MP4 29.7 MB)
11214_2016_329_MOESM7_ESM.mp4 (28.6 mb)
(MP4 28.6 MB)
11214_2016_329_MOESM8_ESM.mp4 (28.5 mb)
(MP4 28.5 MB)
11214_2016_329_MOESM9_ESM.mp4 (30.2 mb)
(MP4 30.2 MB)
11214_2016_329_MOESM10_ESM.mp4 (70.8 mb)
(MP4 70.8 MB)
11214_2016_329_MOESM11_ESM.mp4 (80.2 mb)
(MP4 80.2 MB)
11214_2016_329_MOESM12_ESM.mp4 (72.6 mb)
(MP4 72.6 MB)
11214_2016_329_MOESM13_ESM.mp4 (78.4 mb)
(MP4 78.4 MB)
11214_2016_329_MOESM14_ESM.mp4 (73.8 mb)
(MP4 73.8 MB)
11214_2016_329_MOESM15_ESM.mp4 (26.6 mb)
(MP4 26.6 MB)
11214_2016_329_MOESM16_ESM.mp4 (38.3 mb)
(MP4 38.3 MB)
11214_2016_329_MOESM17_ESM.mp4 (76.9 mb)
(MP4 76.9 MB)
11214_2016_329_MOESM18_ESM.mp4 (27.6 mb)
(MP4 27.6 MB)
11214_2016_329_MOESM19_ESM.mp4 (39.7 mb)
(MP4 39.7 MB)
11214_2016_329_MOESM20_ESM.mp4 (35.2 mb)
(MP4 35.2 MB)
11214_2016_329_MOESM21_ESM.mp4 (13.8 mb)
(MP4 13.8 MB)
11214_2016_329_MOESM22_ESM.mp4 (82.1 mb)
(MP4 82.1 MB)
11214_2016_329_MOESM23_ESM.mp4 (19.3 mb)
(MP4 19.3 MB)
11214_2016_329_MOESM24_ESM.mp4 (74.6 mb)
(MP4 74.6 MB)
11214_2016_329_MOESM25_ESM.mp4 (26.9 mb)
(MP4 26.9 MB)
11214_2016_329_MOESM26_ESM.mp4 (39.5 mb)
(MP4 39.5 MB)
11214_2016_329_MOESM27_ESM.mp4 (76.1 mb)
(MP4 76.1 MB)
11214_2016_329_MOESM28_ESM.mp4 (27.2 mb)
(MP4 27.2 MB)
11214_2016_329_MOESM29_ESM.mp4 (39.9 mb)
(MP4 39.9 MB)
11214_2016_329_MOESM30_ESM.mp4 (80.2 mb)
(MP4 80.2 MB)
11214_2016_329_MOESM31_ESM.mp4 (27.7 mb)
(MP4 27.7 MB)
11214_2016_329_MOESM32_ESM.mp4 (27.2 mb)
(MP4 27.2 MB)
11214_2016_329_MOESM33_ESM.mp4 (28.6 mb)
(MP4 28.6 MB)
11214_2016_329_MOESM34_ESM.mp4 (30.4 mb)
(MP4 30.4 MB)
11214_2016_329_MOESM35_ESM.mp4 (30.4 mb)
(MP4 30.4 MB)
11214_2016_329_MOESM36_ESM.mp4 (31.8 mb)
(MP4 31.8 MB)

References

  1. N.H. Abu-Hamdeh, R.C. Reeder, Soil thermal conductivity effects of density, moisture, salt concentration, and organic matter. Soil Sci. Soc. Am. J. 64(4), 1285–1290 (2000) ADSCrossRefGoogle Scholar
  2. G. Al Nakshabandi, H. Kohnke, Thermal conductivity and diffusivity of soils as related to moisture tension and other physical properties. Agric. For. Meteorol. 2(4), 271–279 (1965) CrossRefGoogle Scholar
  3. ASTM C778-13, Standard Specification for Standard Sand, Technical report, ASTM International, West Conshohocken, PA, 2013 Google Scholar
  4. B. Banerdt, S. Smrekar, V. Dehant, P. Lognonné, T. Spohn, M. Grott, S. Asmar, D. Banfield, L. Boschi, U. Christensen, et al., GEMS (GEophysical Monitoring Station), in EPSC-DPS Joint Meeting, 2011 Google Scholar
  5. S.X. Chen, Thermal conductivity of sands. Heat Mass Transf. 44(10), 1241–1246 (2008) ADSCrossRefGoogle Scholar
  6. G.-C. Cho, J. Dodds, J.C. Santamarina, Particle shape effects on packing density, stiffness, and strength: natural and crushed sands. J. Geotech. Geoenviron. Eng. 132(5), 591–602 (2006) CrossRefGoogle Scholar
  7. M. Cornwall, A. Hagermann, Planetary heat flow from shallow subsurface measurements: Mars. Planet. Space Sci. (2016) Google Scholar
  8. V. Dehant, B. Banerdt, P. Lognonné, M. Grott, S. Asmar, J. Biele, D. Breuer, F. Forget, R. Jaumann, C. Johnson, et al., Future mars geophysical observatories for understanding its internal structure, rotation, and evolution. Planet. Space Sci. 68(1), 123–145 (2012) ADSCrossRefGoogle Scholar
  9. J.A. Fountain, E.A. West, Thermal conductivity of particulate basalt as a function of density in simulated lunar and martian environments. J. Geophys. Res. 75(20), 4063–4069 (1970) ADSCrossRefGoogle Scholar
  10. M. Grott, J. Helbert, R. Nadalini, Thermal structure of martian soil and the measurability of the planetary heat flow. J. Geophys. Res., Planets 112(E9) (2007) Google Scholar
  11. M. Grott, J. Knollenberg, C. Krause, Apollo lunar heat flow experiment revisited: a critical reassessment of the in situ thermal conductivity determination. J. Geophys. Res., Planets 115(E11) (2010) Google Scholar
  12. S.E. Gustafsson, E. Karawacki, M.N. Khan, Transient hot-strip method for simultaneously measuring thermal conductivity and thermal diffusivity of solids and fluids. J. Phys. D, Appl. Phys. 12(9), 1411 (1979) ADSCrossRefGoogle Scholar
  13. U. Hammerschmidt, W. Sabuga, Transient hot strip (THS) method: uncertainty assessment. Int. J. Thermophys. 21(1), 217–248 (2000) CrossRefGoogle Scholar
  14. H. Hansen-Goos, M. Grott, R. Lichtenheld, C. Krause, T. Hudson, T. Spohn, Predicted penetration performance of the InSight HP3 mole, in Lunar and Planetary Science Conference, vol. 45, 2014, p. 1325 Google Scholar
  15. R.D. Holtz, W.D. Kovacs, An Introduction to Geotechnical Engineering (1981) Google Scholar
  16. E. Huetter, N. Koemle, G. Kargl, E. Kaufmann, Determination of the effective thermal conductivity of granular materials under varying pressure conditions. J. Geophys. Res., Planets 113(E12) (2008) Google Scholar
  17. B.M. Jakosky, On the thermal properties of martian fines. Icarus 66(1), 117–124 (1986) ADSCrossRefGoogle Scholar
  18. N.I. Kömle, E.S. Hütter, W. Macher, E. Kaufmann, G. Kargl, J. Knollenberg, M. Grott, T. Spohn, R. Wawrzaszek, M. Banaszkiewicz, et al., In situ methods for measuring thermal properties and heat flux on planetary bodies. Planet. Space Sci. 59(8), 639–660 (2011) ADSCrossRefGoogle Scholar
  19. N.I. Kömle, J. Poganski, G. Kargl, J. Grygorczuk, Pile driving models for the evaluation of soil penetration resistance measurements from planetary subsurface probes. Planet. Space Sci. 109, 135–148 (2015) ADSCrossRefGoogle Scholar
  20. N. Kömle, C. Pitcher, Y. Gao, L. Richter, Study of the formation of duricrusts on the martian surface and their effect on sampling equipment. Icarus 281, 220–227 (2017) ADSCrossRefGoogle Scholar
  21. M.G. Langseth, S.J. Keihm, K. Peters, Revised lunar heat-flow values, in Lunar and Planetary Science Conference Proceedings, vol. 7 (1976), pp. 3143–3171 Google Scholar
  22. R. Lichtenheldt, B. Schäfer, O. Krömer, Hammering Beneath the Surface of Mars—Modeling and Simulation of the Impact-Driven Locomotion of the HP 3-Mole by Coupling Enhanced Multi-Body Dynamics and Discrete Element Method (2014), Universitätsbibliothek Ilmenau Google Scholar
  23. R.D. Lorenz, Meteorological insights from planetary heat flow measurements. Icarus 250, 262–267 (2015) ADSCrossRefGoogle Scholar
  24. G.T. Mase, R.E. Smelser, G.E. Mase, Continuum Mechanics for Engineers (CRC Press, Boca Raton, 2009) zbMATHGoogle Scholar
  25. H.A. Perko, J.D. Nelson, J.R. Green, Mars soil mechanical properties and suitability of Mars soil simulants. J. Aerosp. Eng. 19(3), 169–176 (2006) CrossRefGoogle Scholar
  26. C.C. Pilbeam, J.R. Vaišnys, Contact thermal conductivity in lunar aggregates. J. Geophys. Res. 78(23), 5233–5236 (1973) ADSCrossRefGoogle Scholar
  27. A.-C. Plesa, M. Grott, M.T. Lemmon, N. Müller, S. Piqueux, M.A. Siegler, S.E. Smrekar, T. Spohn, Interannual perturbations of the martian surface heat flow by atmospheric dust opacity variations. J. Geophys. Res., Planets 121, 2166–2175 (2016). doi: 10.1002/2016JE005127. ADSCrossRefGoogle Scholar
  28. M.A. Presley, P.R. Christensen, The effect of bulk density and particle size sorting on the thermal conductivity of particulate materials under martian atmospheric pressures. J. Geophys. Res., Planets 102(E4), 9221–9229 (1997a) ADSCrossRefGoogle Scholar
  29. M.A. Presley, P.R. Christensen, Thermal conductivity measurements of particulate materials 1. A review. J. Geophys. Res., Planets 102(E3), 6535–6549 (1997b) ADSCrossRefGoogle Scholar
  30. M.A. Presley, P.R. Christensen, Thermal conductivity measurements of particulate materials 2. Results. J. Geophys. Res., Planets 102(E3), 6551–6566 (1997c) ADSCrossRefGoogle Scholar
  31. M.A. Presley, P.R. Christensen, Thermal conductivity measurements of particulate materials: 4. Effect of bulk density for granular particles. J. Geophys. Res., Planets 115(E7) (2010a) Google Scholar
  32. M.A. Presley, P.R. Christensen, Thermal conductivity measurements of particulate materials: 5. Effect of bulk density and particle shape. J. Geophys. Res., Planets 115(E7) (2010b) Google Scholar
  33. M.A. Presley, R.A. Craddock, Thermal conductivity measurements of particulate materials: 3. Natural samples and mixtures of particle sizes. J. Geophys. Res., Planets 111(E9) (2006) Google Scholar
  34. K. Seiferlin, P. Ehrenfreund, J. Garry, K. Gunderson, E. Hütter, G. Kargl, A. Maturilli, J.P. Merrison, Simulating martian regolith in the laboratory. Planet. Space Sci. 56(15), 2009–2025 (2008) ADSCrossRefGoogle Scholar
  35. K. Seweryn, K. Skocki, M. Banaszkiewicz, J. Grygorczuk, M. Kolano, T. Kuciński, J. Mazurek, M. Morawski, A. Białek, H. Rickman, et al., Determining the geotechnical properties of planetary regolith using low velocity penetrometers. Planet. Space Sci. 99, 70–83 (2014a) ADSCrossRefGoogle Scholar
  36. K. Seweryn, J. Grygorczuk, R. Wawrzaszek, M. Banaszkiewicz, T. Rybus, et al., Low velocity penetrators (LVP) driven by hammering action–definition of the principle of operation based on numerical models and experimental tests. Acta Astronaut. 99, 303–317 (2014b) ADSCrossRefGoogle Scholar
  37. T. Spohn, M. Grott, J. Knollenberg, T. van Zoest, G. Kargl, S. Smrekar, W. Banerdt, T. Hudson, Insight: measuring the martian heat flow using the heat flow and physical properties package (HP3). LPI Contributions 1683, 1124 (2012) ADSGoogle Scholar
  38. M.A. Sutton, J.J. Orteu, H. Schreier, Image Correlation for Shape, Motion and Deformation Measurements: Basic Concepts, Theory and Applications (Springer, New York, 2009), Google Scholar
  39. M. Sutton, W. Wolters, W. Peters, W. Ranson, S. McNeill, Determination of displacements using an improved digital correlation method. Image Vis. Comput. 1(3), 133–139 (1983) CrossRefGoogle Scholar
  40. K. Watson, I. The thermal conductivity measurements of selected silicate powders in vacuum from 150–350 K. II. An interpretation of the Moon’s eclipse and lunation cooling as observed through the Earth’s atmosphere from 8–14 microns. California Institute of Technology (1964) Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Jason P. Marshall
    • 1
  • Troy L. Hudson
    • 2
  • José E. Andrade
    • 1
  1. 1.Mechanical and Civil Engineering DepartmentCalifornia Institute of TechnologyPasadenaUSA
  2. 2.Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaUSA

Personalised recommendations