Advertisement

Space Science Reviews

, Volume 211, Issue 1–4, pp 525–545 | Cite as

Bolide Airbursts as a Seismic Source for the 2018 Mars InSight Mission

  • J. Stevanović
  • N. A. Teanby
  • J. Wookey
  • N. Selby
  • I. J. Daubar
  • J. Vaubaillon
  • R. Garcia
Article

Abstract

In 2018, NASA will launch InSight, a single-station suite of geophysical instruments, designed to characterise the martian interior. We investigate the seismo-acoustic signal generated by a bolide entering the martian atmosphere and exploding in a terminal airburst, and assess this phenomenon as a potential observable for the SEIS seismic payload. Terrestrial analogue data from four recent events are used to identify diagnostic airburst characteristics in both the time and frequency domain.

In order to estimate a potential number of detectable events for InSight, we first model the impactor source population from observations made on the Earth, scaled for planetary radius, entry velocity and source density. We go on to calculate a range of potential airbursts from the larger incident impactor population. We estimate there to be \({\sim}\,1000\) events of this nature per year on Mars. To then derive a detectable number of airbursts for InSight, we scale this number according to atmospheric attenuation, air-to-ground coupling inefficiencies and by instrument capability for SEIS. We predict between 10–200 detectable events per year for InSight.

Keywords

Meteors Airbursts Mars Atmospheric processes 

Notes

Acknowledgements

This research was funded by the Natural Environmental Research Council, the Leverhulme Trust, and the UK Space Agency.

References

  1. S.J. Arrowsmith, D.P. Drob, M.A.H. Hedlin, W. Edwards, A joint seismic and acoustic study of the Washington State bolide: observations and modeling. J. Geophys. Res., Atmos. 112(D9), 1984–2012 (2007) CrossRefGoogle Scholar
  2. G. Balco, J.O. Stone, Measuring the density of rock, sand, till, etc. UW Cosmogenic Nuclide Laboratory, methods and procedures, http://depts.washington.edu/cosmolab/chem.html (2003)
  3. H.E. Bass, J.P. Chambers, Absorption of sound in the martian atmosphere. J. Acoust. Soc. Am. 109(6), 3069–3071 (2001) ADSCrossRefGoogle Scholar
  4. P.A. Bland, N.A. Artemieva, The rate of small impacts on Earth. Meteorit. Planet. Sci. 41(4), 607–631 (2006) ADSCrossRefGoogle Scholar
  5. Q. Brissaud, R. Martin, R.F. Garcia, D. Komatitsch, Finite-difference numerical modelling of gravitoacoustic wave propagation in a windy and attenuating atmosphere. Geophys. J. Int. 206, 308–327 (2016). doi: 10.1093/gji/ggw121 ADSCrossRefGoogle Scholar
  6. D.T. Britt, G.J.S.J. Consolmagno, Stony meteorite porosities and densities: a review of the data through 2001. Meteorit. Planet. Sci. 38(8), 1161–1180 (2003) ADSCrossRefGoogle Scholar
  7. P.G. Brown, D.O. Revelle, E. Tagliaferri, A.R. Hildebrand, An entry model for the Tagish Lake fireball using seismic, satellite and infrasound records. Meteorit. Planet. Sci. 37(5), 661–675 (2002a) ADSCrossRefGoogle Scholar
  8. P. Brown, R.E. Spalding, D.O. ReVelle, E. Tagliaferri, S.P. Worden, The flux of small near-Earth objects colliding with the Earth. Nature 420(6913), 294–296 (2002b) ADSCrossRefGoogle Scholar
  9. P.G. Brown, J.D. Assink, L. Astiz, R. Blaauw, M.B. Boslough, J. Borovička, N. Brachet, D. Brown, M. Campbell-Brown, L. Ceranna, et al., A 500-kiloton airburst over Chelyabinsk and an enhanced hazard from small impactors. Nature (2013) Google Scholar
  10. R.T. Carter, P.S. Jandir, M.E. Kress, Estimating the drag coefficients of meteorites for all mach number regimes, in Lunar and Planetary Science Conference. Lunar and Planetary Inst. Technical Report, vol. 40, 2009, p. 2059 Google Scholar
  11. Z. Ceplecha, D.O. ReVelle, Fragmentation model of meteoroid motion, mass loss, and radiation in the atmosphere. Meteorit. Planet. Sci. 40(1), 35–54 (2005) ADSCrossRefGoogle Scholar
  12. E. Chaisson, S. McMillan, Astronomy today (2005) Google Scholar
  13. G.S. Collins, H.J. Melosh, R.A. Marcus, Earth impact effects program: a web-based computer program for calculating the regional environmental consequences of a meteoroid impact on Earth. Meteorit. Planet. Sci. 40(6), 817–840 (2005) ADSCrossRefGoogle Scholar
  14. J.A. Crocker, Seismic Waves from A-Bombs Detonated over a Land Mass, Technical report, DTIC Document, 1952 Google Scholar
  15. I.J. Daubar, A.S. McEwen, S. Byrne, M.R. Kennedy, B. Ivanov, The current martian cratering rate. Icarus 225, 506–516 (2013) ADSCrossRefGoogle Scholar
  16. I. Daubar, C. Dundas, S. Byrne, P. Geissler, G. Bart, A.S. McEwen, P. Russell, M. Chojnacki, M. Golombek, Changes in blast zone albedo patterns around new martian impact craters. Icarus 267, 86–105 (2016) ADSCrossRefGoogle Scholar
  17. A. Douglas, Forensic Seismology and Nuclear Test Bans (Cambridge University Press, Cambridge, 2013) CrossRefGoogle Scholar
  18. W.N. Edwards, D.W. Eaton, P.G. Brown, Seismic observations of meteors: coupling theory and observations. Rev. Geophys. 46(4), 4007 (2008) ADSCrossRefGoogle Scholar
  19. W.N. Edwards, A.R. Hildebrand, SUPRACENTER: locating fireball terminal bursts in the atmosphere using seismic arrivals. Meteorit. Planet. Sci. 39(9), 1449–1460 (2004) ADSCrossRefGoogle Scholar
  20. W.N. Edwards, D.W. Eaton, P.J. McCausland, D.O. ReVelle, P.G. Brown, Calibrating infrasonic to seismic coupling using the Stardust sample return capsule shockwave: Implications for seismic observations of meteors. J. Geophys. Res., Solid Earth (1978–2012) 112(B10) (2007) Google Scholar
  21. R.F. Garcia, Q. Brissaud, L. Rolland, R. Martin, D. Komatitsch, A. Spiga, Finite-difference modeling of acoustic and gravity wave propagation in Mars atmosphere: application to infrasounds emitted by meteor impacts. Space Sci. Rev. (2016). doi: 10.1007/s11214-016-0324-6 Google Scholar
  22. I.N. Gupta, R.A. Hartenberger, Seismic phases and scaling associated with small high-explosive surface shots. Bull. Seismol. Soc. Am. 71, 1731–1741 (1981) Google Scholar
  23. A.D. Hanford, L.N. Long, The direct simulation of acoustics on Earth, Mars, and Titan. J. Acoust. Soc. Am. 125(2), 640–650 (2009) ADSCrossRefGoogle Scholar
  24. W.K. Hartmann, Martian cratering 8: isochron refinement and the chronology of Mars. Icarus 174, 294–320 (2005) ADSCrossRefGoogle Scholar
  25. J. Havskov, G. Alguacil, Instrumentation in Earthquake Seismology (Springer, Netherlands, 2004) CrossRefGoogle Scholar
  26. J.G. Hills, M.P. Goda, The fragmentation of small asteroids in the atmosphere. Astron. J. 105, 1114–1144 (1993) ADSCrossRefGoogle Scholar
  27. A.J. Hodges, The drag coefficient of very high velocity spheres. J. Aeronaut. Sci. 24, 755–758 (1957) CrossRefGoogle Scholar
  28. E. Hoek, Strength of jointed rock masses. Geotechnique 33(3), 187–223 (1983) CrossRefGoogle Scholar
  29. B.A. Ivanov, Mars/Moon cratering rate ratio estimates. Space Sci. Rev. 96(1–4), 87–104 (2001) ADSCrossRefGoogle Scholar
  30. B.A. Ivanov, D. Deniem, G. Neukum, Implementation of dynamic strength models into 2D hydrocodes: applications for atmospheric breakup and impact cratering. Int. J. Impact Eng. 20(1), 411–430 (1997) CrossRefGoogle Scholar
  31. D. Kuznetsova, M. Gritsevich, Identification of meteorite-producing events in Martian and Terrestrial atmosphere, in Lunar and Planetary Institute Science Conference Abstracts, vol. 45, 2014, p. 1220 Google Scholar
  32. M.C. Malin, K.S. Edgett, L.V. Posiolova, S.M. McColley, E.Z.N. Dobrea, Present-day impact cratering rate and contemporary gully activity on Mars. Science 314, 1573–1577 (2006) ADSCrossRefGoogle Scholar
  33. D. Mimoun, M. Murdoch, P. Lognonné, K. Hurst, T. Pike, W.B. Banerdt, The Mars seismic noise model of the InSight mission. Space Sci. Rev. (2016, submitted) Google Scholar
  34. D. Morrison, C.R. Chapman, P. Slovic, et al., The impact hazard, in Hazards Due to Comets and Asteroids, vol. 1, University of Arizona Press, 1994, p. 59 Google Scholar
  35. N. Murdoch, B. Kenda, T. Kawamura, A. Spiga, P. Lognonné, D. Mimoun, W.B. Banerdt, Estimations of the seismic pressure noise on mars determined from large eddy simulations and demonstration of pressure decorrelation techniques for the InSight mission. Space Sci. Rev. (2016, submitted) Google Scholar
  36. Y. Nakamura, Clear identification of fundamental idea of Nakamura’s technique and its applications, in Proceedings of the 12th World Conference on Earthquake Engineering, Auckland New Zealand, 2000 Google Scholar
  37. J.P.L. NASA, InSights into the Early Evolution of Terrestrial Planets, 2013. http://insight.jpl.nasa.gov/docs/InSight_NASA_fact_sheet_rev3_June_2013_FC.pdf
  38. M.P. Panning, Planned products of the Mars Structure Service for the InSight mission to Mars. Space Sci. Rev. (2016). doi: 10.1007/s11214-016-0317-5 Google Scholar
  39. A. Petculescu, R.M. Lueptow, Atmospheric acoustics of Titan, Mars, Venus, and Earth. Icarus 186(2), 413–419 (2007) ADSCrossRefGoogle Scholar
  40. O. Popova, I. Nemtchinov, W.K. Hartmann, Bolides in the present and past martian atmosphere and effects on cratering processes. Meteorit. Planet. Sci. 38(6), 905–925 (2003) ADSCrossRefGoogle Scholar
  41. O. Popova, J. Borovička, W.K. Hartmann, P. Spurný, E. Gnos, I. Nemtchinov, J.M. Trigo-Rodríguez, Very low strengths of interplanetary meteoroids and small asteroids. Meteorit. Planet. Sci. 46, 1525–1550 (2011). doi: 10.1111/j.1945-5100.2011.01247.x ADSCrossRefGoogle Scholar
  42. D.O. Revelle, Historical detection of atmospheric impacts by large bolides using acoustic-gravity waves. Ann. N.Y. Acad. Sci. 822, 284 (1997) ADSCrossRefGoogle Scholar
  43. D.O. ReVelle, Recent advances in bolide entry modeling: a bolide potpourri. Earth Moon Planets 95(1–4), 441–476 (2004) ADSzbMATHGoogle Scholar
  44. D.O. Revelle, P.G. Brown, P. Spurnỳ, Entry dynamics and acoustics/infrasonic/seismic analysis for the Neuschwanstein meteorite fall. Meteorit. Planet. Sci. 39(10), 1605–1626 (2004) ADSCrossRefGoogle Scholar
  45. V.P. Stulov, Transformation of the kinetic energy of a meteoroid during its breakup in the atmosphere, in Doklady Physics, vol. 55, Springer, 2010, pp. 366–367 Google Scholar
  46. N.A. Teanby, Predicted detection rates of regional-scale meteorite impacts on Mars with the insight short-period seismometer. Icarus 256, 49–62 (2015) ADSCrossRefGoogle Scholar
  47. N.A. Teanby, J. Wookey, Seismic detection of meteorite impacts on Mars. Phys. Earth Planet. Inter. 186, 70–80 (2011) ADSCrossRefGoogle Scholar
  48. G.A. Tirskiy, D.Y. Khanukaeva, The modeling of bolide terminal explosions. Earth Moon Planets 95(1–4), 513–520 (2004) ADSGoogle Scholar
  49. A. Tsuchiyama, E. Mashio, Y. Imai, T. Noguchi, Y. Miura, H. Yano, T. Nakamura, Strength measurement of carbonaceous chondrites and micrometeorites using micro compression testing machine. Meteorit. Planet. Sci. Suppl. 72, 5189 (2009) ADSGoogle Scholar
  50. J.S. Watkins, R.L. Kovach, Seismic investigation of the lunar regolith, in Lunar and Planetary Science Conference Proceedings, vol. 4, 1973, p. 2561 Google Scholar
  51. S.C. Werner, A.W. Harris, G. Neukum, B.A. Ivanov, The near-Earth asteroid size–frequency distribution: a snapshot of the lunar impactor size–frequency distribution. Icarus 156(1), 287–290 (2002) ADSCrossRefGoogle Scholar
  52. M. Wilks, A seismological investigation into tectonic and hydrothermal processes at Aluto and Corbetti, two restless volcanoes in the Main Ethiopian Rift, PhD thesis, University of Bristol, 2016 Google Scholar
  53. J. Williams, Acoustic environment of the Martian surface. J. Geophys. Res., Planets (1991–2012) 106(E3), 5033–5041 (2001) ADSMathSciNetCrossRefGoogle Scholar
  54. D.R. Williams, Mars fact sheet. NASA Goddard Space Flight Center: Greenbelt. http://nssdc.gsfc.nasa.gov/planetary/factsheet/marsfact.html (April 5, 2000) (2004a)
  55. D.R. Williams, NASA Earth fact sheet. http://nssdc.gsfc.nasa.gov/planetary/factsheet/earthfact.html 2 (2004b)
  56. J.-P. Williams, A.V. Pathare, O. Aharonson, The production of small primary craters on Mars and the Moon. Icarus 235, 23–36 (2014) ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.School of Earth SciencesUniversity of BristolBristolUK
  2. 2.AWE BlacknestReadingUK
  3. 3.AWE BlacknestReadingUK
  4. 4.Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaUSA
  5. 5.IMCCEObservatoire de ParisParisFrance
  6. 6.Institut Supérieur de l’Aéronautique et de l’Espace (ISAE-SUPAERO)Université de ToulouseToulouse cedex 4France

Personalised recommendations