Space Science Reviews

, Volume 211, Issue 1–4, pp 547–570 | Cite as

Finite-Difference Modeling of Acoustic and Gravity Wave Propagation in Mars Atmosphere: Application to Infrasounds Emitted by Meteor Impacts

  • Raphael F. Garcia
  • Quentin Brissaud
  • Lucie Rolland
  • Roland Martin
  • Dimitri Komatitsch
  • Aymeric Spiga
  • Philippe Lognonné
  • Bruce Banerdt


The propagation of acoustic and gravity waves in planetary atmospheres is strongly dependent on both wind conditions and attenuation properties. This study presents a finite-difference modeling tool tailored for acoustic-gravity wave applications that takes into account the effect of background winds, attenuation phenomena (including relaxation effects specific to carbon dioxide atmospheres) and wave amplification by exponential density decrease with height. The simulation tool is implemented in 2D Cartesian coordinates and first validated by comparison with analytical solutions for benchmark problems. It is then applied to surface explosions simulating meteor impacts on Mars in various Martian atmospheric conditions inferred from global climate models. The acoustic wave travel times are validated by comparison with 2D ray tracing in a windy atmosphere. Our simulations predict that acoustic waves generated by impacts can refract back to the surface on wind ducts at high altitude. In addition, due to the strong nighttime near-surface temperature gradient on Mars, the acoustic waves are trapped in a waveguide close to the surface, which allows a night-side detection of impacts at large distances in Mars plains. Such theoretical predictions are directly applicable to future measurements by the INSIGHT NASA Discovery mission.


Mars InSight mission Atmosphere Acoustic waves Gravity waves Impacts Pressure sensor Numerical modeling 



We acknowledge Don Banfield and an anonymous reviewer for their detailed review of the manuscript. We thank the INSIGHT science team for fruitful discussions. We also thank the “Région Midi-Pyréenées” (France) and “Université fédérale de Toulouse” for funding the PhD grant of Quentin Brissaud. This study was also supported by CNES through space research scientific projects. Computer resources were provided by granted projects No. p1138 at CALMIP computing centre (Toulouse France), Nos. t2014046351 and t2015046351 at CEA centre (Bruyères, France). This is Insight Contribution Number 16.


  1. M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions: with Formulas, Graphs, and Mathematical Tables, vol. 55 (Courier Corporation, Hartford, 1964) zbMATHGoogle Scholar
  2. J. Artru, T. Farges, P. Lognonné, Acoustic waves generated from seismic surface waves: propagation properties determined from doppler sounding observation and normal-modes modeling. Geophys. J. Int. 158, 1067–1077 (2004). doi: 10.1111/j.1365-246X.2004.02377.x CrossRefADSGoogle Scholar
  3. J. Artru, V. Ducic, H. Kanamori, P. Lognonné, M. Murakami, Ionospheric detection of gravity waves induced by tsunamis. Geophys. J. Int. 160, 840–848 (2005). doi: 10.1111/j.1365-246X.2005.02552.x CrossRefADSGoogle Scholar
  4. W.B. Banerdt, S. Smrekar, P. Lognonné, T. Spohn, S.W. Asmar, D. Banfield, L. Boschi, U. Christensen, V. Dehant, W. Folkner, D. Giardini, W. Goetze, M. Golombek, M. Grott, T. Hudson, C. Johnson, G. Kargl, N. Kobayashi, J. Maki, D. Mimoun, A. Mocquet, P. Morgan, M. Panning, W.T. Pike, J. Tromp, T. van Zoest, R. Weber, M.A. Wieczorek, R. Garcia, K. Hurst, InSight: a discovery mission to explore the interior of Mars, in Lunar and Planetary Science Conference, vol. 44, 2013, p. 1915 Google Scholar
  5. D. Banfield, InSight Science Team, Atmospheric observations from the Mars insight mission, in Mars Atmosphere: Modelling and Observation, 5th International Workshop, ed. by F. Forget, M. Millour, 2014, p. 4304 Google Scholar
  6. H.E. Bass, J.P. Chambers, Absorption of sound in the Martian atmosphere. J. Acoust. Soc. Am. 109, 3069–3071 (2001) CrossRefADSGoogle Scholar
  7. Q. Brissaud, R. Martin, R. Garcia, D. Komatitsch, Finite-difference numerical modelling of gravito-acoustic wave propagation in a windy and attenuating atmosphere. Geophys. J. Int. (2016). doi: 10.1093/gji/ggw121 Google Scholar
  8. S.L. Bruinsma, J.M. Forbes, Medium- to large-scale density variability as observed by CHAMP. Space Weather 6, 08002 (2008). doi: 10.1029/2008SW000411 CrossRefADSGoogle Scholar
  9. J.M. Carcione, Wave Fields in Real Media: Wave Propagation in Anisotropic, Anelastic, Porous and Electromagnetic Media, 2nd edn. (Elsevier, Oxford, 2007) Google Scholar
  10. J.M. Carcione, D. Kosloff, R. Kosloff, Wave propagation simulation in a linear viscoelastic medium. Geophys. J. Int. 95(3), 597–611 (1988) CrossRefzbMATHADSGoogle Scholar
  11. J.E. Chappelow, V.L. Sharpton, Atmospheric variations and meteorite production on Mars. Icarus 184, 424–435 (2006). doi: 10.1016/j.icarus.2006.05.013 CrossRefADSGoogle Scholar
  12. A. Colaïtis, A. Spiga, F. Hourdin, C. Rio, F. Forget, E. Millour, A thermal plume model for the Martian convective boundary layer. J. Geophys. Res., Planets 118, 1468–1487 (2013). doi: 10.1002/jgre.20104 CrossRefADSGoogle Scholar
  13. C. de Groot-Hedlin, M.A.H. Hedlin, K. Walker, Finite difference synthesis of infrasound propagation through a windy, viscous atmosphere: application to a bolide explosion detected by seismic networks. Geophys. J. Int. 185(1), 305–320 (2011). doi: 10.1111/j.1365-246X.2010.04925.x CrossRefADSGoogle Scholar
  14. J.-X. Dessa, J. Virieux, S. Lambotte, Infrasound modeling in a spherical heterogeneous atmosphere. Geophys. Res. Lett. 32, 12808 (2005). doi: 10.1029/2005GL022867 CrossRefADSGoogle Scholar
  15. F. Ding, W. Wan, H. Yuan, The influence of background winds and attenuation on the propagation of atmospheric gravity waves. J. Atmos. Sol.-Terr. Phys. 65, 857–869 (2003). doi: 10.1016/S1364-6826(03)00090-7 CrossRefADSGoogle Scholar
  16. W.N. Edwards, Meteor generated infrasound: theory and observation, in Infrasound Monitoring for Atmospheric Studies (Springer, Amsterdam, 2010), pp. 361–414 CrossRefGoogle Scholar
  17. F. Forget, F. Hourdin, R. Fournier, C. Hourdin, O. Talagrand, M. Collins, S.R. Lewis, P.L. Read, J.-P. Huot, Improved general circulation models of the Martian atmosphere from the surface to above 80 km. J. Geophys. Res. 104, 24155–24176 (1999). doi: 10.1029/1999JE001025 CrossRefADSGoogle Scholar
  18. F. González-Galindo, F. Forget, M.A. López-Valverde, M. Angelats i Coll, E. Millour, A ground-to-exosphere Martian general circulation model, I: seasonal, diurnal, and solar cycle variation of thermospheric temperatures. J. Geophys. Res., Planets 114, 04001 (2009). doi: 10.1029/2008JE003246 CrossRefADSGoogle Scholar
  19. W. Gropp, E. Lusk, A. Skjellum, Using MPI, portable parallel programming with the Message-Passing Interface (MIT Press, Cambridge, USA, 1994) zbMATHGoogle Scholar
  20. A.D. Hanford, L.N. Long, The direct simulation of acoustics on Earth, Mars, and Titan. J. Acoust. Soc. Am. 125, 640 (2009). doi: 10.1121/1.3050279 CrossRefADSGoogle Scholar
  21. C.P. Haynes, C. Millet, A sensitivity analysis of meteoric infrasound. J. Geophys. Res., Planets 118, 2073–2082 (2013). doi: 10.1002/jgre.20116 CrossRefADSGoogle Scholar
  22. C.O. Hines, Internal atmospheric gravity waves at ionospheric heights. Can. J. Phys. 38, 1441 (1960). doi: 10.1139/p60-150 CrossRefADSGoogle Scholar
  23. D. Komatitsch, R. Martin, An unsplit convolutional perfectly matched layer improved at grazing incidence for the seismic wave equation. Geophysics 72(5), 155–167 (2007) CrossRefADSGoogle Scholar
  24. S.R. Lewis, M. Collins, P.L. Read, F. Forget, F. Hourdin, R. Fournier, C. Hourdin, O. Talagrand, J.-P. Huot, A climate database for mars. J. Geophys. Res. 104, 24177–24194 (1999). doi: 10.1029/1999JE001024 CrossRefADSGoogle Scholar
  25. J.Y. Liu, Y.B. Tsai, S.W. Chen, C.P. Lee, Y.C. Chen, H.Y. Yen, W.Y. Chang, C. Liu, Giant ionospheric disturbances excited by the M9.3 Sumatra earthquake of 26 December 2004. Geophys. Res. Lett. 33, 2103 (2006). doi: 10.1029/2005GL023963 CrossRefADSGoogle Scholar
  26. R. Martin, D. Komatitsch, S.D. Gedney, E. Bruthiaux, A high-order time and space formulation of the unsplit perfectly matched layer for the seismic wave equation using auxiliary differential equations (ADE-PML). Comput. Model. Eng. Sci. 56(1), 17 (2010). doi: 10.3970/cmes.2010.056.017 MathSciNetzbMATHGoogle Scholar
  27. B. Mikhailenko, A. Mikhailov, Numerical modeling of seismic and acoustic-gravity waves propagation in an Earth-atmosphere model in the presence of wind in the air. Numer. Anal. Appl. 7(2), 124–135 (2014) CrossRefzbMATHGoogle Scholar
  28. P.M. Morse, K.U. Ingard, Theoretical Acoustics (Princeton Univ. Press, New Jersey, 1968) Google Scholar
  29. C.J. Nappo, An Introduction to Atmospheric Gravity Waves (Academic Press, Amsterdam, 2002), p. 276 Google Scholar
  30. V.E. Ostashev, D.K. Wilson, L. Liu, D.F. Aldridge, N.P. Symons, D. Marlin, Equations for finite-difference, time-domain simulation of sound propagation in moving inhomogeneous media and numerical implementation. J. Acoust. Soc. Am. 117(2), 503–517 (2005). doi: 10.1121/1.1841531 CrossRefADSGoogle Scholar
  31. A. Petculescu, R.M. Lueptow, Atmospheric acoustics of Titan, Mars, Venus, and Earth. Icarus 186, 413–419 (2007). doi: 10.1016/j.icarus.2006.09.014 CrossRefADSGoogle Scholar
  32. A.L. Pichon, K. Antier, Y. Cansi, B. Hernandez, E. Minaya, B. Burgoa, D. Drob, L.G. Evers, J. Vaubaillon, Evidence for a meteoritic origin of the September 15, 2007, Carancas crater. Meteorit. Planet. Sci. 43, 1797–1809 (2008). doi: 10.1111/j.1945-5100.2008.tb00644.x CrossRefADSGoogle Scholar
  33. O. Popova, I. Nemtchinov, W.K. Hartmann, Bolides in the present and past martian atmosphere and effects on cratering processes. Meteorit. Planet. Sci. 38, 905–925 (2003). doi: 10.1111/j.1945-5100.2003.tb00287.x CrossRefADSGoogle Scholar
  34. L.M. Rolland, G. Occhipinti, P. Lognonné, A. Loevenbruck, Ionospheric gravity waves detected offshore Hawaii after tsunamis. Geophys. Res. Lett. 37, 17101 (2010). doi: 10.1029/2010GL044479 CrossRefADSGoogle Scholar
  35. G. Tancredi, J. Ishitsuka, P.H. Schultz, R.S. Harris, P. Brown, D.O. Revelle, K. Antier, A. Le Pichon, D. Rosales, E. Vidal, M.E. Varela, L. Sánchez, S. Benavente, J. Bojorquez, D. Cabezas, A. Dalmau, A meteorite crater on Earth formed on September 15, 2007: the Carancas hypervelocity impact. Meteorit. Planet. Sci. 44, 1967–1984 (2009). doi: 10.1111/j.1945-5100.2009.tb02006.x CrossRefADSGoogle Scholar
  36. J.D. Walker, Loading sources for seismological investigations of asteroids and comets. Int. J. Impact Eng. 29, 757–769 (2003). doi: 10.1016/j.ijimpeng.2003.10.022 CrossRefGoogle Scholar
  37. F.J.W. Whipple, The great Siberian meteor and the waves, seismic and aerial, which it produced. Q. J. R. Meteorol. Soc. 56, 287–304 (1930) Google Scholar
  38. J.-P. Williams, Acoustic environment of the Martian surface. J. Geophys. Res. 106, 5033–5042 (2001). doi: 10.1029/1999JE001174 CrossRefADSGoogle Scholar
  39. D.K. Wilson, L. Liu, Finite-difference, time-domain simulation of sound propagation in a dynamic atmosphere. Technical report, Cold Regions Research and Engineering Lab, Hanover Netherlands, 2004 Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Raphael F. Garcia
    • 1
    • 2
  • Quentin Brissaud
    • 1
  • Lucie Rolland
    • 3
  • Roland Martin
    • 4
  • Dimitri Komatitsch
    • 5
  • Aymeric Spiga
    • 6
  • Philippe Lognonné
    • 7
  • Bruce Banerdt
    • 8
  1. 1.Institut Supérieur de l’Aéronautique et de l’Espace (ISAE-SUPAERO)Université de ToulouseToulouseFrance
  2. 2.Institut de Recherche en Astrophysique et PlanétologieUniversité de ToulouseToulouseFrance
  3. 3.Université Côte d’Azur, Observatoire de la Côte d’Azur, Géoazur UMR 7329CNRSValbonneFrance
  4. 4.Laboratoire de Géosciences Environnement Toulouse GET, UMR CNRS 5563, Observatoire Midi-PyrénéesUniversité Paul SabatierToulouseFrance
  5. 5.LMA, CNRS UPR 7051Aix-Marseille UniversityMarseilleFrance
  6. 6.Laboratoire de Météorologie Dynamique, UMR CNRS 8539, Institut Pierre-Simon Laplace, Sorbonne UniversitésUPMC Univ Paris 06ParisFrance
  7. 7.Institut de Physique du Globe de Paris, Sorbonne Paris CitéUniversité Paris DiderotParisFrance
  8. 8.Jet Propulsion LaboratoryPasadenaUSA

Personalised recommendations