Space Science Reviews

, Volume 206, Issue 1–4, pp 407–429 | Cite as

Post-Storm Middle and Low-Latitude Ionospheric Electric Fields Effects

  • B. G. FejerEmail author
  • M. Blanc
  • A. D. Richmond


The Earth’s upper atmosphere and ionosphere undergoes large and complex perturbations during and after geomagnetic storms. Thermospheric winds driven by enhanced energy and momentum due to geomagnetic activity generate large disturbance electric fields, plasma drifts and currents with a broad range of temporal and spatial scales from high to equatorial latitudes. This disturbance dynamo mechanism plays a fundamental role on the response of the middle and low-latitude ionosphere to geomagnetic activity. In this review, we initially describe the early evidence for the importance of this process and the first simulation study which already was able to explain its main effects on the electrodynamics of the middle and low-latitude ionosphere. We then describe the results of more recent simulations and the extensive experimental work that highlights the importance of this mechanism for ionospheric space weather studies extending to post-storms periods, and present some suggestions for future studies.


Electric fields Ionospheric dynamics Ionospheric storms Ionosphere/atmosphere interactions 



The work at Utah State University was supported by the Aeronomy Program, Division of Atmospheric Sciences of the National Science Foundation through grant AGS-1068104. ADR was supported in part by NASA grants NNX13AD64G and NNX14AE08G. The National Center for Atmospheric Research is sponsored by the National Science Foundation.


  1. M.A. Abdu, T. Maruyama, I.S. Batista, S. Saito, M. Nakamura, Ionospheric response to the October 2003 superstorm: longitudinal/local time effects over equatorial low and middle latitudes. J. Geophys. Res. 112, A10306 (2007). doi: 10.1029/2006JA012228 ADSGoogle Scholar
  2. M. Blanc, Mid-latitude convection electric fields and their relation to ring current development. Geophys. Res. Lett. 5, 203–206 (1978) ADSCrossRefGoogle Scholar
  3. M. Blanc, Magnetospheric convection effects at mid-latitudes 1. Saint-Santin observations. J. Geophys. Res. 88, 211–213 (1983a) ADSCrossRefGoogle Scholar
  4. M. Blanc, Magnetospheric convection effects at mid-latitudes 3. Theoretical derivation of the disturbance convection pattern in the plasmasphere. J. Geophys. Res. 88, 235–251 (1983b) ADSCrossRefGoogle Scholar
  5. M. Blanc, A.D. Richmond, The ionospheric disturbance dynamo. J. Geophys. Res. 85(A4), 1669–1686 (1980). doi: 10.1029/JA085iA04p01669 ADSCrossRefGoogle Scholar
  6. J.L. Burch, J. Goldstein, B.R. Sandel, Cause of plasmasphere corotation lag. Geophys. Res. Lett. 31, L05802 (2004). doi: 10.1029/2003GL019164 ADSCrossRefGoogle Scholar
  7. R.W. Coley, R.A. Heelis, Low latitude zonal and vertical ion drifts seen by DE-2. J. Geophys. Res. 94, 6751–6761 (1989) ADSCrossRefGoogle Scholar
  8. P.R. Fagundes, F.A. Cardoso, B.G. Fejer, K. Venkatesh, B.A.G. Ribeiro, V.G. Pillat, GPS-TEC ionospheric storm effects during the extreme space weather event of March 2015 over the Brazilian sector. J. Geophys. Res. Space Weather 121 (2016). doi: 10.1002/2015JA022214
  9. O. Fambitakoye, M. Menvielle, C. Mazaudier, Global disturbance of the transient magnetic field associated with thermospheric storm winds on March 23, 1979. J. Geophys. Res. 95, 15209–15218 (1990). doi: 10.1029/JA095iA09p15209 ADSCrossRefGoogle Scholar
  10. I. Fathy, C. Amory-Mazaudier, A. Fathy, A.M. Mahrous, K. Yumoto, E. Ghamry, Ionospheric disturbance dynamo associated to a coronal hole: case study of 5–10 April 2010. J. Geophys. Res. Space Phys. 119, 4120–4133 (2014). doi: 10.1002/2013JA019510 ADSCrossRefGoogle Scholar
  11. B.G. Fejer, The electrodynamics of the low latitude ionosphere: recent results and future challenges. J. Atmos. Sol.-Terr. Phys. 59, 1456–1482 (1997). doi: 10.1016/s1364-6826(96)00149-6 ADSCrossRefGoogle Scholar
  12. B.G. Fejer, Low latitude storm time ionospheric electrodynamics. J. Atmos. Sol.-Terr. Phys. 64, 1401–1408 (2002) ADSCrossRefGoogle Scholar
  13. B.G. Fejer, Low latitude ionospheric electrodynamics. Space Sci. Rev. 158(1), 145–166 (2011). doi: 10.1007/s11214-010-9690-7 ADSCrossRefGoogle Scholar
  14. B.G. Fejer, L. Scherliess, Time dependent response of equatorial ionospheric electric fields to magnetospheric disturbances. Geophys. Res. Lett. 22, 851–854 (1995). doi: 10.1029/95GL00390 ADSCrossRefGoogle Scholar
  15. B.G. Fejer, L. Scherliess, Empirical models of storm time equatorial zonal plasma drifts. J. Geophys. Res. 102(A11), 24047–24056 (1997). doi: 10.1029/97JA02164 ADSCrossRefGoogle Scholar
  16. B.G. Fejer, J.T. Emmert, Low-latitude ionospheric disturbance electric field effects during the recovery phase of the 19–21 October 1998 magnetic storm. J. Geophys. Res. 182(A12), 1454 (2003). doi: 10.1029/2003JA010190 CrossRefGoogle Scholar
  17. B.G. Fejer, M.F. Larsen, D.T. Farley, Equatorial disturbance dynamo electric fields. Geophys. Res. Lett. 10, 537–540 (1983) ADSCrossRefGoogle Scholar
  18. B.G. Fejer, R.W. Spiro, R.A. Wolf, J.C. Foster, Latitudinal variation of perturbation electric fields during magnetically disturbed periods: 1986 SUNDIAL observations and model results. Ann. Geophys. 8(6), 441–454 (1990) ADSGoogle Scholar
  19. B.G. Fejer, E.R. de Paula, S.A. Gonzalez, R.F. Woodman, Average vertical and zonal \(F\) region plasma drifts over Jicamarca. J. Geophys. Res. 96(A8), 13901–13906 (1991). doi: 10.1029/91A01171 ADSCrossRefGoogle Scholar
  20. B.G. Fejer, J.R. Souza, A.S. Santos, A.E.C. Perreira, Climatology of \(F\) region zonal drifts over Jicamarca. J. Geophys. Res. 110, A12310 (2005). doi: 10.1029/2005JA011324 ADSCrossRefGoogle Scholar
  21. B.G. Fejer, J.W. Jensen, T. Kikuchi, M.A. Abdu, J.L. Chau, Equatorial ionospheric electric fields during the November 2004 magnetic storm. J. Geophys. Res. 112, A10 (2007). doi: 10.1029/2007JA012376 CrossRefGoogle Scholar
  22. B.G. Fejer, J.W. Jensen, S.-Y. Su, Seasonal and longitudinal dependence of equatorial disturbance vertical plasma drifts. Geophys. Res. Lett. 35, L20106 (2008). doi: 10.1029/GL2008035584 ADSCrossRefGoogle Scholar
  23. J.C. Foster, J.M. Holt, R.G. Musgrove, D.S. Evans, Solar wind dependencies of high-latitude convection and precipitation, in Solar Wind Magnetosphere Coupling, ed. by Y. Kamide, J.A. Slavin (Terra Sci., Tokyo, 1986), pp. 477–494 CrossRefGoogle Scholar
  24. J.C. Foster, P.J. Erickson, A.J. Coster, J. Goldstein, F.J. Rich, Ionospheric signature of plasmaspheric tails. Geophys. Res. Lett. 29(13), 1623–1626 (2002). doi: 10.1029/GL015067 ADSCrossRefGoogle Scholar
  25. T.J. Fuller-Rowell, G.H. Millward, A.D. Richmond, M.V. Codrescu, Storm-time changes in the upper atmosphere at low latitudes. J. Atmos. Sol.-Terr. Phys. 64, 1383–1391 (2002) ADSCrossRefGoogle Scholar
  26. T.J. Fuller-Rowell, A.D. Richmond, N. Maruyama, Global modeling of storm-time thermospheric dynamics and electrodynamics, in Midlatitude Ionospheric Dynamics and Disturbances, ed. by P.M. Kintner Jr., A.J. Coster, T. Fuller-Rowell, A.J. Mannucci, M. Mendillo, R. Heelis. Am. Geophys. Union Geophysical Monograph, vol. 181 (2008), pp. 187–200 CrossRefGoogle Scholar
  27. C.A. Gonzales, M.C. Kelley, B.G. Fejer, J.F. Vickrey, R.F. Woodman, Equatorial electric fields during geomagnetically disturbed conditions: implications of simultaneous auroral and equatorial measurements. J. Geophys. Res. 84, 5803–5812 (1979) ADSCrossRefGoogle Scholar
  28. R.A. Heelis, W.R. Coley, East-West ion drifts at mid-latitudes observed by dynamics explorer-2. J. Geophys. Res. 97, 19461–19469 (1992) ADSCrossRefGoogle Scholar
  29. C.M. Huang, Disturbance dynamo electric fields in response to geomagnetic storms occurring at different universal times. J. Geophys. Res. Space Phys. 118, 496–501 (2013). doi: 10.1029/2012JA018118 ADSCrossRefGoogle Scholar
  30. C.M. Huang, M.Q. Chen, Formation of maximum electric potential at the geomagnetic equator by the disturbance dynamo. J. Geophys. Res. 113, A03301 (2008). doi: 10.1029/2007JA012843 ADSGoogle Scholar
  31. C.M. Huang, A.D. Richmond, M.-Q. Chen, Theoretical effects of geomagnetic activity on low latitude electric fields. J. Geophys. Res. 110, A5 (2005). doi: 10.1029/2004JA010994 CrossRefGoogle Scholar
  32. C.S. Huang, Equatorial ionospheric electrodynamics associated with high-speed solar wind streams during January–April 2007. J. Geophys. Res. 117, A10311 (2012). doi: 10.1029/2012JA017930 ADSCrossRefGoogle Scholar
  33. C.S. Huang, Storm-to-storm main phase repeatability of the local time variation of disturbed low-latitude vertical ion drifts. Geophys. Res. Lett. 42, 5694–5701 (2015). doi: 10.1002/2015GL064674 ADSCrossRefGoogle Scholar
  34. C.S. Huang, S. Sazykin, J.L. Chau, N. Maruyama, M.C. Kelley, Penetration of electric fields: efficiency and characteristic time scale. J. Atmos. Sol.-Terr. Phys. 69 (2007). doi: 10.1016/j/jastp.2006.08.06
  35. C.S. Huang, F.J. Rich, W.J. Burke, Storm-time electric fields in the equatorial ionosphere observed near the dusk meridian. J. Geophys. Res. 115, A08313 (2010). doi: 10.1029/2009JA015150 ADSGoogle Scholar
  36. B. Kakad, D. Tiwari, T.K. Pant, Study of disturbance dynamo effects at nighttime equatorial F region in Indian longitude. J. Geophys. Res. 116, A12318 (2011). doi: 10.1929/2011JA016626 ADSCrossRefGoogle Scholar
  37. M.C. Kelley, The Earth’s Ionosphere: Plasma Physics and Electrodynamics (Academic Press, San Diego, 1988) Google Scholar
  38. M.C. Kelley, B.G. Fejer, C.A. Gonzales, An explanation for anomalous equatorial ionospheric electric fields associated with a northward turning of the interplanetary magnetic field. Geophys. Res. Lett. 6, 301–306 (1979). doi: 10.10129/GL006i004p00301 ADSCrossRefGoogle Scholar
  39. T. Kikuchi, K. Hashimoto, K. Nozaki, Penetration electric fields to the equator during a geomagnetic storm. J. Geophys. Res. 113, A06214 (2008). doi: 10.1029/2007JA012628 ADSCrossRefGoogle Scholar
  40. M.V. Klimenko, V.V. Klimenko, Disturbance dynamo, prompt penetration electric field and overshielding in the Earth’s ionosphere during geomagnetic storm. J. Atmos. Sol.-Terr. Phys. 90–91, 146–155 (2012). doi: 10.1016/j.jastp.2012.02.018 CrossRefGoogle Scholar
  41. V.V. Kumar, M.L. Parkinson, P.L. Dyson, On the temporal evolution of midlatitude F region disturbance drifts. J. Geophys. Res. 115, A08325 (2010). doi: 10.1029/2009015229 ADSGoogle Scholar
  42. M. LeHuy, C. Amory-Mazaudier, Magnetic signature of the ionospheric disturbance dynamo at equatorial latitudes: Ddyn. J. Geophys. Res. 110, A02312 (2005). doi: 10.1029/2004JA01078 Google Scholar
  43. J. Liu, L. Liu, T. Nakamura, B. Zhao, B. Ning, A. Yoshiwaka, A case of ionospheric storm effects during long-lasting southward IMF Bz-driven geomagnetic storm. J. Geophys. Res. 119, 7716–7731 (2014). doi: 10.1002/2014JA020273 CrossRefGoogle Scholar
  44. N. Maruyama, A.D. Richmond, T.J. Fuller-Rowell, M.V. Codrescu, S. Sazykin, F.R. Toffoletto, R.W. Spiro, G.H. Millward, Interaction between direct penetration and disturbance dynamo electric fields in the storm-time equatorial ionosphere. Geophys. Res. Lett. 32 (2005). doi: 10.1029/2005GL023763
  45. N. Maruyama, S. Sazykin, R.W. Spiro, D. Anderson, A. Anghel, R.A. Wolf, F.R. Toffoletto, T.J. Fuller-Rowell, M.V. Codrescu, A.D. Richmond, G.H. Millward, Modeling storm-time electrodynamics of the low-latitude ionosphere-thermosphere system: can long lasting disturbance electric fields be accounted for? J. Atmos. Sol.-Terr. Phys. 69 (2007). doi: 10.1016/j.jastp.2006.08.020
  46. N. Maruyama, T.J. Fuller-Rowell, M.V. Codrescu, D. Anderson, A.D. Richmond, A. Maute, S. Sazykin, F.R. Toffoletto, R.W. Spiro, R.A. Wolf, G.H. Millward, Modeling the storm time electrodynamics, in Aeronomy of the Earth’s Atmosphere and Ionosphere, ed. by M.A. Abdu, D. Pancheva, A. Bhattacharyya (Springer, Dordrecht, 2011), pp. 455–464 CrossRefGoogle Scholar
  47. T. Maruyama, M. Nakamura, Conditions for intense ionospheric storms expanding to lower midlatitudes. J. Geophys. Res. 112, A05310 (2007). doi: 10.1029/2006JA012226 ADSCrossRefGoogle Scholar
  48. S. Matsushita, Ionospheric variations associated with geomagnetic disturbances. J. Geomagn. Geoelectr. 5, 109–135 (1953) CrossRefGoogle Scholar
  49. C.A. Mazaudier, A.D. Richmond, D. Brinkman, On thermospheric winds produced by auroral heating during magnetic storms and associated dynamo electric fields. Ann. Geophys. 5A, 443–448 (1987) ADSGoogle Scholar
  50. C.A. Mazaudier, S.V. Venkateswaran, Delayed ionospheric effects of the geomagnetic storm of March 22, 1979 studied by the sixth coordinated data analysis workshop (CDAW–6). Ann. Geophys. 8, 511–518 (1990) ADSGoogle Scholar
  51. A.A. Namgaladze, Yu.U. Kore’kov, V.V. Klimenko, I.V. Karpov, V.A. Sorokin, V.A. Naumova, Numerical modeling of the thermosphere-ionosphere-protonosphere. J. Atmos. Terr. Phys. 53(11/12), 113–1124 (1998) Google Scholar
  52. A. Nishida, N. Iwasaki, T. Nagata, The origin of fluctuations in the equatorial electrojet: a new type of geomagnetic variation. Ann. Geophys. 22, 5549–5559 (1966) Google Scholar
  53. N.M. Pedatella, J.M. Forbes, Electrodynamic response of the ionosphere to high-speed solar wind streams. J. Geophys. Res. 116, A12310 (2011). doi: 10.1029/2011JA017050 ADSCrossRefGoogle Scholar
  54. C. Peymirat, A.D. Richmond, B.A. Emery, R.G. Roble, A magnetosphere-thermosphere-ionosphere-electrodynamics general-circulation model. J. Geophys. Res. 103, 17467–17477 (1998) ADSCrossRefGoogle Scholar
  55. C. Peymirat, A.D. Richmond, A.T. Kobea, Electrodynamic coupling of high and low latitudes: simulations of shielding/overshielding effects. J. Geophys. Res. 105, 22991 (2000). doi: 10.1029/2000JA000057 ADSCrossRefGoogle Scholar
  56. C. Peymirat, A.D. Richmond, R.G. Roble, Neutral wind influence on the electrodynamic coupling between the ionosphere and magnetosphere. J. Geophys. Res. 107, A1 (2002). doi: 10.1029/2001JA900106 CrossRefGoogle Scholar
  57. R.G. Rastogi, The effect of geomagnetic activity on the F2 region over central Africa. J. Geophys. Res. 67, 1367–1374 (1962) ADSCrossRefGoogle Scholar
  58. A.D. Richmond, Ionospheric electrodynamics, in Handbook of Atmospheric Electrodynamics, vol. 2, ed. by H. Volland (CRC Press, Boca Raton, 1995), pp. 249–290 Google Scholar
  59. A.D. Richmond, S. Matsushita, Thermospheric response to a magnetic substorm. J. Geophys. Res. 80, 2839–2850 (1975) ADSCrossRefGoogle Scholar
  60. A.D. Richmond, C. Peymirat, R.G. Roble, Long-lasting disturbances in the equatorial ionospheric electric field simulated with a coupled magnetosphere-ionosphere-thermosphere model. J. Geophys. Res. 118(A3), 1118 (2003). doi: 10.1029/2002JA009758 CrossRefGoogle Scholar
  61. J.H. Sastri, Equatorial electric fields of ionospheric disturbance dynamo origin. Ann. Geophys. 6, 635–642 (1998) ADSGoogle Scholar
  62. L. Scherliess, B.G. Fejer, Storm-time dependence of equatorial disturbance dynamo zonal electric fields. J. Geophys. Res. 102, 24037–24046 (1997). doi: 10.1029/97JA02165 ADSCrossRefGoogle Scholar
  63. L. Scherliess, B.G. Fejer, Satellite studies of mid- and low-latitude ionospheric disturbance zonal plasma drifts. Geophys. Res. Lett. 25, 1503–1506 (1998) ADSCrossRefGoogle Scholar
  64. L. Scherliess, B.G. Fejer, J. Holt, L. Goncharenko, C. Amory-Mazaudier, M.J. Buonsanto, Radar studies of midlatitude ionospheric plasma drifts. J. Geophys. Res. 106(A2), 1771–1783 (2001) ADSCrossRefGoogle Scholar
  65. C. Senior, M. Blanc, On the control of magnetospheric convection by the spatial distribution of ionospheric conductivities. J. Geophys. Res. 89(A1), 261–284 (1984) ADSCrossRefGoogle Scholar
  66. R.W. Spiro, R.A. Wolf, B.G. Fejer, Penetration of high-latitude electric field effects to low latitude during SUNDIAL 1984. Ann. Geophys. 6, 39–50 (1988) ADSGoogle Scholar
  67. J. Testud, P. Amayenc, M. Blanc, Middle and low latitude effects of auroral disturbances from incoherent-scatter. J. Atmos. Terr. Phys. 37, 989–1009 (1975) ADSCrossRefGoogle Scholar
  68. B. Veenadhari, S. Alex, T. Kikuchi, A. Shinbori, R. Singh, E. Chandrasekar, Penetration of magnetospheric electric fields to the equator and their effects on low latitude ionosphere during intense geomagnetic storms. J. Geophys. Res. 115, A3 (2010). doi: 10.1029/2009JA014562 CrossRefGoogle Scholar
  69. H. Volland, H.G. Mayr, Response of the thermospheric density to auroral heating during geomagnetic disturbances. J. Geophys. Res. 76, 3764–3776 (1971) ADSCrossRefGoogle Scholar
  70. Y. Wei, M. Hong, W. Wan, A. Du, J. Lei, B. Zhao, W. Wang, Z. Ren, X. Yue, Unusually long lasting multiple penetration of interplanetary electric field to equatorial ionosphere under oscillating IMF \(Bz\). Geophys. Res. Lett. 35, L02102 (2008). doi: 10.1029/2008GL032305 ADSGoogle Scholar
  71. Y. Wei, M. Hong, Z. Pu, Q.C. Zong, T. Nakai, X. Cao, J. Wang, S. Fu, L. Xie, J. Guo, X. Liu, Responses of the ionospheric electric field to a sheath region of iCME: a case study. J. Atmos. Sol.-Terr. Phys. 73, 123–129 (2011). doi: 10.1016/j.jastp.2010.03.004 ADSCrossRefGoogle Scholar
  72. R.A. Wolf, The quasi-static (slow flow) region of the magnetosphere, in Solar Terrestrial Physics, ed. by R. Carovillano, J.M. Forbes, D. Reidel (1983), pp. 303–380 CrossRefGoogle Scholar
  73. Y. Yamazaki, M.J. Kosch, The equatorial electrojet during geomagnetic storm and substorms. J. Geophys. Res. Space Phys. 120, 2276–2287 (2015). doi: 10.1002/2014JA020773 ADSCrossRefGoogle Scholar
  74. K.Z. Zaka, A. Kobea, P. Assamoi, O.K. Obrou, V. Doumbia, K. Boka, B.J–P. Adohi, N.M. Mene, Latitudinal profile of the ionospheric disturbance dynamo magnetic signature; comparison with the DP2 magnetic disturbance. Ann. Geophys. 27, 3523–3536 (2009) ADSCrossRefGoogle Scholar
  75. K.Z. Zaka, A. Kobea, V. Doumbia, A.D. Richmond, A. Maute, N.M. Mene, O.K. Obrou, P. Assamoi, K. Boka, B.J–P. Adohi, C. Armory-Mazaudier, Simulation of electric field and current during the 11 June 1993 disturbance dynamo event: comparison with observations. J. Geophys. Res. 115 (2010). doi: 10.1029/2010JA015417
  76. Y. Zou, N. Nishitani, Study of mid-latitude ionospheric convection during quiet and disturbed periods using the SuperDARN Hokkaido radar. Adv. Space Res. 54, 473–480 (2014). doi: 10.1016/j.asr.2014.01.011 ADSCrossRefGoogle Scholar
  77. C. Xiong, H. Lühr, B.G. Fejer, The response of the equatorial electrojet, vertical plasma drifts, and thermospheric zonal wind to enhanced solar wind input. J. Geophys. Res. Space Phys. 121 (2016). doi: 10.1002/2015JA022133

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Center for Atmospheric and Space SciencesUtah State UniversityLoganUSA
  2. 2.IRAP/Observatoire Midi-PyrénéesUPSToulouse Cedex 4France
  3. 3.NCAR-HAOBoulderUSA

Personalised recommendations