Space Science Reviews

, Volume 203, Issue 1–4, pp 143–181 | Cite as

Dust Devil Tracks

  • Dennis ReissEmail author
  • Lori Fenton
  • Lynn Neakrase
  • Michael Zimmerman
  • Thiago Statella
  • Patrick Whelley
  • Angelo Pio Rossi
  • Matthew Balme


Dust devils that leave dark- or light-toned tracks are common on Mars and they can also be found on the Earth’s surface. Dust devil tracks (hereinafter DDTs) are ephemeral surface features with mostly sub-annual lifetimes. Regarding their size, DDT widths can range between ∼1 m and ∼1 km, depending on the diameter of dust devil that created the track, and DDT lengths range from a few tens of meters to several kilometers, limited by the duration and horizontal ground speed of dust devils. DDTs can be classified into three main types based on their morphology and albedo in contrast to their surroundings; all are found on both planets: (a) dark continuous DDTs, (b) dark cycloidal DDTs, and (c) bright DDTs. Dark continuous DDTs are the most common type on Mars. They are characterized by their relatively homogenous and continuous low albedo surface tracks. Based on terrestrial and martian in situ studies, these DDTs most likely form when surficial dust layers are removed to expose larger-grained substrate material (coarse sands of ≥500 μm in diameter). The exposure of larger-grained materials changes the photometric properties of the surface; hence leading to lower albedo tracks because grain size is photometrically inversely proportional to the surface reflectance. However, although not observed so far, compositional differences (i.e., color differences) might also lead to albedo contrasts when dust is removed to expose substrate materials with mineralogical differences. For dark continuous DDTs, albedo drop measurements are around 2.5 % in the wavelength range of 550–850 nm on Mars and around 0.5 % in the wavelength range from 300–1100 nm on Earth. The removal of an equivalent layer thickness around 1 μm is sufficient for the formation of visible dark continuous DDTs on Mars and Earth. The next type of DDTs, dark cycloidal DDTs, are characterized by their low albedo pattern of overlapping scallops. Terrestrial in situ studies imply that they are formed when sand-sized material that is eroded from the outer vortex area of a dust devil is redeposited in annular patterns in the central vortex region. This type of DDT can also be found in on Mars in orbital image data, and although in situ studies are lacking, terrestrial analog studies, laboratory work, and numerical modeling suggest they have the same formation mechanism as those on Earth. Finally, bright DDTs are characterized by their continuous track pattern and high albedo compared to their undisturbed surroundings. They are found on both planets, but to date they have only been analyzed in situ on Earth. Here, the destruction of aggregates of dust, silt and sand by dust devils leads to smooth surfaces in contrast to the undisturbed rough surfaces surrounding the track. The resulting change in photometric properties occurs because the smoother surfaces have a higher reflectance compared to the surrounding rough surface, leading to bright DDTs. On Mars, the destruction of surficial dust-aggregates may also lead to bright DDTs. However, higher reflective surfaces may be produced by other formation mechanisms, such as dust compaction by passing dust devils, as this may also cause changes in photometric properties. On Mars, DDTs in general are found at all elevations and on a global scale, except on the permanent polar caps. DDT maximum areal densities occur during spring and summer in both hemispheres produced by an increase in dust devil activity caused by maximum insolation. Regionally, dust devil densities vary spatially likely controlled by changes in dust cover thicknesses and substrate materials. This variability makes it difficult to infer dust devil activity from DDT frequencies. Furthermore, only a fraction of dust devils leave tracks. However, DDTs can be used as proxies for dust devil lifetimes and wind directions and speeds, and they can also be used to predict lander or rover solar panel clearing events. Overall, the high DDT frequency in many areas on Mars leads to drastic albedo changes that affect large-scale weather patterns.


Dust devil Dust devil track Vertical convective vortices Mars Earth Deflation 


  1. M. Balme, R. Greeley, Dust devils on Earth and Mars. Rev. Geophys. 44, RG3003 (2006). doi: 10.1029/2005RG000188 ADSCrossRefGoogle Scholar
  2. M.R. Balme, P.L. Whelley, R. Greeley, Mars: dust devil track survey in Argyre Planitia and Hellas Basin. J. Geophys. Res. 108, 5086 (2003). doi: 10.1029/2003JE002096 CrossRefGoogle Scholar
  3. M.R. Balme, A. Pathare, S.M. Metzger, M.C. Towner, S.R. Lewis, A. Spiga, L. Fenton, N.O. Renno, H.M. Elliott, F.A. Saca, T. Michaels, P. Russell, J. Verdasca, Field measurements of horizontal forward motion velocities of terrestrial dust devils: towards a proxy for ambient winds on Mars and Earth. Icarus 221, 632–645 (2012) ADSCrossRefGoogle Scholar
  4. L. Bandeira, J.S. Marques, J. Saraiva, P. Pina, Automated detection of martian dune fields. IEEE Geosci. Remote Sens. Lett. 8, 626–630 (2011) ADSCrossRefGoogle Scholar
  5. K.A. Bennett, L. Fenton, J.F. Bell III, The albedo of martian dunes: insights into aeolian activity and dust devil formation. Aeolian Res. (2016). doi: 10.1016/j.aeolia.2016.08.009, in press Google Scholar
  6. J.A. Berger, M.E. Schmidt, R. Gellert, J.L. Campbell, P.L. King, R.L. Flemming, D.W. Ming, B.C. Clark, I. Pradler, S.J.V. Vanbommel, M.E. Minitti, A.G. Fairén, N.I. Boyd, L.M. Thompson, G.M. Perrett, B.E. Elliott, E. Desouza, A global Mars dust composition refined by the Alpha-Particle X-ray Spectrometer in Gale Crater. Geophys. Res. Lett. 43, 67–75 (2016) ADSCrossRefGoogle Scholar
  7. N.T. Bridges, M.E. Banks, R.A. Beyer, F.C. Chuang, E.Z. Noe Dobrea, K.E. Herkenhoff, L.P. Keszthelyi, K.E. Fishbaugh, A.S. McEwen, T.I. Michaels, Aeolian bedforms, yardangs, and indurated surfaces in the Tharsis Montes as seen by the HiRISE Camera: evidence for dust aggregates. Icarus 205, 165–182 (2010) ADSCrossRefGoogle Scholar
  8. N.T. Bridges, M.C. Bourke, P.E. Geissler, M.E. Banks, C. Colon, S. Diniega, M.P. Golombek, C.J. Hansen, S. Mattson, A.S. Mcewen, M.T. Mellon, N. Stantzos, B.J. Thomson, Planet-wide sand motion on Mars. Geology (2011). doi: 10.1130/G32373.1 Google Scholar
  9. F.J. Calef, V.L. Sharpton, Enigmatic linear features in the Northern Hemisphere of Mars: their formation process. Geophys. Res. Lett. 32, L24202 (2005). doi: 10.1029/2005GL023868 ADSCrossRefGoogle Scholar
  10. B.A. Cantor, K.M. Kanak, K.S. Edgett, Mars Orbiter Camera observations of Martian dust devils and their tracks (September 1997 to January 2006) and evaluation of theoretical vortex models. J. Geophys. Res. 111, E12002 (2006). doi: 10.1029/2006JE002700 ADSCrossRefGoogle Scholar
  11. J.J. Carroll, J.A. Ryan, Atmospheric vorticity and dust devil rotation. J. Geophys. Res. 75, 5179–5184 (1970) ADSCrossRefGoogle Scholar
  12. D.S. Choi, C.M. Dundas, Measurements of Martian Dust Devil Winds with HiRISE. Geophys. Res. Lett. 38, L24206 (2011). doi: 10.1029/2011GL049806 ADSCrossRefGoogle Scholar
  13. P.R. Christensen, Global albedo variations on Mars–Implications for active aeolian transport, deposition, and erosion. J. Geophys. Res. 93, 7611–7624 (1988). doi: 10.1029/JB093iB07p07611 ADSCrossRefGoogle Scholar
  14. P.R. Christensen, J.L. Bandfield, V.E. Hamilton, S.W. Ruff, H.H. Kieffer, T.N. Titus, M.C. Malin, R.V. Morris, M.D. Lane, R.L. Clark, B.M. Jakosky, M.T. Mellon, J.C. Pearl, B.J. Conrath, M.D. Smith, R.T. Clancy, R.O. Kuzmin, T. Roush, G.L. Mehall, N. Gorelick, K. Bender, K. Murray, S. Dason, E. Greene, S. Silverman, M. Greenfield, Mars Global Surveyor Thermal Emission Spectrometer experiment: investigation description and surface science results. J. Geophys. Res. 106, 23823–23871 (2001) ADSCrossRefGoogle Scholar
  15. R.N. Clark, T.L. Roush, Reflectance spectroscopy: quantitative analysis techniques for remote sensing applications. J. Geophys. Res. 89, 6329–6340 (1984) ADSCrossRefGoogle Scholar
  16. D. Crisp, A. Pathare, R.C. Ewell, The performance of gallium arsenide/germanium solar cells at the Martian surface. Acta Astronaut. 54, 83–101 (2004) ADSCrossRefGoogle Scholar
  17. W.D. Crozier, Dust devil properties. J. Geophys. Res. 75, 4583–4585 (1970) ADSCrossRefGoogle Scholar
  18. G.E. Cushing, T.N. Titus, P.R. Christensen, THEMIS VIS and IR observations of a high-altitude Martian dust devil. Geophys. Res. Lett. 32, L23202 (2005). doi: 10.1029/2005GL024478 ADSCrossRefGoogle Scholar
  19. J.A. Cutts, R.S.U. Smith, Eolian deposits and dunes on Mars. J. Geophys. Res. 78, 4139–4154 (1973) ADSCrossRefGoogle Scholar
  20. R.P. Davies-Jones, Tornado dynamics, in Thunderstorm Morphology and Dynamics (Univ. of Okla. Press, Norman, 1986), pp. 197–388, Chap. 10 Google Scholar
  21. N.B. Drake, L.K. Tamppari, R.D. Baker, B.A. Cantor, A.S. Hale, Dust devil tracks and wind streaks in the North Polar Region of Mars: a study of the 2007 Phoenix Mars Lander Sites. Geophys. Res. Lett. 33, L19S02 (2006). doi: 10.1029/2006GL026270 CrossRefGoogle Scholar
  22. K.S. Edgett, M.C. Malin, Martian dust raising and surface albedo controls: thin, dark (and sometimes bright) streaks and dust devils in MGS MOC high resolution images, in Lunar and Planetary Science Conference XXXI (2000). Abstract #1073 Google Scholar
  23. L.K. Fenton, J.L. Bandfield, A.W. Ward, Aeolian processes in Proctor Crater on Mars: sedimentary history as analyzed from multiple data sets. J. Geophys. Res. 108(E12, 5129 (2003). doi: 10.1029/2002JE002015 Google Scholar
  24. L.K. Fenton, A.D. Toigo, M.I. Richardson, Aeolian processes in Proctor Crater on Mars: mesoscale modeling of dune-forming winds. J. Geophys. Res. 110, E06005 (2005). doi: 10.1029/2004JE002309 ADSGoogle Scholar
  25. L.K. Fenton, P.E. Geissler, R.M. Haberle, Global warming and climate forcing by recent albedo changes on Mars. Nature 446, 646–649 (2007). doi: 10.1038/nature05718 ADSCrossRefGoogle Scholar
  26. L. Fenton, D. Reiss, M. Lemmon, B. Marticorena, S. Lewis, B. Cantor, Orbital observations of dust lofted by daytime convective turbulence. Space Sci. Rev. (2016). doi: 10.1007/s11214-016-0243-6 Google Scholar
  27. J.A. Fisher, M.I. Richardson, C.E. Newman, M.A. Szwast, C. Graf, S. Basu, S.P. Ewald, A.D. Toigo, R.J. Wilson, A survey of Martian dust devil activity using Mars Global Surveyor Mars Orbiter Camera images. J. Geophys. Res. 110, E03004 (2005). doi: 10.1029/2003JE002165 ADSGoogle Scholar
  28. D.E. Fitzjarrald, A Field investigation of Dust Devils. J. Appl. Meteorol. 12, 808–813 (1973) ADSCrossRefGoogle Scholar
  29. W.D. Flower, Sand devils. London Meteorol. Off. Prof. Notes. 5, 1–16 (1936) Google Scholar
  30. T.T. Fujita, Proposed Mechanism of Suction Spots accompanied by Tornadoes. Preprints of papers presented at the Seventh Conference on Severe Local Storms, October 5–7, 1971, Kansas City, Mo., 208–213 (1971) Google Scholar
  31. T.T. Fujita, Jumbo tornado outbreak of 3 April 1974. Weatherwise 27, 116–126 (1974) CrossRefGoogle Scholar
  32. T.T. Fujita, D.L. Bradbury, C.F. van Thullenar, Palm Sunday tornadoes of April 11, 1965. Mon. Weather Rev. 98, 29–69 (1970) ADSCrossRefGoogle Scholar
  33. P.E. Geissler, Three decades of Martian surface changes. J. Geophys. Res. 110, E02001 (2005). doi: 10.1029/2004JE002345 ADSCrossRefGoogle Scholar
  34. P.E. Geissler, J.R. Johnson, R. Sullivan, K. Herkenhoff, D. Mittlefehldt, R. Fergason, D. Ming, R. Morris, S. Squyres, L. Soderblom, M. Golombek, First in situ investigation of a dark wind streak on Mars. J. Geophys. Res. 113, 1–16 (2008) CrossRefGoogle Scholar
  35. P.E. Geissler, R. Sullivan, M. Golombek, J.R. Johnson, K. Herkenhoff, N. Bridges, A. Vaughan, J. Maki, T. Parker, J. Bell, Gone with the wind: eolian erasure of the Mars Rover tracks. J. Geophys. Res. 115, 1–17 (2010) CrossRefGoogle Scholar
  36. P.E. Geissler, L.K. Fenton, M.-T. Enga, P. Mukherjee, Orbital monitoring of martian surface changes. Icarus 278, 279–300 (2016). doi: 10.1016/j.icarus.2016.05.023 ADSCrossRefGoogle Scholar
  37. P.J. Gierasch, R.M. Goody, A model of a martian great dust storm. J. Atmos. Sci. 30, 169–179 (1973) ADSCrossRefGoogle Scholar
  38. W. Goetz, P. Bertelsen, C.S. Binau, H.P. Gunnlaugsson, S.F. Hviid, K.M. Kinch, D.E. Madsen, M.B. Madsen, M. Olsen, R. Gellert, G. Klingelhöfer, D.W. Ming, R.V. Morris, R. Rieder, D.S. Rodionov, P.A. de Souza, C. Schröder, S.W. Squyres, T. Wdowiak, A. Yen, Indication of drier periods on Mars from the chemistry and mineralogy of atmospheric dust. Nature 436, 62–65 (2005) ADSCrossRefGoogle Scholar
  39. J.A. Grant, P.H. Schultz, Possible tornado-like tracks on Mars. Science 237, 883–885 (1987) ADSCrossRefGoogle Scholar
  40. R. Greeley, J.D. Iversen, Wind as a geological process on Earth, Mars, Venus, and Titan (Cambridge University Press, New York, 1985), p. 333 CrossRefGoogle Scholar
  41. R. Greeley, M.R. Balme, J.D. Iversen, S.M. Metzger, R. Mickelson, J. Phoreman, B. White, Martian dust devils: laboratory simulations of particle threshold. J. Geophys. Res. 108, 5041 (2003). doi: 10.1029/2002JE001987 CrossRefGoogle Scholar
  42. R. Greeley, P.L. Whelley, L.D.V. Neakrase, Martian dust devils: directions of movement inferred from their tracks. Geophys. Res. Lett. 31, L24702 (2004). doi: 10.1029/2004GL021599 ADSCrossRefGoogle Scholar
  43. R. Greeley, R. Arvidson, J.F. Bell III., P. Christensen, D. Foley, A. Haldemann, R.O. Kuzmin, G.A. Landis, L.D.V. Neakrase, G. Neukum, S.W. Squyres, R. Sullivan, S.D. Thompson, P.L. Whelley, D. Williams, Martian variable features: new insight from the Mars Express Orbiter and the Mars Exploration Rover Spirit. J. Geophys. Res. 110, E06002 (2005). doi: 10.1029/2005JE002403 ADSGoogle Scholar
  44. R. Greeley, R.E. Arvidson, P.W. Barlett, D. Blaney, N.A. Cabrol, P.R. Christensen, R.L. Fergason, M.P. Golombek, G.A. Landis, M.T. Lemmon, S.M. McLennan, J.N. Maki, T. Michaels, J.E. Moersch, L.D.V. Neakrase, S.C.R. Rafkin, L. Richter, S.W. Squyres, P.A. de Souza, R.J. Sullivan, S.D. Thompson, P.L. Whelley, Gusev crater: wind-related features and processes observed by the Mars Exploration Rover Spirit. J. Geophys. Res. 111, E02S09 (2006a). doi: 10.1029/2005JE002491 ADSGoogle Scholar
  45. R. Greeley, P.L. Whelley, R.E. Arvidson, N.A. Cabrol, D.J. Foley, B.J. Franklin, P.G. Geissler, M.P. Golombek, R.O. Kuzmin, G.A. Landis, M.T. Lemmon, L.D.V. Neakrase, S.W. Squyres, S.D. Thompson, Active dust devils in Gusev crater, Mars: observations from the Mars Exploration Rover Spirit. J. Geophys. Res. 111, E12S09 (2006b). doi: 10.1029/2006JE002743 ADSGoogle Scholar
  46. R. Greeley, D.A. Waller, N.A. Cabrol, G.A. Landis, M.T. Lemmon, L.D.V. Neakrase, M. Pendeleton Hoffer, S.D. Thompson, P.L. Whelley, Gusev crater, Mars: observations of three dust devil seasons. J. Geophys. Res. 115, E00F02 (2010). doi: 10.1029/2010JE003608 ADSCrossRefGoogle Scholar
  47. R.M. Haberle, M.A. Kahre, J.R. Murphy et al., Role of dust devils and orbital precession in closing the Martian dust cycle. Geophys. Res. Lett. 33, 1–4 (2006). doi: 10.1029/2006GL026188 CrossRefGoogle Scholar
  48. P.K. Haff, B.T. Werner, Dynamical processes on desert pavements and the healing of surfical disturbances. Quat. Res. 45, 38–46 (1996) CrossRefGoogle Scholar
  49. B. Hapke, Bidirectional reflectance spectroscopy 1. Theory. J. Geophys. Res. 86, 3039–3054 (1981) ADSCrossRefGoogle Scholar
  50. B. Hapke, Introduction to the Theory of Reflectance and Emittance Spectroscopy (Cambridge University Press, New York, 1993) CrossRefGoogle Scholar
  51. C.L.L. Hendriks, Constrained and dimensionality-independent Path Openings. IEEE Trans. Image Process. 19, 1587–1595 (2010) ADSMathSciNetCrossRefGoogle Scholar
  52. K.E. Herkenhoff, S.W. Squyres, J.F. Bell, J.N. Maki, H.M. Arneson, P. Bertelsen, D.I. Brown, S.A. Collins, A. Dingizian, S.T. Elliott, W. Goetz, E.C. Hagerott, A.G. Hayes, M.J. Johnson, R.L. Kirk, S. McLennan, R.V. Morris, L.M. Scherr, M.A. Schwochert, L.R. Shiraishi, G.H. Smith, L.A. Soderblom, J.N. Sohl-Dickstein, M.V. Wadsworth, Athena Microscopic Imager investigation. J. Geophys. Res. 108, 8065 (2003). doi: 10.1029/2003JE002076 CrossRefGoogle Scholar
  53. K.E. Herkenhoff et al., Textures of the soils and rocks at Gusev crater from Spirit’s Microscopic Imager. Science 305, 824–826 (2004) ADSCrossRefGoogle Scholar
  54. K.E. Herkenhoff et al., Overview of the Microscopic Imager investigation during Spirit’s first 450 sols in Gusev crater. J. Geophys. Res. 110, E02S04 (2006). doi: 10.1029/2005JE002574 Google Scholar
  55. R. Hesse, Short-lived and long-lived dust devil tracks in the coastal desert of southern Peru. Aeolian Res. 5, 101–106 (2012). doi: 10.1016/j.aeolia.2011.10.003 ADSCrossRefGoogle Scholar
  56. M.P. Hoffer, R. Greeley, Bright tracks on Mars: alternate dust devil tracks, in 41th Lunar Planet. Sci. (2010). Abstract 2713 Google Scholar
  57. C. Holstein-Rathlou, H.P. Gunnlaugsson, J.P. Merrison, K.M. Bean, B.A. Cantor, J.A. Davis, R. Davy, N.B. Drake, M.D. Ellehoj, W. Goetz, S.F. Hviid, C.F. Lange, S.E. Larsen, M.T. Lemmon, M.B. Madsen, M. Malin, J.E. Moores, P. Nørnberg, P. Smith, L.K. Tamppari, P.A. Taylor, Winds at the Phoenix landing site. J. Geophys. Res. 115, E00E18 (2010) ADSCrossRefGoogle Scholar
  58. J.D. Iversen, B.R. White, Saltation threshold on Earth, Mars and Venus. Sedimentology 29, 111–119 (1982) ADSCrossRefGoogle Scholar
  59. M.A. Kahre, J.R. Murphy, R.M. Haberle, Modeling the Martian dust cycle and surface dust reservoirs with the NASA Ames general circulation model. J. Geophys. Res. 111, 1–25 (2006). doi: 10.1029/2005JE002588 CrossRefGoogle Scholar
  60. M. Klose, B.C. Jemmett-Smith, H. Kahanpää, M. Kahre, P. Knippertz, M.T. Lemmon, S.R. Lewis, R.D. Lorenz, L.D.V. Neakrase, C. Newman, M.R. Patel, D. Reiss, Space Sci. Rev. (2016). doi: 10.1007/s11214-016-0261-4, this issue Google Scholar
  61. J.F. Kok, E.J.R. Parteli, T.I. Michaels, D.B. Karam, The physics of wind-blown sand and dust. Rep. Prog. Phys. 75, 72 (2012) CrossRefGoogle Scholar
  62. G.A. Landis, P.P. Jenkins, Measurement of the settling rate of atmospheric dust on Mars by the MAE instrument on Mars Pathfinder. J. Geophys. Res. 105, 1855–1857 (2000) ADSCrossRefGoogle Scholar
  63. M.T. Lemmon, M.J. Wolff, M.D. Smith, R.T. Clancy, D. Banfield, G.A. Landis, A. Ghosh, P.H. Smith, N. Spanovich, B. Whitney, P. Whelley, R. Greeley, S. Thompson, J.F. Bell, S.W. Squyres, Atmospheric imaging results from the Mars Exploration Rovers: spirit and opportunity. Science 306, 1753–1756 (2004) ADSCrossRefGoogle Scholar
  64. D.C. Lewellen, W.S. Lewellen, Near-surface intensification of tornado vortices. J. Atmos. Sci. 64, 2176–2194 (2007a) ADSCrossRefGoogle Scholar
  65. D.C. Lewellen, W.S. Lewellen, Near-surface vortex intensification through corner flow collapse. J. Atmos. Sci. 64, 2195–2209 (2007b) ADSCrossRefGoogle Scholar
  66. D.C. Lewellen, M.I. Zimmerman, Using tornado surface marks to help decipher near-ground wind fields, in 24th Conf. Severe Local Storms (2008) Google Scholar
  67. D.C. Lewellen, W.S. Lewellen, J. Xia, The influence of a local swirl ratio on tornado intensification near the surface. J. Atmos. Sci. 57, 527–544 (2000) ADSMathSciNetCrossRefGoogle Scholar
  68. D.C. Lewellen, B. Gong, W.S. Lewellen, Effects of finescale debris on near-surface tornado dynamics. J. Atmos. Sci. 65, 3247–3262 (2008) ADSCrossRefGoogle Scholar
  69. R.D. Lorenz, Power law of dust devil diameters on Mars and Earth. Icarus 203, 683–684 (2009). doi: 10.1016/j.icarus.2009.06.029 ADSCrossRefGoogle Scholar
  70. R.D. Lorenz, On the statistical distribution of dust devil diameters. Icarus 215, 381–390 (2011). doi: 10.1016/j.icarus.2011.06.005 ADSCrossRefGoogle Scholar
  71. R.D. Lorenz, The longevity and aspect ratio of dust devils: effects on detection efficiencies and comparison of landed and orbital imaging at mars. Icarus 226, 964–970 (2013a). doi: 10.1016/j.icarus.2013.06.031 ADSCrossRefGoogle Scholar
  72. R.D. Lorenz, Irregular dust devil pressure drops on Earth and Mars: effect of cycloidal tracks. Planet. Space Sci. 76, 96–103 (2013b) ADSCrossRefGoogle Scholar
  73. R.D. Lorenz, Heuristic estimation of dust devil vortex parameters and trajectories from single-station meteorological data: application to InSight at Mars. Icarus 271, 326–337 (2016) ADSCrossRefGoogle Scholar
  74. R.D. Lorenz, B. Jackson, Dust devil populations and statistics. Space Sci. Rev. (2016). doi: 10.1007/s11214-016-0277-9, this issue Google Scholar
  75. R.D. Lorenz, D. Reiss, Solar panel clearing events, dust devil tracks, and in-situ vortex detections on Mars. Icarus 248, 162–164 (2015). doi: 10.1016/j.icarus.2014.10.034 ADSCrossRefGoogle Scholar
  76. R.D. Lorenz, M.R. Balme, G. Zhaolin, H. Kahanpää, M. Klose, M.V. Kurgansky, M.R. Patel, D. Reiss, A.P. Rossi, A. Spiga, T. Takemi, W. Wei, History and applications of dust devil studies. Space Sci. Rev. (2016). doi: 10.1007/s11214-016-0239-2, this issue Google Scholar
  77. L.J. Maher, Geology education by lightplane. AOPA Pilot 11(1), 60–65 (1968) Google Scholar
  78. M.C. Malin, K.S. Edgett, Mars global surveyor Mars orbiter camera: interplanetary cruise through primary mission. J. Geophys. Res. 106, 23429–23570 (2001) ADSCrossRefGoogle Scholar
  79. W.J. Markiewicz, R.M. Sablotny, H.U. Keller, N. Thomas, D. Titov, P.H. Smith, Optical properties of the Martian aerosols as derived from Imager for Mars Pathfinder midday sky brightness data. J. Geophys. Res. 104, 9009–9017 (1999) ADSCrossRefGoogle Scholar
  80. A.S. McEwen, L. Ojha, C.M. Dundas, S.S. Mattson, S. Byrne, J.J. Wray, S.C. Cull, S.L. Murchie, N. Thomas, V.C. Gulick, Seasonal flows on warm Martian slopes. Science 80(333), 740–743 (2011) ADSCrossRefGoogle Scholar
  81. M.T. Mellon, K.A. Kretke, M.D. Smith, S.M. Pelkey, A global map of thermal inertia from Mars Global Surveyor Mapping Mission, in Lunar Planet. Sci. [CDROM] XXXIII (2002). Abstract 1416 Google Scholar
  82. S.M. Metzger, Dust devils as aeolian transport mechanisms in southern Nevada and in the Mars Pathfinder landing site. PhD thesis, Univ. of Nev, Reno, p. 208 (1999) Google Scholar
  83. S.M. Metzger, M.R. Balme, M.C. Towner, B.J. Bos, T.J. Ringrose, M.R. Patel, In situ measurements of particle load and transport in dust devils. Icarus 214, 766–772 (2011) ADSCrossRefGoogle Scholar
  84. T.I. Michaels, Numerical modeling of Mars dust devils: albedo track generation. Geophys. Res. Lett. 33, L19S08 (2006). doi: 10.1029/2006GL026268 CrossRefGoogle Scholar
  85. L.D.V. Neakrase, A laboratory study of sediment flux within dust devils on Earth and Mars. ProQuest (2009), 184 pages Google Scholar
  86. L.D.V. Neakrase, J. McHone, P.L. Whelley, R. Greeley, Saharan dust devil tracks: Mars analog field study areas. Geol. Soc. Am. Abstr. 40, 262 (2008) Google Scholar
  87. L.D.V. Neakrase, J. McHone, P.L. Whelley, R. Greeley, Terrestrial analogs to Mars: East-central Saharan dust devil tracks, in 43rd Lunar and Planetary Science Conference (2012), Abstract #2009 Google Scholar
  88. F.M. Neubauer, Thermal convection in the Martian atmosphere. J. Geophys. Res. 71, 2419–2426 (1966) ADSCrossRefGoogle Scholar
  89. L. Ojha, M.B. Wilhelm, S.L. Murchie, A.S. Mcewen, J.J. Wray, J. Hanley, M. Massé, M. Chojnacki, Spectral evidence for hydrated salts in recurring slope lineae on Mars. Nat. Geosci. 8, 829–832 (2015) ADSCrossRefGoogle Scholar
  90. J. Ormö, G. Komatsu, Mars Orbiter Camera observation of linear and curvilinear features in the Hellas basin: indications for multiple processes of formation. J. Geophys. Res. 108, 5059 (2003). doi: 10.1029/2002JE001980 CrossRefGoogle Scholar
  91. N. Otsu, A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 9, 62–66 (1979) CrossRefGoogle Scholar
  92. A.V. Pathare, M.R. Balme, S.M. Metzger, A. Spiga, M.C. Towner, N.O. Renno, F. Saca, Assessing the power law hypothesis for the size–frequency distribution of terrestrial and martian dust devils. Icarus 209, 851–853 (2010) ADSCrossRefGoogle Scholar
  93. J.B. Pollack, M.E. Ockert-Bell, M.K. Shepard, Viking Lander image analysis of Martian atmospheric dust. J. Geophys. Res. 100, 5235–5250 (1995) ADSCrossRefGoogle Scholar
  94. N.E. Prosser, Aerial photographs of a tornado path in Nebraska, May 5, 1964. Mon. Weather Rev. 92, 593–598 (1964) ADSCrossRefGoogle Scholar
  95. N.E. Putzig, M.T. Mellon, K.A. Kretke, R.E. Arvidson, Global thermal inertia and surface properties of Mars from the MGS mapping mission. Icarus 173, 325–341 (2005) ADSCrossRefGoogle Scholar
  96. S. Rafkin, B. Jemmett-Smith, L. Fenton, R. Lorenz, T. Takemi, J. Ito, D. Tyler, Dust devil formation. Space Sci. Rev. (2016). doi: 10.1007/s11214-016-0307-7 Google Scholar
  97. D. Reiss, Morphology, formation and distribution of dust devil tracks on Mars: insights from terrestrial analogs, in: 45th Lunar Planet. Sci. Conf. (2014). #2011 Google Scholar
  98. D. Reiss, First observations of terrestrial dust devils in orbital image data: comparison with dust devils in Amazonis Planitia, Mars, in: 47th Lunar Planet Sci. Conf. (2016). #2912 Google Scholar
  99. D. Reiss, R.D. Lorenz, Dust devil track survey at Elysium Planitia, Mars: implications for the InSight landing sites. Icarus 266, 315–330 (2016) ADSCrossRefGoogle Scholar
  100. D. Reiss, A.P. Rossi, Seasonal dust devil track observations on Earth and Mars: relationships to atmospheric dust opacity, in: 42nd Lunar Planet. Sci. Conf. (2011). #2186 Google Scholar
  101. D. Reiss, D. Lüsebrink, H. Hiesinger, T. Kelling, G. Wurm, J. Teiser, High Altitude Dust Devils on Arsia Mons, Mars: Testing the Greenhouse and Thermophoresis Hypothesis of Dust Lifting, in 40th Lunar Planet. Science Conf. (2009). #1961 Google Scholar
  102. D. Reiss, J. Raack, A.P. Rossi, G. Di Achille, H. Hiesinger, First in-situ analysis of dust devil tracks on Earth and their comparison with tracks on mars. Geophys. Res. Lett. 37, L14203 (2010). doi: 10.1029/2010GL044016 ADSGoogle Scholar
  103. D. Reiss, J. Raack, H. Hiesinger, Bright dust devil tracks on Earth: implications for their formation on Mars. Icarus 211, 917–920 (2011b). doi: 10.1016/j.icarus.2010.09.009 ADSCrossRefGoogle Scholar
  104. D. Reiss, M. Zanetti, G. Neukum, Multitemporal observations of identical active dust devils on Mars with the High Resolution Stereo Camera (HRSC) and Mars Orbiter Camera (MOC). Icarus 215, 358–369 (2011a) ADSCrossRefGoogle Scholar
  105. D. Reiss, J. Raack, A. Maturilli, A.P. Rossi, G. Erkeling, Dust devil tracks in the Turpan Depression desert (China): implications for their formation on Mars, in 43rd Lunar and Planetary Science Conference (2012a). Abstract #2227 Google Scholar
  106. D. Reiss, J. Raack, G.G. Ori, K. Taj-Eddine, In situ analysis of dust devil tracks in southern Morocco: comparison with other terrestrial and martian tracks, in EPSC 2012 (2012b). Abstract #EPSC2012-389 Google Scholar
  107. D. Reiss, M.I. Zimmerman, D.C. Lewellen, Formation of cycloidal dust devil tracks by redeposition of coarse sands in southern Peru: implications for Mars. Earth Planet. Sci. Lett. 383, 7–15 (2013). doi: 10.1016/j.epsl.2013.09.033 ADSCrossRefGoogle Scholar
  108. D. Reiss, N.M. Hoekzema, O.J. Stenzel, Dust deflation by dust devils on Mars derived from optical depth measurements using the shadow method in HiRISE images. Planet. Space Sci. 93–94, 54–64. (2014b). doi: 10.1016/j.pss.2014.01.016 CrossRefGoogle Scholar
  109. D. Reiss, A. Spiga, G. Erkeling, The horizontal motion of dust devils on Mars derived from CRISM and CTX/HiRISE observations. Icarus 227, 8–20. (2014a). doi: 10.1016/j.icarus.2013.08.028 ADSCrossRefGoogle Scholar
  110. N.O. Rennó, M.L. Burkett, M.P. Larkin, A simple thermodynamical theory for dust devils. J. Atmos. Sci. 55, 3244–3252 (1998) ADSMathSciNetCrossRefGoogle Scholar
  111. R. Rieder, T. Economou, H. Wänke, A. Turkevich, J. Crisp, J. Brückner, G. Dreibus, H.J. McSween Jr., The chemical composition of Martian soil and rocks returned by the mobile alpha proton X-ray spectrometer: preliminary results from the X-ray mode. Science 278, 1771–1774 (1997) ADSCrossRefGoogle Scholar
  112. A.P. Rossi, L. Marinangeli, The first terrestrial analogue to Martian dust devil tracks found in Ténéré Desert. Niger. Geophys. Res. Lett. 31, L06702 (2004). doi: 10.1029/2004GL019428 ADSGoogle Scholar
  113. S.W. Ruff, P.R. Christensen, Bright and dark regions on Mars: particle size and mineralogical characteristics based on Thermal Emission Spectrometer data. J. Geophys. Res. 107, 5217 (2002) CrossRefGoogle Scholar
  114. J.A. Ryan, Notes on the Martian yellow clouds. J. Geophys. Res. 69, 3759–3770 (1964) ADSCrossRefGoogle Scholar
  115. J.A. Ryan, J.J. Carroll, Dust devil wind velocities: mature state. J. Geophys. Res. 75, 531–541 (1970) ADSCrossRefGoogle Scholar
  116. J.A. Ryan, R.D. Lucich, Possible dust devils, vortices on Mars. J. Geophys. Res. 88, 11005–11011 (1983) ADSCrossRefGoogle Scholar
  117. C. Sagan, J. Veverka, P. Gierasch, Observational consequences of Martian wind regimes. Icarus 15, 253–278 (1971) ADSCrossRefGoogle Scholar
  118. C. Sagan, J. Veverka, P. Fox, R. Dubisch, J. Lederberg, E. Levinthal, L. Quam, R. Tucker, J.B. Pollack, B.A. Smith, Variable features on Mars: preliminary mariner 9 television results. Icarus 17, 346–372 (1972) ADSCrossRefGoogle Scholar
  119. C. Sagan et al., Variable features in Mars: 2. mariner 9 global results. J. Geophys. Res. 78, 4163–4196 (1973) ADSCrossRefGoogle Scholar
  120. N. Schorghofer, C.M. King, Sporadic formation of slope streaks on Mars. Icarus 216, 159–168 (2011) ADSCrossRefGoogle Scholar
  121. S. Silvestro, L.K. Fenton, D.A. Vaz, N.T. Bridges, G.G. Ori, Ripple migration and dune activity on Mars: evidence for dynamic wind processes. Geophys. Res. Lett. 37, L20203 (2010). doi: 10.1029/2010GL044743 ADSCrossRefGoogle Scholar
  122. P.C. Sinclair, A quantitative analysis of the dust devil. PhD thesis, University of Arizona, 292 p (1966) Google Scholar
  123. P.C. Sinclair, General characteristics of dust devils. J. Appl. Meteorol. 8, 32–45 (1969) ADSCrossRefGoogle Scholar
  124. P.C. Sinclair, The lower structure of dust devils. J. Atmos. Sci. 30, 1599–1619 (1973) ADSCrossRefGoogle Scholar
  125. M.D. Smith, Interannual variability in TES atmospheric observations of Mars during 1999–2003. Icarus 167, 148–165 (2004). doi: 10.1016/j.icarus.2003.09.010 ADSCrossRefGoogle Scholar
  126. J.T. Snow, T.M. McClelland, Dust devils at white sands missile range, New Mexico 1. Temporal and spatial distributions. J. Geophys. Res. 95, 13707–13721 (1990) ADSCrossRefGoogle Scholar
  127. A. Spiga, E. Barth, Z. Gu, F. Hoffmann, J. Ito, B. Jemmett-Smith, M. Klose, S. Nishizawa, S. Raasch, S. Rafkin, T. Takemi, D. Tyler, W. Wei, Large-eddy simulations of dust devils and convective vortices. Space Sci. Rev. (2016). doi: 10.1007/s11214-016-0284-x, this issue Google Scholar
  128. C. Stanzel, M. Pätzold, D.A. Williams, P.L. Whelley, R. Greeley, G. Neukum, HRSC Co-Investigator Team, Dust devil speeds, directions of motion and general characteristics observed by the Mars Express High Resolution Stereo Camera. Icarus 197, 39–51 (2008). doi: 10.1016/j.icarus.2008.04.017 ADSCrossRefGoogle Scholar
  129. T. Statella, P. Pina, E.A. da Silva, A study on automatic methods based on mathematical morphology for martian dust devil tracks detection. Lect. Notes Comput. Sci. 7042, 533–540 (2011) CrossRefGoogle Scholar
  130. T. Statella, P. Pina, E.A. da Silva, Image processing algorithm for the identification of martian dust devil tracks in MOC and HiRISE images. Planet. Space Sci. 70, 46–58 (2012). doi: 10.1016/j.pss.2012.06.003 ADSCrossRefGoogle Scholar
  131. T. Statella, P. Pina, E.A. da Silva, Automated determination of the orientation of dust devil tracks in mars orbiter images. Adv. Space Res. 53, 1822–1833 (2014). doi: 10.1016/j.asr.2013.05.012 ADSCrossRefGoogle Scholar
  132. T. Statella, P. Pina, E.A. Da Silva, Extensive computation of albedo contrast between martian dust devil tracks and their neighboring regions. Icarus 250, 43–52 (2015). doi: 10.1016/j.icarus.2014.11.023 ADSCrossRefGoogle Scholar
  133. T. Statella, P. Pina, E.A. da Silva, Automated width measurements of Martian dust devil tracks. Aeolian Res. 20, 1–6 (2016). doi: 10.1016/j.aeolia.2015.11.001 ADSCrossRefGoogle Scholar
  134. R. Sullivan, P. Thomas, J. Veverka, M. Malin, K.S. Edgett, Mass movement slope streaks imaged by the Mars Orbiter Camera. J. Geophys. Res. 106, 23607–23633 (2001) ADSCrossRefGoogle Scholar
  135. R. Sullivan, R. Arvidson, J.F. Bell, R. Gellert, M. Golombek, R. Greeley, K. Herkenhoff, J. Johnson, S. Thompson, P. Whelley, J. Wray, Wind-driven particle mobility on Mars: insights from Mars Exploration Rover observations at “El Dorado” and surroundings at Gusev Crater. J. Geophys. Res. 113, E06S07 (2008) ADSGoogle Scholar
  136. M.A. Szwast, M.I. Richardson, A.R. Vasavada, Surface dust redistribution on Mars as observed by the Mars Global Surveyor and Viking orbiters. J. Geophys. Res. 111, E11008 (2006). doi: 10.1029/2005JE002485 ADSCrossRefGoogle Scholar
  137. P. Thomas, P.J. Gierasch, Dust devils on Mars. Science 230, 175–177 (1985) ADSCrossRefGoogle Scholar
  138. P. Thomas, J. Veverka, S. Lee, A. Bloom, Classification of wind streaks on Mars. Icarus 45, 124–153 (1981) ADSCrossRefGoogle Scholar
  139. M. Tomasko, L. Doose, M. Lemmon, P. Smith, E. Wegryn, Properties of dust in the Martian atmosphere from the Imager on Mars Pathfinder. J. Geophys. Res. 104, 8987–9007 (1999) ADSCrossRefGoogle Scholar
  140. E.L. Van Tassel, The North Platte Valley tornado outbreak of June 27, 1955. Mon. Weather Rev. 83, 255–264 (1955) ADSCrossRefGoogle Scholar
  141. A.F. Vaughan, J.R. Johnson, K.E. Herkenhoff, R. Sullivan, G.A. Landis, W. Goetz, M.B. Madsen, Pancam and Microscopic Imager observations of dust on the Spirit Rover: cleaning events, spectral properties, and aggregates. Mars J. 5, 129–145 (2010) ADSCrossRefGoogle Scholar
  142. C.A. Verba, P.E. Geissler, T.N. Titus, D.A. Waller, Observations from High Resolution Imaging Science Experiment (HiRISE): Martian dust devils in Gusev and Russell craters. J. Geophys. Res. 115, E09002 (2010). doi: 10.1029/2009JE003498 ADSCrossRefGoogle Scholar
  143. J. Veverka, Variable features on Mars V: evidence for crater streaks produced by wind erosion. Icarus 25, 595–601 (1975) ADSCrossRefGoogle Scholar
  144. J. Veverka, Variable features on Mars. VII. Dark filamentary markings on Mars. Icarus 27, 495–502 (1976) ADSCrossRefGoogle Scholar
  145. A. Wegener, Staubwirbel auf Island. Meteorol. Zeitschrift. 31, 199–200 (1914) Google Scholar
  146. E. Wells, J. Veverka, P. Thomas, Mars: experimental study of albedo changes caused by dust fallout. Icarus 58, 331–338 (1984) ADSCrossRefGoogle Scholar
  147. P.L. Whelley, R. Greeley, Latitudinal dependency in dust devil activity on Mars. J. Geophys. Res. 111, E10003 (2006). doi: 10.1029/2006JE002677 ADSCrossRefGoogle Scholar
  148. P.L. Whelley, R. Greeley, The distribution of dust devil activity on Mars. J. Geophys. Res. 113, E07002 (2008). doi: 10.1029/2007JE002966 ADSCrossRefGoogle Scholar
  149. M.J. Wolff et al., Constraints on dust aerosols from the Mars Exploration Rovers using MGS overflights and Mini-TES. J. Geophys. Res. 111, E12S17 (2006). doi: 10.1029/2006JE002786 ADSCrossRefGoogle Scholar
  150. A.S. Yen, R. Gellert, C. Schröder, R.V. Morris, J.F. Bell, A.T. Knudson, B.C. Clark, D.W. Ming, J.A. Crisp, R.E. Arvidson, D. Blaney, J. Brückner, P.R. Christensen, D.J. DesMarais, P.A. de Souza, T.E. Economou, A. Ghosh, B.C. Hahn, K.E. Herkenhoff, L.A. Haskin, J.A. Hurowitz, B.L. Joliff, J.R. Johnson, G. Klingelhöfer, M.B. Madsen, S.M. McLennan, H.Y. McSween, L. Richter, R. Rieder, D. Rodionov, L. Soderblom, S.W. Squyres, N.J. Tosca, A. Wang, M. Wyatt, J. Zipfel, An integrated view of the chemistry and mineralogy of martian soils. Nature 436, 49–54 (2005) ADSCrossRefGoogle Scholar
  151. M.I. Zimmerman, D.C. Lewellen, Taxonomy and analysis of tornado surface marks, in 25th Conf. Severe Local Storms (2010) Google Scholar
  152. R.J. Zomer, D.A. Bossio, A. Trabucco, L. Yuanjie, D.C. Gupta, V.P. Singh, Trees and water: smallholder agroforestry on irrigated lands in Northern India. IWMI Research Report 122, International Water Management Institute, Colombo, Sri Lanka, pp 45. (2007) Google Scholar
  153. R.J. Zomer, A. Trabucco, D.A. Bossio, O. van Straaten, L.V. Verchot, Climate change mitigation: a spatial analysis of global land suitability for clean development mechanism afforestation and reforestation. Agric. Ecosyst. Environ. 126, 67–80 (2008) CrossRefGoogle Scholar
  154. R.W. Zurek, J.R. Barnes, R.M. Haberle, J.B. Pollack, J.E. Tillman, C.B. Leovy, Dynamics of the atmosphere of Mars, in Mars, ed. by H.H. Kieffer et al. (Univ. of Ariz. Press, Tucson, 1992), pp. 799–817 Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Dennis Reiss
    • 1
    Email author
  • Lori Fenton
    • 2
  • Lynn Neakrase
    • 3
  • Michael Zimmerman
    • 4
  • Thiago Statella
    • 5
  • Patrick Whelley
    • 6
  • Angelo Pio Rossi
    • 7
  • Matthew Balme
    • 8
  1. 1.Institut für PlanetologieWestfälische Wilhelms-UniversitätMünsterGermany
  2. 2.SETI InstituteMountain ViewUSA
  3. 3.Department of AstronomyNew Mexico State UniversityLas CrucesUSA
  4. 4.The Johns Hopkins University Applied Physics LaboratoryLaurelUSA
  5. 5.Instituto Federal de Educação, Ciência e Tecnologia de Mato Grosso – IFMTCuiabáBrazil
  6. 6.NASA Goddard Space Flight CenterGreenbeltUSA
  7. 7.Department of Earth and Space SciencesJacobs University BremenBremenGermany
  8. 8.Department of Physical ScienceThe Open UniversityMilton KeynesUK

Personalised recommendations