Skip to main content
Log in

Dust Devil Formation

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

The essential dynamical characteristic of convective vortices, including dust devils, is a highly localized vorticity tube that extends into the vertical. This chapter is concerned with both the generation of vorticity and the subsequent focusing of that vorticity into a tight vortex, and with the environmental conditions that are conducive to the formation of convective vortices in general and dust devils in particular. A review of observations, theory, and modeling of dust devil formation is provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • A. Ansmann et al., Vertical profiling of convective dust plumes in southern Morocco during SAMUM. Tellus 61B, 340–353 (2009)

    Article  ADS  Google Scholar 

  • A. Azizov, Influence of soil moisture on the resistance of soil to wind erosion. Sov. Soil Sci. 9, 105–108 (1977)

    Google Scholar 

  • M. Balme, R. Greeley, Dust devils on Earth and Mars. Rev. Geophys. 44, RG3003 (2006). doi:10.1029/2005RG000188

    Article  ADS  Google Scholar 

  • M. Balme, A. Hagermann, Particle lifting at the soil-air interface by atmospheric pressure excursions in dust devils. Geophys. Res. Lett. (2006). doi:10.1029/2006GL026819

    Google Scholar 

  • M. Balme, S. Metzger, M. Towner, T. Ringrose, R. Greeley, J. Iversen, Friction wind speeds in dust devils: a field study. Geophys. Res. Lett. 30(16) (2003). doi:10.1029/2003JE002096

  • E.L. Barth, W.M. Farrell, S.C.R. Rafkin, Electric field generation in Martian dust devils. Icarus 268, 253–265 (2016). doi:10.1016/j.icarus.2015.12.020

    Article  ADS  Google Scholar 

  • L.J. Battan, Energy of a dust devil. J. Meteorol. 15, 235–237 (1958)

    Article  Google Scholar 

  • H.B. Bluestein, A.L. Pazmany, Observations of tornadoes and other convective phenomena with a mobile, 3 mm wavelength, Doppler radar: the spring 1999 field experiment. Bull. Am. Meteorol. Soc. 81, 2939–2952 (2000)

    Article  ADS  Google Scholar 

  • H.B. Bluestein et al., Doppler radar observations of dust devils in Texas. Mon. Weather Rev. 132(1), 209–224 (2004)

    Article  ADS  Google Scholar 

  • I.S. Bowen, The ratio of heat losses by conduction and by evaporation from any water surface. Phys. Rev. 27, 779–787 (1926)

    Article  ADS  MATH  Google Scholar 

  • T. Broersen, Quantification of soil erosion by dust devil in the Jordan Badia. Master’s Thesis, Utrecht Univ. (2013)

  • B.A. Cantor, K.M. Kanak, K.S. Edgett, Mars Orbiter Camera observations of Martian dust devils and their tracks (September 1997 to January 2006) and evaluation of theoretical vortex models. J. Geophys. Res. 111, E12002 (2006). doi:10.1029/2006JE002700

    Article  ADS  Google Scholar 

  • T.A. Cortese, S. Balachandar, High performance spectral simulation of turbulent flows in massively parallel machines with distributed memory. Int. J. High Perform. Comput. Appl. 9(3), 187–204 (1995)

    Article  Google Scholar 

  • J.W. Deardorff, Observed characteristics of the outer layer, in Short Course on the Planetary Boundary Layer, ed. by A.K. Blackadar (Am. Meteorol. Soc., Boston, 1978), 101 pp.

    Google Scholar 

  • K.A. Emanuel, An air-sea interaction theory for tropical cyclones. Part I: Steady-state maintenance. J. Atmos. Sci. 43(6), 585–605 (1986)

    Article  ADS  Google Scholar 

  • F. Fecan, B. Marticorena, G. Bergametti, Parametrization of the increase of the aeolian erosion threshold wind friction velocity due to soil moisture for arid and semi-arid areas. Ann. Geophys. 17, 149–157 (1999)

    Article  ADS  Google Scholar 

  • L.K. Fenton, T.I. Michaels, Characterizing the sensitivity of daytime turbulent activity on Mars with the MRAMS LES: early results. Mars 5, 159–171 (2010). doi:10.1555/mars.2010.0007

    Article  ADS  Google Scholar 

  • L.K. Fenton, R. Lorenz, Dust devil height and spacing with relation to the martian planetary boundary layer thickness. Icarus 260, 246–262 (2015)

    Article  ADS  Google Scholar 

  • B.H. Fiedler, K.M. Kanak, Rayleigh-Benard convection as a tool for studying dust devil formation. Atmos. Sci. Lett. 2, 86–93 (2001). doi:10.1006/asle.2001.0043

    Article  Google Scholar 

  • J.A. Fisher et al., A survey of Martian dust devil activity using Mars Global Surveyor Mars Orbiter Camera images. J. Geophys. Res., Planets 110(E3) (2005)

  • W.D. Flower, Sand Devils (HM Stationery Office, London, 1936)

    Google Scholar 

  • C. Fujiwara, K. Yamashita, M. Nakanishi, Y. Fujiyoshi, Dust devil-like vortices in an urban area detected by a 3D scanning Doppler lidar. J. Appl. Meteorol. Climatol. 50(3), 534–547 (2011). doi:10.1175/2010JAMC2481.1

    Article  ADS  Google Scholar 

  • B.T. Gheynani, P.A. Taylor, Large-eddy simulations of vertical vortex formation in the terrestrial and martian convective boundary layers. Bound.-Layer Meteorol. 137(2), 223–235 (2010). doi:10.1007/s10546-010-9530-z

    Article  ADS  Google Scholar 

  • B.T. Gheynani, P.A. Taylor, Large eddy simulation of typical dust devil-like vortices in highly convective martian boundary layers at the Phoenix lander site. Planet. Space Sci. 59(1), 43–50 (2011). doi:10.1016/j.pss.2010.10.011

    Article  ADS  Google Scholar 

  • J. Gómez-Elvira et al., Curiosity’s rover environmental monitoring station: overview of the first 100 sols. J. Geophys. Res., Planets 119, 1680–1688 (2014). doi:10.1002/2013JE004576

    Article  ADS  Google Scholar 

  • E. Goodfriend, F.K. Chow, M. Vanella, E. Balaras, Improving large-eddy simulation of neutral boundary layer flow across grid interfaces. Mon. Weather Rev. 143(8), 3310–3326 (2015)

    Article  ADS  Google Scholar 

  • R.M. Haberle et al., A boundary-layer model for Mars: Comparison with Viking lander and entry data. J. Atmos. Sci. 50, 1544–1559 (1993)

    Article  ADS  Google Scholar 

  • G.D. Hess, K.T. Spillane, Characteristics of dust devils in Australia. J. Appl. Meteorol. 29, 498–507 (1990)

    Article  ADS  Google Scholar 

  • S.L. Hess, R.M. Henry, C.B. Leovy, J.A. Ryan, J.E. Tillman, Meteorological results from the surface of Mars: Viking 1 and 2. J. Geophys. Res. 82(28), 4559–4574 (1977). doi:10.1029/JS082i028p04559

    Article  ADS  Google Scholar 

  • G.D. Hess, K.T. Spillane, R.S. Lourensz, Atmospheric vortices in shallow convection. J. Appl. Meteorol. 27, 305–317 (1988)

    Article  ADS  Google Scholar 

  • D.P. Hinson, M. Pätzold, S. Tellmann, B. Häusler, G.L. Tyler, The depth of the convective boundary layer on Mars. Icarus 198(1), 57–66 (2008). doi:10.1016/j.icarus.2008.07.003

    Article  ADS  Google Scholar 

  • J. Ito, R. Tanaka, H. Niino, M. Nakanishi, Large Eddy simulation of dust devils in a diurnally-evolving convective mixed layer. J. Meteorol. Soc. Jpn. 88(1), 63–77 (2010). doi:10.2151/jmsj.2010-105

    Article  Google Scholar 

  • J. Ito, H. Niino, M. Nakanishi, Effects of ambient rotation on dust devils. Sci. Online Lett. Atmos. 7, 165–168 (2011). doi:10.2151/sola.2011-042

    Google Scholar 

  • J. Ito, H. Niino, M. Nakanishi, Formation mechanism of dust devil-like vortices in idealized convective mixed layers. J. Atmos. Sci. 70(4), 1173–1186 (2013). doi:10.1175/JAS-D-12-085.1

    Article  ADS  Google Scholar 

  • R.L. Ives, Behavior of dust devils. Bull. Am. Meteorol. Soc. 28, 168–174 (1947)

    Google Scholar 

  • N.L. Jackson, K.F. Nordstrom, Effects of time-dependent moisture content of surface sediments on aeolian transport rates across a beach, Wildwood, New Jersey, U.S.A.. Earth Surf. Process. Landf. 22, 611–621 (1997)

    Article  ADS  Google Scholar 

  • B.C. Jemmett-Smith et al., Quantifying global dust devil occurrence from meteorological analyses (2015)

  • M.V. Kalashnik, K.N. Visheratin, Cyclostrophic adjustment and nonlinear oscillations in the core of an intense atmospheric vortex. Izv., Atmos. Ocean. Phys. 46(5), 591–596 (2010)

    Article  Google Scholar 

  • K.M. Kanak, Numerical simulation of dust devil-scale vortices. Q. J. R. Meteorol. Soc. 131, 1271–1292 (2005a)

    Article  ADS  Google Scholar 

  • K.M. Kanak, Numerical simulation of dust devil-like vortices in the terrestrial and Martian convective boundary layers. Paper presented at Dust Devils on Earth and Mars: Workshop, Ariz. State Univ. Planet. Geol. Group, Flagstaff (2005b)

  • K.M. Kanak, On the numerical simulation of dust devil-like vortices in terrestrial and martian convective boundary layers. Geophys. Res. Lett. 32, L19S05 (2006)

    Google Scholar 

  • K.M. Kanak, D.K. Lilly, J.T. Snow, The formation of vertical vortices in the convective boundary layer. Q. J. R. Meteorol. Soc. 126(569), 2789–2810 (2000)

    Article  ADS  Google Scholar 

  • M. Klose, Y. Shao, Large-eddy simulation of turbulent dust emission. Aeolian Res. 8, 49–58 (2013). doi:10.1016/j.aeolia.2012.10.010

    Article  ADS  Google Scholar 

  • Klose et al., Space Sci. Rev. (2016). Chapter 11, this issue. doi:10.1007/s11214-016-0261-4

    Google Scholar 

  • M.V. Kurgansky et al., Space Sci. Rev. (2016, this issue). doi:10.1007/s11214-016-0281-0

    Google Scholar 

  • M.V. Kurgansky et al., Micrometeorological conditions for dust-devil occurrence in the Atacama Desert. Bound.-Layer Meteorol. 138(2), 285–298 (2011). doi:10.1007/s10546-010-9549-1

    Article  ADS  Google Scholar 

  • M.P. Lelong, J.C. McWilliams, Cyclostrophic adjustment in shallow-water and Boussinesq fluids. J. Fluid Mech. (1999)

  • R.D. Lorenz, Irregular dust devil pressure drops on Earth and Mars: effect of cycloidal tracks. Planet. Space Sci. 76, 96–103 (2013). doi:10.1016/j.pss.2013.01.001

    Article  ADS  Google Scholar 

  • R.D. Lorenz, D. Christie, Dust devil signatures in infrasound records of the International Monitoring System. Geophys. Res. Lett. 42, 2009–2014 (2015). doi:10.1002/2015GL063237

    Article  ADS  Google Scholar 

  • R. Lorenz et al. Chapter 8 (2016a, this issue)

  • R. Lorenz et al. Chapter 1 (2016b, this issue)

  • T.J. Lyons et al., Clearing enhances dust devil formation. J. Arid Environ. 72, 1918–1928 (2008)

    Article  Google Scholar 

  • P.J. Mason, Large-eddy simulation of the convective atmospheric boundary layer. J. Atmos. Sci. 46(11), 1492–1516 (1989)

    Article  ADS  Google Scholar 

  • J.B. McGinnigle, Dust whirls in north-west Libya. Weather 21, 272–276 (1966)

    Article  ADS  Google Scholar 

  • S.M. Metzger, J.R. Carr, J.R. Johnson, T.J. Parker, M.T. Lemmon, Dust devil vortices seen by the Mars Pathfinder camera. Geophys. Res. Lett. 26(18), 2781–2784 (1999). doi:10.1029/1999GL008341

    Article  ADS  Google Scholar 

  • MEPAG, Mars Scientific Goals, Objectives, Investigations, and Priorities: 2015. V (2015)

  • T.I. Michaels, S.C.R. Rafkin, Large-eddy simulation of atmospheric convection on Mars. Q. J. R. Meteorol. Soc. 130(599), 1251–1274 (2004). doi:10.1256/qj.02.169

    Article  ADS  Google Scholar 

  • I. Michelson, On the dust devils. Diss., California Institute of Technology (1951)

  • J.E. Moores et al., Observational evidence of a suppressed planetary boundary layer in northern Gale Crater, Mars as seen by the Navcam instrument onboard the Mars Science Laboratory rover. Icarus 249, 129–142 (2015). doi:10.1016/j.icarus.2014.09.020

    Article  ADS  Google Scholar 

  • M.C. Neuman, Effects of temperature and humidity upon the entrainment of sedimentary particles by wind. Bound.-Layer Meteorol. 108(1), 61–89 (2003)

    Article  ADS  Google Scholar 

  • H. Ohno, T. Takemi, Mechanisms for intensification and maintenance of numerically simulated dust devils. Atmos. Sci. Lett. 32, 27–32 (2010a). doi:10.1002/asl.249

    Google Scholar 

  • H. Ohno, T. Takemi, Numerical study for the effects of mean wind on the intensity and evolution of dust devils. Sci. Online Lett. Atmos. 6A, 5–8 (2010b). Special edition. doi:10.2151/sola.6A-002

    Google Scholar 

  • A.M.C. Oke et al., Will-willies in the Australian landscape: the role of key meteorological variables and surface conditions in defining frequency and spatial characteristics. J. Arid Environ. 71, 201–215 (2007)

    Article  Google Scholar 

  • S. Raasch, T. Franke, Structure and formation of dust devil-like vortices in the atmospheric boundary layer: a high-resolution numerical study. J. Geophys. Res. 116(D16), 1–16 (2011). doi:10.1029/2011JD016010

    Article  Google Scholar 

  • S.C.R. Rafkin, R.M. Haberle, T.I. Michaels, Mars regional atmospheric modeling system: model description and selected simulations. Icarus 151(2), 228–256 (2001). doi:10.1006/icar.2001.6605

    Article  ADS  Google Scholar 

  • D. Reiss, R.D. Lorenz, Dust devil track survey at Elysium Planitia, Mars: implications for the InSight landing sites. Icarus 266, 315–330 (2016)

    Article  ADS  Google Scholar 

  • D. Reiss, A. Spiga, G. Erkeling, The horizontal motion of dust devils on Mars derived from CRISM and CTX/HiRISE observations. Icarus 227, 8–20 (2014). doi:10.1016/j.icarus.2013.08.028

    Article  ADS  Google Scholar 

  • N.O. Renno et al., A simple thermodynamical theory for dust devils. J. Atmos. Sci. 55, 3244–3252 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  • N.O. Renno et al., MATADOR 2002: a pilot field experiment on convective plumes and dust devils. J. Geophys. Res. 109(E7) (2004). doi:10.1029/2003JE002219

  • J.A. Ryan, Relation of dust devil frequency and diameter to atmospheric temperature. J. Geophys. Res. 77(36), 7133–7137 (1972)

    Article  ADS  Google Scholar 

  • J.A. Ryan, J.J. Carroll, Dust devil wind velocities: mature state. J. Geophys. Res. 75(3), 531–541 (1970)

    Article  ADS  Google Scholar 

  • J.T. Schofield, J.R. Barnes, D. Crisp, R.M. Haberle, S. Larsen, J.A. Magalhaes, J.R. Murphy, A. Seiff, G. Wilson, The Mars Pathfinder atmospheric structure investigation/meteorology (ASI/MET) experiment. Science 278(5344), 1752–1758 (1997)

    Article  ADS  Google Scholar 

  • R.S. Scorer, Environmental Aerodynamics (Halsted, New York, 1978)

    MATH  Google Scholar 

  • Y. Shao, S. Liu, J. Schween, S. Crewell, Large-Eddy atmosphere—land surface modeling over heterogeneous surfaces: model development and comparison with measurements. Bound.-Layer Meteorol. 148, 333–356 (2013). doi:10.1007/s10546-013-9823-0

    Article  ADS  Google Scholar 

  • P.C. Sinclair, Some preliminary dust devil measurements. Mon. Weather Rev. 22(8), 363–367 (1964)

    Article  ADS  Google Scholar 

  • P.C. Sinclair, General characteristics of dust devils. J. Appl. Meteorol. 8, 32–45 (1969)

    Article  ADS  Google Scholar 

  • P.C. Sinclair, The lower structure of dust devils. J. Atmos. Sci. 30(8), 1599–1619 (1973)

    Article  ADS  MathSciNet  Google Scholar 

  • J.T. Snow, T.M. McClelland, Dust devils at White Sands missile range, New Mexico. 1. Temporal and spatial distributions (1990)

  • Z. Sorbjan, M.J. Wolff, M.D. Smith, Thermal structure of the atmospheric boundary layer on Mars based on mini-TES observations. Q. J. R. Meteorol. Soc. 135, 1776–1787 (2009). doi:10.1002/qj.510

    Article  ADS  Google Scholar 

  • A. Spiga, Comment on “Observing desert dust devils with a pressure logger” by Lorenz (2012). Geosci. Instrum. Method. Data Syst. Discuss. 2(2), 593–601 (2012). doi:10.5194/gid-2-593-2012

    Article  ADS  Google Scholar 

  • A. Spiga et al., Space Sci. Rev. (2016). Chapter 7, this issue. doi:10.1007/s11214-016-0284-x

    Google Scholar 

  • A. Spiga, S. Lewis, Martian mesoscale and microscale wind variability of relevance for dust lifting. Mars 5, 146–158 (2010). doi:10.1555/mars.2010.0006

    Article  ADS  Google Scholar 

  • R.I. Sykes, W.S. Lewellen, D.S. Henn, A Numerical Study of the Development of Claud-Street Spacing. J. Atmos. Sci. 45(18), 2556–2570 (1988)

    Article  ADS  Google Scholar 

  • J.L. Sutton, C.B. Leovy, J.E. Tillman, Diurnal variations of the martian surface layer meteorological parameters during the first 45 sols at two Viking Lander sites. J. Atmos. Sci. 35, 2346–2355 (1978)

    Article  ADS  Google Scholar 

  • J.E. Tillman, L. Landberg, S.E. Larsen, The boundary layer of Mars: fluxes, stability, turbulent spectra, and growth of the mixed layer. J. Atmos. Sci. 51, 1709–1727 (1994). doi:10.1175/1520-0469(1994)051<1709:TBLOMF>2.0.CO;2

    Article  ADS  Google Scholar 

  • A.D. Toigo, M.I. Richardson, S.P. Ewald, P.J. Gierasch, Numerical simulation of martian dust devils. J. Geophys. Res. 108(E6), 1–14 (2003). doi:10.1029/2002JE002002

    Article  Google Scholar 

  • D.A. Waller, Active dust devils on Mars: a comparison of six spacecraft landing sites. M.S. Thesis, Arizona State Univ. (2011), 138 pp. https://repository.asu.edu/items/9212

  • N.R. Williams, Development of dust whirls and similar small-scale vortices. Bull. Am. Meteorol. Soc. 29, 106–117 (1948)

    Google Scholar 

  • Y. Zhao, Z. Gu, Y. Yu, Y. Ge, Y. Li, X. Feng, Mechanism and large eddy simulation of dust devils. Atmos.-Ocean 42(1), 61–84 (2004). doi:10.3137/ao.420105

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Rafkin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rafkin, S., Jemmett-Smith, B., Fenton, L. et al. Dust Devil Formation. Space Sci Rev 203, 183–207 (2016). https://doi.org/10.1007/s11214-016-0307-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11214-016-0307-7

Keywords

Navigation