Space Science Reviews

, Volume 206, Issue 1–4, pp 61–90 | Cite as

On the Usage of Geomagnetic Indices for Data Selection in Internal Field Modelling

  • K. Kauristie
  • A. Morschhauser
  • N. Olsen
  • C. C. Finlay
  • R. L. McPherron
  • J. W. Gjerloev
  • H. J. Opgenoorth
Article

Abstract

We present a review on geomagnetic indices describing global geomagnetic storm activity (Kp, am, Dst and dDst/dt) and on indices designed to characterize high latitude currents and substorms (PC and AE-indices and their variants). The focus in our discussion is in main field modelling, where indices are primarily used in data selection criteria for weak magnetic activity. The publicly available extensive data bases of index values are used to derive joint conditional Probability Distribution Functions (PDFs) for different pairs of indices in order to investigate their mutual consistency in describing quiet conditions. This exercise reveals that Dst and its time derivative yield a similar picture as Kp on quiet conditions as determined with the conditions typically used in internal field modelling. Magnetic quiescence at high latitudes is typically searched with the help of Merging Electric Field (MEF) as derived from solar wind observations. We use in our PDF analysis the PC-index as a proxy for MEF and estimate the magnetic activity level at auroral latitudes with the AL-index. With these boundary conditions we conclude that the quiet time conditions that are typically used in main field modelling (\(\mathit{PC}<0.8\), \(\mathit{Kp}<2\) and \(|\mathit{Dst}|<30~\mbox{nT}\)) correspond to weak auroral electrojet activity quite well: Standard size substorms are unlikely to happen, but other types of activations (e.g. pseudo breakups \(\mathit{AL}>-300~\mbox{nT}\)) can take place, when these criteria prevail. Although AE-indices have been designed to probe electrojet activity only in average conditions and thus their performance is not optimal during weak activity, we note that careful data selection with advanced AE-variants may appear to be the most practical way to lower the elevated RMS-values which still exist in the residuals between modeled and observed values at high latitudes. Recent initiatives to upgrade the AE-indices, either with a better coverage of observing stations and improved baseline corrections (the SuperMAG concept) or with higher accuracy in pinpointing substorm activity (the Midlatitude Positive Bay-index) will most likely be helpful in these efforts.

Keywords

Geomagnetic indices Geomagnetic quiescent times 

Notes

Acknowledgements

The authors are very grateful to the International Space Science Institute for inviting them to take part in the Workshop on “Earth’s Magnetic Field” held in Bern in May 2015. The \(\mathit{IE}\)-indices of Svalbard magnetometer stations were prepared and provided by Liisa Juusola, Max Van de Kamp (FMI) and Noora Partamies (UNIS). Discussions about the Kp procedure have been conducted with Lasse Häkkinen and Ari Viljanen (FMI). TGO/University of Tromsø is acknowledged for maintaining the Svalbard stations. The Referees are acknowledged particularly for their fascinating ideas on future work under the topic of this paper.

References

  1. B.-H. Ahn, S.-I. Akasofu, Y. Kamide, The Joule heat production rate and the particle energy injection rate as function of the geomagnetic indices AE and AL. J. Geophys. Res. 88(A8), 6275–6287 (1983). doi:10.1029/JA088iA08p06275/ ADSCrossRefGoogle Scholar
  2. J.H. Allen, H.W. Kroehl, Spatial and temporal distributions of magnetic effects of auroral electrojets as derived from AE indices. J. Geophys. Res. 80(25), 3667–3677 (1975). doi:10.1029/ja080i025p03667 ADSCrossRefGoogle Scholar
  3. K.A. Anderson, Radial dependence of energetic electron fluxes in the tail of the Earth’s magnetic field. Phys. Rev. Lett. 14, 888–890 (1965). doi:10.1103/PhysRevLett.14.888 ADSCrossRefGoogle Scholar
  4. K.B. Baker, S. Wing, A new magnetic coordinate system for conjugate studies at high latitudes. J. Geophys. Res. 94(A7), 9139–9143 (1989). doi:10.1029/JA094iA07p09139 ADSCrossRefGoogle Scholar
  5. W. Baumjohann, Y. Kamide, Hemispherical Joule heating and the AE indices. J. Geophys. Res. 89(A1), 383–388 (1984). doi:10.1029/JA089iA01p00383 ADSCrossRefGoogle Scholar
  6. S. Chapman, An outline of a theory of magnetic storms. Proc. R. Soc. Lond., a Contain. Pap. Math. Phys. Character 95, 61–83 (1918) ADSCrossRefGoogle Scholar
  7. X. Chu, T.-S. Hsu, R.L. McPherron, V. Angelopoulos, Z. Pu, J.J. Weygand, K. Khurana, M. Connors, J. Kissinger, H. Zhang, O. Amm, Development and validation of inversion technique for substorm current wedge using ground magnetic field data. J. Geophys. Res. 119, 1909–1924 (2014). doi:10.1002/2013JA019185 CrossRefGoogle Scholar
  8. X. Chu, R.L. McPherron, T.-S. Hsu, V. Angelopoulos, Solar cycle dependence of substorm occurrence and duration: implications for onset. J. Geophys. Res. 120, 2808–2818 (2015). doi:10.1002/2015JA021104 CrossRefGoogle Scholar
  9. F.K. Chun, D.J. Knipp, M.G. McHarg, G. Lu, B.A. Emery, S. Vennerström, O.A. Troshichev, Polar cap index as a proxy for hemispheric Joule heating. Geophys. Res. Lett. 26(8), 1101–1104 (1999) ADSCrossRefGoogle Scholar
  10. C.G. Constable, Parameter estimation in non-Gaussian noise. Geophys. J. 94, 131–142 (1988). http://gji.oxfordjournals.org/content/94/1/131.full.pdf+html?sid=6cf52bd6-f6f8-4355-9607-65e16ac93b0b ADSCrossRefGoogle Scholar
  11. T.N. Davis, M. Sugiura, Auroral electrojet activity index AE and its universal time variations. J. Geophys. Res. 71(3), 785–801 (1966). doi:10.1029/jz071i003p00785 ADSCrossRefGoogle Scholar
  12. C.C. Finlay, S. Maus, C.D. Beggan, M. Hamoudi, F.J. Lowes, N. Olsen, E. Thébault, Evaluation of candidate geomagnetic field models for IGRF-11. Earth Planets Space 62(10), 787–804 (2010) ADSCrossRefGoogle Scholar
  13. C.C. Finlay, N. Olsen, L. Tøffner-Clausen, DTU candidate field models for IGRF-12 and the CHAOS-5 geomagnetic field model. Earth Planets Space 67, 114 (2015) ADSCrossRefGoogle Scholar
  14. C.C. Finlay, V. Lesur, E. Thébault et al., Space Sci. Rev. (2016). doi:10.1007/s11214-016-0285-9 Google Scholar
  15. R.A.D. Fiori, A.V. Koustov, D. Boteler, R.A. Makarevich, PCN magnetic index and average convection velocity in the polar cap inferred from SuperDARN radar measurements. J. Geophys. Res. 114, 07225 (2009). doi:10.1029/2008JA013964 CrossRefGoogle Scholar
  16. E. Friis-Christensen, H. Lühr, G. Hulot, Swarm: a constellation to study the Earth’s magnetic field. Earth Planets Space 58(4), 351–358 (2006) ADSCrossRefGoogle Scholar
  17. J. Gannon, J. Love, USGS 1-min Dst index. J. Atmos. Sol.-Terr. Phys. 73(2), 323–334 (2011) ADSCrossRefGoogle Scholar
  18. Y. Gao, M.G. Kivelson, R.J. Walker, The linear dependence of polar cap index on its controlling factors in solar wind and magnetotail. J. Geophys. Res. 117, 05213 (2012). doi:10.1029/2011JA017229 Google Scholar
  19. J.W. Gjerloev, The SuperMAG data processing technique. J. Geophys. Res. 117, 09213 (2012). doi:10.1029/2012JA017683 CrossRefGoogle Scholar
  20. L.V. Häkkinen, T.I. Pulkkinen, H. Nevanlinna, R.J. Pirjola, E.I. Tanskanen, Effects of induced currents on Dst and on magnetic variations at midlatitude stations. J. Geophys. Res. Space Phys. 107(A1) (2002). doi:10.1029/2001JA900130
  21. B. Hamilton, Rapid modelling of the large-scale magnetospheric field from Swarm satellite data. Earth Planets Space 65, 1295–1308 (2013) ADSCrossRefGoogle Scholar
  22. B. Hnat, S.C. Chapman, G. Rowlands, N.W. Watkins, M.P. Freeman, Scaling of solar wind \(\epsilon\) and the AU, AL and AE indices as seen by WIND. Geophys. Res. Lett. 29(22), 2078 (2002). doi:10.1029/2002GL016054 ADSCrossRefGoogle Scholar
  23. C.-S. Huang, Variations of polar cap index in response to solar wind changes and magnetospheric substorms. J. Geophys. Res. 110, 01203 (2005). doi:10.1029/2004JA010616 CrossRefGoogle Scholar
  24. T. Iyemori, Storm-time magnetospheric currents inferred from mid-latitude geomagnetic variations. J. Geomagn. Geoelectr. 42, 1249–1265 (1990). doi:10.5636/jgg.42.1249 ADSCrossRefGoogle Scholar
  25. A. Janzhura, O. Troshichev, P. Stauning, Unified PC indices: relation to isolated magnetic substorms. J. Geophys. Res. 112, 09207 (2007). doi:10.1029/2006JA012132 CrossRefGoogle Scholar
  26. L. Juusola, N. Østgaard, E. Tanskanen, N. Partamies, K. Snekvik, Earthward plasma sheet flows during substorm phases. J. Geophys. Res. 116, 10228 (2011). doi:10.1029/2011JA016852 Google Scholar
  27. E.I. Kallio, T.I. Pulkkinen, H.E.J. Koskinen, A. Viljanen, Loading-unloading processes in the nightside ionosphere. Geophys. Res. Lett. 27(11), 1627–1630 (2000). doi:10.1029/1999GL003694 ADSCrossRefGoogle Scholar
  28. J.R. Kan, L.C. Lee, Energy coupling function and solar wind—magnetosphere dynamo. Geophys. Res. Lett. 6(7), 557–560 (1979). doi:10.1029/GL006i007p00577 ADSCrossRefGoogle Scholar
  29. A. Karinen, K. Mursula, A new reconstruction of the Dst index for 1932–2002. Ann. Geophys. 23, 475–485 (2005) ADSCrossRefGoogle Scholar
  30. K. Kauristie, Statistical fits for auroral oval boundaries during the substorm sequence. J. Geophys. Res. 100(A11), 21885–21895 (1995). doi:10.1029/95JA01627 ADSCrossRefGoogle Scholar
  31. K. Kauristie, T.I. Pulkkinen, R.J. Pellinen, H.J. Opgenoorth, What can we tell about global auroral electrojet activity from a single meridional magnetometer chain? Ann. Geophys. 14(11), 1177–1185 (1996) ADSCrossRefGoogle Scholar
  32. W. Kertz, Ein neues mass für die feldstärke des erdmagnetischen äquatorialen ringstroms. Abh.-Akad. Wiss. Goettin., Math. Phys. Kl. 2, 1–83 (1958) Google Scholar
  33. W. Kertz, Ring current variations during the IGY. Ann. Int. Geophys. Year 35 (1964) Google Scholar
  34. M.G. Kivelson, C.T. Russell, Introduction to Space Physics (Cambridge University Press, Cambridge, 1995) Google Scholar
  35. V. Lesur, I. Wardinski, M. Rother, M. Mandea, GRIMM: the GFZ reference internal magnetic model based on vector satellite and observatory data. Geophys. J. Int. 173, 382–394 (2008) ADSCrossRefGoogle Scholar
  36. V. Lesur, I. Wardinski, M. Hamoudi, M. Rother, The second generation of the GFZ reference internal magnetic model: GRIMM-2. Earth Planets Space 62(10), 765–773 (2010) ADSCrossRefGoogle Scholar
  37. J.V. Lincoln, Geomagnetic indices, in Physics of Geomagnetic Phenomena, ed. by S. Matsushita, W.H. Campbell. International Geophysics Series, vol. 1, 1st edn. (Academic Press, New York, 1967), pp. 67–98 CrossRefGoogle Scholar
  38. K. Liou, P.T. Newell, D.G. Sibeck, C.-I. Meng, M. Brittnacher, G. Parks, Observation of IMF and seasonal effects in the location of auroral substorm onset. J. Geophys. Res. 106(A4), 5799–5810 (2001). doi:10.1029/2000JA003001 ADSCrossRefGoogle Scholar
  39. K. Liou, J.F. Carbary, P.T. Newell, C.-I. Meng, O. Rasmussen, Correlation of auroral power with the polar cap index. J. Geophys. Res. 108(A3), 1108 (2003). doi:10.1029/2002JA009556 CrossRefGoogle Scholar
  40. M. Lockwood, L. Barnard, H. Nevanlinna, M.J. Owens, R.G. Harrison, A.P. Rouillard, C.J. Davis, Reconstruction of geomagnetic activity and near-Earth interplanetary conditions over the past 167 yr—Part 2: a new reconstruction of the interplanetary magnetic field. Ann. Geophys. 31(11), 1979–1992 (2013). doi:10.5194/angeo-31-1979-2013 ADSCrossRefGoogle Scholar
  41. R.E. Lopez, C.C. Goodrich, M. Wiltberger, K. Papadopoulos, Simulation of the March 9, 1995 substorm and initial comparison to data, in Geospace Mass and Energy Flow: Results from the International Solar-Terrestrial Physics Program. Geophysical Monograph, vol. 104 (1998), pp. 237–245 Google Scholar
  42. J. Love, J. Gannon, Revised Dst and the epicycles of magnetic disturbance: 1958–2007. Ann. Geophys. Atmos. Hidrosph. Space Sci. 27, 3101 (2009) Google Scholar
  43. A.T.Y. Lui, C.D. Anger, A uniform belt of diffuse auroral emission seen by the ISIS-2 scanning photometer. Planet. Space Sci. 21(5), 799 (1973). doi:10.1016/0032-0633(73)90097-4 ADSCrossRefGoogle Scholar
  44. S. Macmillan, N. Olsen, Observatory data and the Swarm mission. Earth Planets Space 65, 1355–1362 (2013) ADSCrossRefGoogle Scholar
  45. S. Maus, H. Lühr, Signature of the quiet-time magnetospheric magnetic field and its electromagnetic induction in the rotating Earth. Geophys. J. Int. 162, 755–763 (2005). doi:10.1111/j.1365-246X.2005.02691.x ADSCrossRefGoogle Scholar
  46. S. Maus, P. Weidelt, Separating the magnetospheric disturbance magnetic field into external and transient internal contributions using a 1D conductivity model of the Earth. Geophys. Res. Lett. 31, L12614 (2004). doi:10.1029/2004GL020232 ADSGoogle Scholar
  47. S. Maus, C. Manoj, J. Rauberg, I. Michaelis, H. Lühr, NOAA/NGDC candidate models for the 11th generation international geomagnetic reference field and the concurrent release of the 6th generation Pomme magnetic model. Earth Planets Space 62(10), 729–735 (2010) ADSCrossRefGoogle Scholar
  48. P.N. Mayaud, Une mesure planétaire dactivité magnétique basée sur deux observatoires antipodaux. Ann. Geophys. 27(1), 67–70 (1971) Google Scholar
  49. P.N. Mayaud, Derivation, Meaning, and Use of Geomagnetic Indices. Geophysical Monograph, vol. 22 (Am. Geophys. Union, Washington, 1980) CrossRefGoogle Scholar
  50. H. McCreadie, M. Menvielle, The PC index: review of methods. Ann. Geophys. 28, 1887–1903 (2010). http://www.ann-geophys.net/28/1887/2010/ ADSCrossRefGoogle Scholar
  51. R.L. McPherron, Growth phase of magnetospheric substorms. J. Geophys. Res. 75(28), 5592–5599 (1970). doi:10.1029/ja075i028p05592 ADSCrossRefGoogle Scholar
  52. R.L. McPherron, Magnetospheric substorms. Rev. Geophys. 17(4), 657 (1979). doi:10.1029/rg017i004p00657 ADSCrossRefGoogle Scholar
  53. R.L. McPherron, Earth’s magnetotail, in Magnetotails in the Solar System, ed. by A. Keiling, C.M. Jackman, P.A. Delamere. Geophysica Monograph, vol. 207 (Am. Geophys. Union, Washington, 2015), pp. 61–84 Google Scholar
  54. M. Menvielle, A. Berthelier, The K-derived planetary indices: description and availability. Rev. Geophys. 3(29), 415–432 (1991) ADSCrossRefGoogle Scholar
  55. M. Menvielle, T. Iyemori, A. Marchaudon, M. Nosé, Geomagnetic indices, in Geomagnetic Observations and Models (Springer, Dordrecht, 2010), pp. 183–228 Google Scholar
  56. K. Mursula, A. Karinen, Explaining and correcting the excessive semiannual variation in the Dst index. Geophys. Res. Lett. 32(14) (2005). doi:10.1029/2005GL023132
  57. H. Nevanlinna, E. Kataja, An extension of the geomagnetic activity index series aa for two solar cycles (1844–1868). Geophys. Res. Lett. 20(23), 2703–2706 (1993). doi:10.1029/93gl03001 ADSCrossRefGoogle Scholar
  58. P.T. Newell, J.W. Gjerloev, Evaluation of SuperMAG auroral electrojet indices as indicators of substorms and auroral power. J. Geophys. Res. 116, 12211 (2011a). doi:10.1029/2011JA016779 CrossRefGoogle Scholar
  59. P.T. Newell, J.W. Gjerloev, Substorm and magnetosphere characteristic scales inferred from the SuperMAG auroral electrojet indices. J. Geophys. Res. 116, 12232 (2011b). doi:10.1029/2011JA016936 CrossRefGoogle Scholar
  60. P.T. Newell, J.W. Gjerloev, SuperMAG-based partial ring current indices. J. Geophys. Res. 117, 05215 (2012). doi:10.1029/2012JA017586 Google Scholar
  61. P.T. Newell, J.W. Gjerloev, Local geomagnetic indices and the prediction of auroral power. J. Geophys. Res. 119, 9790–9803 (2014). doi:10.1002/2014JA020524 CrossRefGoogle Scholar
  62. P.T. Newell, T. Sotirelis, K. Liou, C.-I. Meng, F.J. Rich, A nearly universal solar wind-magnetosphere coupling function inferred from 10 magnetospheric state variables. J. Geophys. Res. 112(A1), 01206 (2007). doi:10.1029/2006JA012015 CrossRefGoogle Scholar
  63. N. Olsen, F. Lowes, T.J. Sabaka, Ionospheric and induced field leakage in geomagnetic field models, and derivation of candidate models for DGRF 1995 and DGRF 2000. Earth Planets Space 57, 1191–1196 (2005a) ADSCrossRefGoogle Scholar
  64. N. Olsen, T.J. Sabaka, F. Lowes, New parameterization of external and induced fields in geomagnetic field modeling, and a candidate model for IGRF 2005. Earth Planets Space 57, 1141–1149 (2005b) ADSCrossRefGoogle Scholar
  65. N. Olsen, H. Lühr, T.J. Sabaka, M. Mandea, M. Rother, L. Toffner-Clausen, S. Choi, CHAOS—a model of the Earth’s magnetic field derived from CHAMP, /Orsted, and SAC-C magnetic satellite data. Geophys. J. Int. 166, 67–75 (2006) ADSCrossRefGoogle Scholar
  66. N. Olsen, M. Mandea, T.J. Sabaka, L. Toffner-Clausen, The CHAOS-3 geomagnetic field model and candidates for the 11th generation IGRF. Earth Planets Space 62(10), 719–727 (2010) ADSCrossRefGoogle Scholar
  67. N. Olsen, H. Lühr, C.C. Finlay, T.J. Sabaka, I. Michaelis, J. Rauberg, L. Toffner-Clausen, The CHAOS-4 geomagnetic field model. Geophys. J. Int. 197, 815–827 (2014). doi:10.1093/gji/ggu033 ADSCrossRefGoogle Scholar
  68. N. Olsen, G. Hulot, V. Lesur, C.C. Finlay, C. Beggan, A. Chulliat, T.J. Sabaka, R. Floberghagen, E. Friis-Christensen, R. Haagmans, S. Kotsiaros, H. Lühr, L. Toffner-Clausen, P. Vigneron, The Swarm initial field model for the 2014 geomagnetic field. Geophys. Res. Lett. 42, 1092–1098 (2015). doi:10.1002/2014GL062659 ADSCrossRefGoogle Scholar
  69. H.J. Opgenoorth, M.A.L. Persson, M. Lockwood, R. Stamper, M.N. Wild, R. Pellinen, T. Pulkkinen, K. Kauristie, T. Hughes, Y. Kamide, A new family of geomagnetic disturbance indices, in Ground-Based Observations in Support of the Cluster Mission, ed. by M. Lockwood, M.N. Wild, H.J. Opgenoorth. ESA Publications, vol. SP-1198 (ESTEC, Noordwijk, 1997), pp. 49–62 Google Scholar
  70. N. Østgaard, R.R. Vondrak, J.W. Gjerloev, G. Germany, A relation between the energy deposition by electron precipitation and geomagnetic indices during substorms. J. Geophys. Res. 107(A9), 1246 (2002). doi:10.1029/2001JA002003 CrossRefGoogle Scholar
  71. N. Partamies, L. Juusola, E. Tanskanen, K. Kauristie, Statistical properties of substorms during different storm and solar cycle phases. Ann. Geophys. 31(2), 349–358 (2013). doi:10.5194/angeo-31-349-2013 ADSCrossRefGoogle Scholar
  72. A. Pulkkinen, A. Klimas, D. Vassiliadis, V. Uritsky, Role of stochastic fluctuations in the magnetosphere-ionosphere system: a stochastic model for the AE index variations. J. Geophys. Res. 111, 10218 (2006). doi:10.1029/2006JA011661 CrossRefGoogle Scholar
  73. A.D. Richmond, Ionospheric electrodynamics using magnetic apex coordinates. J. Geomagn. Geoelectr. 47, 191–212 (1995) CrossRefGoogle Scholar
  74. A.J. Ridley, E.A. Kihn, Polar cap index comparisons with AMIE cross polar cap potential, electric field, and polar cap area. Geophys. Res. Lett. 31, 07801 (2004). doi:10.1029/2003GL019113 ADSCrossRefGoogle Scholar
  75. P. Ritter, H. Lühr, S. Maus, A. Viljanen, High-latitude ionospheric currents during very quiet times: their characteristics and predictability. Ann. Geophys. 22, 2001–2014 (2004) ADSCrossRefGoogle Scholar
  76. G. Rostoker, T.D. Phan, Variation of auroral electrojet spatial location as a function of the level of magnetospheric activity. J. Geophys. Res. 91(A2), 1716–1722 (1986). doi:10.1029/JA091iA02p01716 ADSCrossRefGoogle Scholar
  77. G. Rostoker, J.C. Samson, F. Creutzberger, T.J. Hughes, D.R. McDiarmid, A.G. McNamara, A. Vallance-Jones, D.D. Wallis, CANOPUS—a ground-based instrument array for remote sensing the high latitude ionosphere during the ISTP/GGS program. Space Sci. Rev. 71, 743–760 (1995) ADSCrossRefGoogle Scholar
  78. T.J. Sabaka, N. Olsen, R.H. Tyler, A. Kuvshinov, CM5, a pre-Swarm comprehensive geomagnetic field model derived from over 12 yr of CHAMP, /Orsted, SAC-C and observatory data. Geophys. J. Int. 200, 1596–1626 (2015). doi:10.1093/gji/ggu493 ADSCrossRefGoogle Scholar
  79. M. Siebert, J. Meyer, Geomagnetic activity indices, in The Upper Atmosphere, ed. by W. Dieminger, G.K. Hartman, R. Leitinger (Springer, Berlin, 1996), pp. 887–911 Google Scholar
  80. R.W. Spiro, P.H. Reiff, L.J. Maher Jr., Precipitating electron energy flux and auroral zone conductances—an empirical model. J. Geophys. Res. 87(A10), 8215–8227 (1982). doi:10.1029/JA087iA10p08215 ADSCrossRefGoogle Scholar
  81. P. Stauning, A new index for the interplanetary merging field and geomagnetic activity: application of the unified polar cap indices. Space Weather 5, 09001 (2007). doi:10.1029/2007SW000311 ADSCrossRefGoogle Scholar
  82. P. Stauning, Comment on “The PC index: review of methods”, by McCreadie and Menvielle (2010). Ann. Geophys. 29, 1137–1146 (2011). doi:10.5194/angeo-29-1137-2011 ADSCrossRefGoogle Scholar
  83. P. Stauning, The polar cap index: a critical review of methods and a new approach. J. Geophys. Res. 118, 5021–5038 (2013). doi:10.1029/jgra.50462 CrossRefGoogle Scholar
  84. M. Sugiura, IAGA resolution 2. IAGA Bull. 27, 123 (1969) Google Scholar
  85. M. Sugiura, T. Kamei, Equatorial \(D_{\mathit{st}}\)-index 1957–1986, in IAGA Bulletin No. 40, ed. by A. Berthelier, M. Menvielle (ISGI Publ. Off., Saint. Maur-des-Fosses, 1991) Google Scholar
  86. L. Svalgaard, Rederivation of Dst index, in AGU Fall Meeting Abstracts, vol. 1 (2005), p. 04 Google Scholar
  87. L. Svalgaard, Geomagnetic semiannual variation is not overestimated and is not an artifact of systematic solar hemispheric asymmetry. Geophys. Res. Lett. 38(16) (2011). doi:10.1029/2011GL048616
  88. L. Svalgaard, Correction of errors in scale values for magnetic elements for Helsinki. Ann. Geophys. 32(6), 633–641 (2014). doi:10.5194/angeo-32-633-2014 ADSCrossRefGoogle Scholar
  89. J. Takalo, J. Timonen, H. Koskinen, Correlation dimension and affinity of AE data and bicolored noise. Geophys. Res. Lett. 20(15), 1527–1530 (1993). doi:10.1029/93GL01596 ADSCrossRefGoogle Scholar
  90. E.I. Tanskanen, A comprehensive high-throughput analysis of substorms observed by IMAGE magnetometer network: years 1993–2003 examined. J. Geophys. Res. 114, 05204 (2009). doi:10.1029/2008JA013682 CrossRefGoogle Scholar
  91. E.I. Tanskanen, A. Viljanen, T.I. Pulkkinen, R. Pirjola, L. Häkkinen, A. Pulkkinen, O. Amm, At substorm onset, 40 % of AL comes from underground. J. Geophys. Res. 106(A7), 13119 (2001). doi:10.1029/2000JA900135 ADSCrossRefGoogle Scholar
  92. M. Temerin, X. Li, The Dst index underestimates the solar cycle variation of geomagnetic activity. J. Geophys. Res. Space Phys. 120(7), 5603–5607 (2015) ADSCrossRefGoogle Scholar
  93. E. Thébault, C.C. Finlay, P. Alken, C.D. Beggan, E. Canet, A. Chulliat, B. Langlais, V. Lesur, F.J. Lowes, C. Manoj, M. Rother, R. Schachtschneider, Evaluation of candidate geomagnetic field models for IGRF-12. Earth Planets Space 67, 112 (2015). doi:10.1186/s40623-015-0273-4 ADSCrossRefGoogle Scholar
  94. A.W.P. Thomson, V. Lesur, An improved geomagnetic data selection algorithm for global geomagnetic field modelling. Geophys. J. Int. 169(3), 951–963 (2007) ADSCrossRefGoogle Scholar
  95. O.A. Troshichev, V.G. Andrezen, The relationship between interplanetary quantities and magnetic activity in the southern polar cap. Planet. Space Sci. 33(4), 415–419 (1985). doi:10.1016/0032-0633(85)90086-8 ADSCrossRefGoogle Scholar
  96. O.A. Troshichev, V.G. Andrezen, S. Vennerström, E. Friis-Christensen, Magnetic activity in the polar cap—a new index. Planet. Space Sci. 36(11), 1095–1102 (1988). doi:10.1016/0032-0633(88)90063-3 ADSCrossRefGoogle Scholar
  97. O. Troshichev, H. Hayakawa, A. Matsuoka, T. Mukai, K. Tsuruda, Cross polar cap diameter and voltage as a function of PC index and interplanetary quantities. J. Geophys. Res. 101(A6), 13429–13435 (1996). doi:10.1029/95JA03672 ADSCrossRefGoogle Scholar
  98. O.A. Troshichev, R.Y. Lukianova, V.O. Papitashvili, F.J. Rich, O. Rasmussen, Polar cap index (PC) as a proxy for ionospheric electric field in the near-pole region. Geophys. Res. Lett. 27(23), 3809–3812 (2000) ADSCrossRefGoogle Scholar
  99. O. Troshichev, A. Janzhura, P. Stauning, Unified PCN and PCS indices: method of calculation, physical sense, and dependence on the imf azimuthal and northward components. J. Geophys. Res. 111, 05208 (2006). doi:10.1029/2005JA011402 CrossRefGoogle Scholar
  100. B. Tsurutani, M. Sugiura, T. Iyemori, B.E. Goldstein, W.D. Gonzalez, S.I. Akasofu, E.J. Smith, The nonlinear response of AE to the IMF BS driver: a spectral break at 5 hours. Geophys. Res. Lett. 17(3), 279–282 (1990). doi:10.1029/GL017i003p00279 ADSCrossRefGoogle Scholar
  101. N.A. Tsyganenko, A model of the near magnetosphere with a dawn-dusk asymmetry, 2, parameterization and fitting to observations. J. Geophys. Res. 107(A8), 10–11017 (2002). doi:10.1029/2001JA000220 Google Scholar
  102. S. Vennerstrøm, E. Friis-Christensen, O.A. Troshichev, V.G. Andresen, Comparison between the polar cap index, PC, and the auroral electrojet indices, AE, AL, and AU. J. Geophys. Res. 96, 101–113 (1991) ADSCrossRefGoogle Scholar
  103. S. Vennerström, E. Friis-Christensen, O.A. Troshichev, V.G. Andrezen, Geomagnetic polar cap (PC) index 1975–1993, Rep. UAG-103 (World Data Center A, Boulder, Colorado, 1994) Google Scholar
  104. A. Viljanen, L. Häkkinen, IMAGE magnetometer network, in Ground-Based Observations in Support of the Cluster Mission, ed. by M. Lockwood, M.N. Wild, H.J. Opgenoorth. ESA Publications, vol. SP-1198 (ESTEC, Noordwijk, 1997), pp. 111–117 Google Scholar
  105. J.A. Wanliss, K.M. Showalter, High-resolution global storm index: Dst versus SYM-H. J. Geophys. Res. Space Phys. 111(A2), A02202 (2006) ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • K. Kauristie
    • 1
  • A. Morschhauser
    • 2
  • N. Olsen
    • 3
  • C. C. Finlay
    • 3
  • R. L. McPherron
    • 4
  • J. W. Gjerloev
    • 5
  • H. J. Opgenoorth
    • 6
  1. 1.Finnish Meteorological InstituteHelsinkiFinland
  2. 2.GFZ German Research Centre for GeosciencesPotsdamGermany
  3. 3.DTU Space, National Space InstituteTechnical University of DenmarkLyngbyDenmark
  4. 4.University of CaliforniaLos AngelesUSA
  5. 5.Johns Hopkins UniversityLaurelUSA
  6. 6.Swedish Institute of Space PhysicsUppsalaSweden

Personalised recommendations