Advertisement

Space Science Reviews

, Volume 203, Issue 1–4, pp 347–376 | Cite as

Particle Lifting Processes in Dust Devils

  • L. D. V. NeakraseEmail author
  • M. R. Balme
  • F. Esposito
  • T. Kelling
  • M. Klose
  • J. F. Kok
  • B. Marticorena
  • J. Merrison
  • M. Patel
  • G. Wurm
Article

Abstract

Particle lifting in dust devils on both Earth and Mars has been studied from many different perspectives, including how dust devils could influence the dust cycles of both planets. Here we review our current understanding of particle entrainment by dust devils by examining results from field observations on Earth and Mars, laboratory experiments (at terrestrial ambient and Mars-analog conditions), and analytical modeling. By combining insights obtained from these three methodologies, we provide a detailed overview on interactions between particle lifting processes due to mechanical, thermal, electrodynamical and pressure effects, and how these processes apply to dust devils on Earth and Mars. Experiments and observations have shown dust devils to be effective lifters of dust given the proper conditions on Earth and Mars. However, dust devil studies have yet to determine the individual roles of each of the component processes acting at any given time in dust devils.

Keywords

Dust devils Mars Earth Particle lifting Aeolian processes 

Notes

Acknowledgement

This work was supported by grant National Science Foundation grant AGS-1358621 to J. K.

References

  1. S.C. Alfaro, L. Gomes, Modeling mineral aerosol production by wind erosion: emission intensities and aerosol size distributions in source areas. J. Geophys. Res. 106(D16), 18,075–18,084 (2001) ADSCrossRefGoogle Scholar
  2. C.J.T. Allen, R. Washington, A. Saci, Dust detection from ground-based observations in the summer global dust maximum: results from Fennec 2011 and 2012 and implications for modeling and field observations. J. Geophys. Res. 120, 897–916 (2015). doi: 10.1002/2014JD022655 CrossRefGoogle Scholar
  3. M.P. Almeida, E.J.R. Parteli, J.S. Andrade, H.J. Herrmann, Giant saltation on Mars. Proc. Natl. Acad. Sci. USA 105, 6222–6226 (2008) ADSCrossRefGoogle Scholar
  4. S.P.S. Arya, A drag partition theory for determining the large-scale roughness parameter and wind stress on the Arctic pack ice. J. Geophys. Res. 80(24), 3447–3454 (1975). doi: 10.1029/JC080i024p03447 ADSCrossRefGoogle Scholar
  5. J.A. Astrom, Statistical models of brittle fragmentation. Adv. Phys. 55, 247–278 (2006) ADSCrossRefGoogle Scholar
  6. R.A. Bagnold, The Physics of Blown Sand and Desert Dunes (Methuen, London, 1941). 265 p. Google Scholar
  7. M.R. Balme, R. Greeley, Dust devils on Earth and Mars. Rev. Geophys. 44, RG3003 (2006). doi: 10.1029/2005RG000188 ADSCrossRefGoogle Scholar
  8. M. Balme, A. Hagermann, Particle lifting at the soil-air interface by atmospheric pressure excursions in dust devils. Geophys. Res. Lett. 33, L19S01 (2006). doi: 10.1029/2006GL026819 CrossRefGoogle Scholar
  9. M. Balme, S. Metzger, M. Towner, T. Ringrose, R. Greeley, J. Iversen, Friction wind speeds in dust devils: a field study. Geophys. Res. Lett. 30(16), 1830 (2003). doi: 10.1029/2003GL017493 ADSCrossRefGoogle Scholar
  10. M.R. Balme, A. Pathare, S.M. Metzger, M.C. Towner, S.R. Lewis, A. Spiga, L.K. Fenton, N.O. Renno, H.M. Elliott, F.A. Saca, T.I. Michaels, P. Russell, J. Verdasca, Field measurements of horizontal forward motion velocities of terrestrial dust devils: towards a proxy for ambient winds on Mars and Earth. Icarus 221(2), 632–645 (2012). doi: 10.1016/j.icarus.2012.08.021 ADSCrossRefGoogle Scholar
  11. T.E. Barchyn, R.L. Martin, J.F. Kok, C.H. Hugenholtz, Fundamental mismatches between measurements and models in aeolian sediment transport prediction: the role of small-scale variability. Aeolian Res. 15, 245–251 (2014) ADSCrossRefGoogle Scholar
  12. S. Basu, M.I. Richardson, R.J. Wilson, Simulation of the Martian dust cycle with the GFDL Mars GCM. J. Geophys. Res. 109, E11006 (2004) ADSCrossRefGoogle Scholar
  13. M.V. Cameiro, K.R. Rasmussen, H.J. Herrmann, Bursts in discontinuous Aeolian saltation. Sci. Rep. 5, 11109 (2015). doi: 10.1038/srep11109 ADSCrossRefGoogle Scholar
  14. B.A. Cantor, K.M. Kanak, K.S. Edgett, Mars Orbiter Camera observations of Martian dust devils and their tracks (September 1997 to January 2006) and evaluation of theoretical vortex models. J. Geophys. Res. 111, E12002 (2006). doi: 10.1029/2006JE002700 ADSCrossRefGoogle Scholar
  15. M.V. Carneiro, K.R. Rasmussen, H.J. Herrmann, Bursts in discontinuous Aeolian saltation. Sci. Rep. 5, 11109 (2015) ADSCrossRefGoogle Scholar
  16. A. Castellanos, The relationship between attractive interparticle forces and bulk behaviour in dry and uncharged fine powders. Adv. Phys. 54, 4 (2005). doi: 10.1080/17461390500402657 CrossRefGoogle Scholar
  17. C. Cavazos, M.C. Todd, K. Schepanski, Numerical model simulation of the Saharan dust event of 6–11 March 2006 using the Regional Climate Model version 3 (RegCM3). J. Geophys. Res. 114, D12109 (2009). doi: 10.1029/2008JD011078 ADSCrossRefGoogle Scholar
  18. W.S. Chepil, Dynamics of wind erosion. 2. Initiation of soil movement. Soil Sci. 60, 397–411 (1945) CrossRefGoogle Scholar
  19. O.G. Chkhetiani, E.B. Gledzer, M.S. Artamonova, M.A. Iordanskii, Dust resuspension under weak wind conditions: direct observations and model. Atmos. Chem. Phys. 12, 5147–5162 (2012). doi: 10.5194/acp-12-5147-2012 ADSCrossRefGoogle Scholar
  20. P. Claudin, B. Andreotti, A scaling law for aeolian dunes on Mars, Venus, Earth, and for subaqueous ripples. Earth Planet. Sci. Lett. 252, 30–44 (2006) ADSCrossRefGoogle Scholar
  21. W.M. Cornelis, D. Gabriels, R. Hartmann, A conceptual model to predict the deflation threshold shear velocity as a affected by near-surface soil water: I. Theory. Soil Sci. Soc. Am. J. 68, 1154–1161 (2004a) CrossRefGoogle Scholar
  22. W.M. Cornelis, D. Gabriels, R. Hartmann, A parameterisation for the threshold shear velocity to initiate deflation of dry and wet sediment. Geomorphology 59, 43–51 (2004b). doi: 10.1016/j.geomorph.2003.09.004 ADSCrossRefGoogle Scholar
  23. M. Creyssels, P. Dupont, A. Ould el Moctar, A. Valance, I. Cantat, J.T. Jenkins, J.M. Pasini, K.R. Rasumssen, Saltating particles in a turbulent boundary layer: experiment and theory. J. Fluid Mech. 625, 47–74 (2009). doi: 10.1017/S0022112008005491 ADSzbMATHCrossRefGoogle Scholar
  24. C. De Beule, T. Kelling, G. Wurm, J. Teiser, T. Jankowski, From planetesimals to dust: low gravity experiments on recycling solids at the inner edge of protoplanetary disks. Astrophys. J. 763(11), 1–8 (2013) Google Scholar
  25. C. De Beule, G. Wurm, T. Kelling, M. Köster, M. Kocifaj, An insolation activated dust layer on Mars. Icarus 260, 23–28 (2015) ADSCrossRefGoogle Scholar
  26. S.J. De Vet, J.P. Merrison, M.C. Mittelmeijer-Hazeleger, E.E. van Loon, L.H. Cammeraat, Effects of rolling on wind-induced detachment thresholds of volcanic glass on Mars. Planet. Space Sci. 103, 205–218 (2014) ADSCrossRefGoogle Scholar
  27. L. Demon, P. Defelice, H. Gondet, Y. Kast, L. Pontier, J. Rech. C.N.R.S. 24, 126 (1953) Google Scholar
  28. N. Duff, D.J. Lacks, Particle dynamics simulations of triboelectric charging in granular insulator systems. J. Electrost. 66, 51 (2008). doi: 10.1016/j.elstat.2007.08.005 CrossRefGoogle Scholar
  29. S. Dupont, G. Bergametti, B. Marticorena, S. Simoëns, Modeling saltation intermittency. J. Geophys. Res., Atmos. 118, 7109{7128 (2013). doi: 10.1002/jgrd.50528 CrossRefGoogle Scholar
  30. O. Duran, P. Claudin, B. Andreotti, On aeolian transport: grain-scale interactions, dynamical mechanisms and scaling laws. Aeolian Res. 3, 243–270 (2011) ADSCrossRefGoogle Scholar
  31. M.D. Ellehoj, H.P. Gunnlaugsson, P.A. Taylor, H. Kahanpää, K.M. Bean, B.A. Cantor, B.T. Gheynani, L. Drube, D. Fisher, A.-M. Harri, C. Holstein-Rathlou, M.T. Lemmon, M.B. Madsen, M.C. Malin, J. Polkko, P.H. Smith, L.K. Tamppari, W. Weng, J. Whiteway, Convective vortices and dust devils at the Phoenix Mars mission landing site. J. Geophys. Res. 115, E00E16 (2010). doi: 10.1029/2009JE003413 CrossRefGoogle Scholar
  32. F. Esposito, R. Molinaro, C.I. Popa, C. Molfese, F. Cozzolino, L. Marty, K. Taj-Eddine, G. Di Achille, G. Franzese, S. Silvestro, G.G. Ori, The role of the atmospheric electric field in the dust-lifting process. Geophys. Res. Lett. 43(10), 5501–5508 (2016). doi: 10.1002/2016GL068463 ADSCrossRefGoogle Scholar
  33. A.T. Evan, C. Flamant, S. Fiedler, O. Doherty, An analysis of Aeolian dust in climate models. Geophys. Res. Lett. 41, 5996–6001 (2014) ADSCrossRefGoogle Scholar
  34. F. Fécan, B. Marticorena, G. Bergametti, Parameterization of the increase of the aeolian erosion threshold wind friction velocity due to soil moisture for arid and semi-arid areas. Ann. Geophys. 17, 149–157 (1999) ADSCrossRefGoogle Scholar
  35. L.K. Fenton, R. Lorenz, Dust devil height and spacing with relation to the martian planetary boundary layer thickness. Icarus 260, 246–262 (2015). doi: 10.1016/j.icarus.2015.07.028 ADSCrossRefGoogle Scholar
  36. F. Ferri, P.H. Smith, M. Lemmon, N.O. Rennó, Dust devils as observed by Mars Pathfinder. J. Geophys. Res. 108(E12), 5133 (2003). doi: 10.1029/2000JE001421 CrossRefGoogle Scholar
  37. G.D. Freier, The electric field of a large dust devil. J. Geophys. Res. 65, 3504 (1960). doi: 10.1029/JZ065i010p03504 ADSCrossRefGoogle Scholar
  38. D.A. Gillete, Fine particulate emissions due to wind erosion. Trans. Amer. Soc. Agric. Eng. 20(5), 0890 (1977). doi: 10.13031/2013.35670 CrossRefGoogle Scholar
  39. D.A. Gillette, On the production of soil wind erosion aerosols having the potential for long range transport. J. Rech. Atmos. 8, 735–744 (1974) Google Scholar
  40. D. Gillette, I.H. Blifford, C.R. Fenster, Measurements of aerosol size distributions and fluxes of aerosols on land subject to wind erosion. J. Appl. Meteorol. 11, 977–987 (1972) ADSCrossRefGoogle Scholar
  41. D.A. Gillette, I.H. Blifford, D.W. Fryrear, Influence of wind velocity on size distributions of aerosols generated by wind erosion of soils. J. Geophys. Res. 79, 4068–4075 (1974) ADSCrossRefGoogle Scholar
  42. L. Gomes, J.L. Rajot, S.C. Alfaro, A. Gaudichet, Validation of a dust production model from measurements performed in semi-arid agricultural areas of Spain and Niger. Catena 52, 257–271 (2003). doi: 10.1016/S0341-8162(03)00017-1. Wind Erosion in Europe CrossRefGoogle Scholar
  43. R. Greeley, M.R. Balme, J.D. Iversen, S. Metzger, R. Mickelson, J. Phoreman, B. White, Martian dust devils: laboratory simulations of particle threshold. J. Geophys. Res. 108(E5), 5041 (2003). doi: 10.1029/2002JE001987 CrossRefGoogle Scholar
  44. R. Greeley, J.D. Iversen, Wind as a Geologic Process on Earth, Mars, Venus, and Titan (Cambridge Univ. Press, New York, 1985) CrossRefGoogle Scholar
  45. R. Greeley, D.A. Waller, N.A. Cabrol, G.A. Landis, M.T. Lemmon, L.D.V. Neakrase, M. Pendleton Hoffer, S.D. Thompson, P.L. Whelley, G. Crater, Mars: observations of three dust devil seasons. J. Geophys. Res. 115, E00F02 (2010). doi: 10.1029/2010JE003608 ADSCrossRefGoogle Scholar
  46. R. Greeley, P.L. Whelley, R.E. Arvidson, N.A. Cabrol, D.J. Foley, B.J. Franklin, P.G. Geisler, M.P. Golombek, R.O. Kuzmin, G.A. Landis, M.T. Lemmon, L.D.V. Neakrase, S.W. Squyres, S.D. Thompson, Active dust devils in Gusev crater, Mars: observations from the Mars exploration rover spirit. J. Geophys. Res. 111, E12S09 (2006). doi: 10.1029/2006JE002743 ADSGoogle Scholar
  47. R. Greeley, P.L. Whelley, L.D.V. Neakrase, Martian dust devils: directions of movement inferred from their tracks. Geophys. Res. Lett. 31, L24702 (2004). doi: 10.1029/2004GL021599 ADSCrossRefGoogle Scholar
  48. H.C. Hamaker, The London—Van Der Waals attraction between spherical particles. Physica 4, 1058–1072 (1937) ADSCrossRefGoogle Scholar
  49. W.R. Harper, Contact and Frictional Dissipation (Clarendon Press, Oxford, 1967) Google Scholar
  50. G.D. Hess, K.T. Spillane, Characteristics of dust devils in Australia. J. Appl. Meteorol. 29, 498–507 (1990). doi: 10.1175/1520-0450(1990)029<0498:CODDIA>2.0.CO;2 ADSCrossRefGoogle Scholar
  51. T.D. Ho, A. Valance, P. Dupont, A.O. El Moctar, Scaling laws in aeolian sand transport. Phys. Rev. Lett. 106, 094501 (2011) ADSCrossRefGoogle Scholar
  52. C. Holstein-Rathlou, H.P. Gunnlaugsson, J.P. Merrison, K.M. Bean, B.A. Cantor, J.A. Davis, R. Davy, N.B. Drake, M.D. Ellehoj, W. Goetz, S.F. Hviid, C.F. Lange, S.E. Larsen, M.T. Lemmon, M.B. Madsen, M. Malin, J.E. Moores, P. Nørnberg, P. Smith, L.K. Tamppari, P.A. Taylor, Winds at the Phoenix landing site. J. Geophys. Res. 115, E00E18 (2010) ADSCrossRefGoogle Scholar
  53. N. Huneeus, M. Schulz, Y. Balkanski, J. Griesfeller, J. Prospero, S. Kinne, S. Bauer, O. Boucher, M. Chin, F. Dentener, T. Diehl, R. Easter, D. Fillmore, S. Ghan, P. Ginoux, A. Grini, L. Horowitz, D. Koch, M.C. Krol, W. Landing, X. Liu, N. Mahowald, R. Miller, J.J. Morcrette, G. Myhre, J. Penner, J. Perlwitz, P. Stier, T. Takemura, C.S. Zender, Global dust model intercomparison in AeroCom phase I. Atmos. Chem. Phys. 11, 7781–7816 (2011) ADSCrossRefGoogle Scholar
  54. A.H. Ibrahim, P.F. Dunn, M.F. Qazi, Experiments and validation of a model for microparticle detachment from a surface by turbulent air flow. J. Aerosol Sci. 39, 645–656 (2008) CrossRefGoogle Scholar
  55. I.I. Inculet, G.S. Peter Castle, G. Aartsen, Generation of bipolar electric fields during industrial handling of powders. Chem. Eng. Sci. 61, 2249–2253 (2006). doi: 10.1016/j.ces.2005.05.005 CrossRefGoogle Scholar
  56. M. Ishizuka, M. Mikami, J. Leys, Y. Yamada, S. Heidenreich, Y. Shao, G.H. McTainsh, Effects of soil moisture and dried raindroplet crust on saltation and dust emission. J. Geophys. Res. 113, D24212 (2008). doi: 10.1029/2008JD009955 ADSCrossRefGoogle Scholar
  57. J. Iversen, J. Pollack, R. Greeley, B. White, Saltation threshold on Mars: the effect of interparticle force, surface roughness, and low atmospheric density. Icarus 29(3), 381–393 (1976). doi: 10.1016/0019-1035(76)90140-8 ADSCrossRefGoogle Scholar
  58. J.D. Iversen, B.R. White, Saltation threshold on Earth, Mars and Venus. Sedimentology 29, 111–119 (1982) ADSCrossRefGoogle Scholar
  59. B.C. Jemmett-Smith, J.H. Marsham, P. Knippertz, C.A. Gilkeson, Quantifying global dust devil occurrence from meteorological analyses. Geophys. Res. Lett. 42, 1275–1282 (2015). doi: 10.1002/2015GL063078 ADSCrossRefGoogle Scholar
  60. K.L. Johnson, K. Kendall, A.D. Roberts, Surface energy and contact of elastic solids. Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci. 324, 301–313 (1971) ADSCrossRefGoogle Scholar
  61. R.A. Kahn, T.Z. Martin, R.W. Zurek, S.W. Lee, The Martian dust cycle, in Mars, ed. by H. Kieffer et al.(Univ. of Ariz. Press, Tucson, 1992), pp. 1017–1053. Ch. 29 Google Scholar
  62. M.A. Kahre, J.R. Murphy, R.M. Haberle, Modeling the Martian dust cycle and surface dust reservoirs with the NASA Ames general circulation model. J. Geophys. Res. 111, E06008 (2006). doi: 10.1029/2005JE002588 ADSCrossRefGoogle Scholar
  63. J.C. Kaimal, J.A. Businger, Case studies of a convective plume and a dust devil. J. Appl. Meteorol. 9, 612–620 (1970) ADSCrossRefGoogle Scholar
  64. J.C. Kaimal, J.J. Finnigan, Atmospheric Boundary Layer Flows: Their Structure and Measurement (Oxford Univ. Press, New York, 1994) Google Scholar
  65. A.K. Kamra, Measurements of the electrical properties of dust storms. J. Geophys. Res. 77(30), 5856 (1972) ADSCrossRefGoogle Scholar
  66. R. Kawamura, Study on sand movement by wind (relationship between sand flow and wind friction, and vertical density distribution of sand). Tokyo Daigaku Rikogaku Kenkyusho Hokoku, Tokyo 5(3), 95–112 (1951) Google Scholar
  67. R. Kawamura, Study of sand movement by wind, Hydraulic Eng. Lab. Tech. Rep., University of California, Berkeley, CA, HEL-2-8, pp. 99–108 (1964) Google Scholar
  68. T. Kelling, G. Wurm, M. Kocifaj, J. Klačka, D. Reiss, Dust ejection from planetary bodies by temperature gradients: laboratory experiments. Icarus 212, 935–940 (2011) ADSCrossRefGoogle Scholar
  69. M.R. Klose, Convective Turbulent Dust Emission: Process, parameterization, and relevance in the Earth system, Dissertation, University of Cologne (2014). urn:nbn:de:hbz:38-58264 Google Scholar
  70. M. Klose, Y. Shao, Stochastic parameterization of dust emission and application to convective atmospheric conditions. Atmos. Chem. Phys. 12(12), 7309–7320 (2012). doi: 10.5194/acp-12-7309-2012 ADSCrossRefGoogle Scholar
  71. M. Klose, Y. Shao, Large-eddy simulation of turbulent dust emission. Aeolian Res. 8, 49–58 (2013). doi: 10.1016/j.aeolia.2012.10.010 ADSCrossRefGoogle Scholar
  72. M. Klose, Y. Shao, A numerical study on dust devils with implications to global dust budget estimates. Aeolian Res. 22, 47–58 (2016) ADSCrossRefGoogle Scholar
  73. M. Klose, Y. Shao, X.L. Li, H.S. Zhang, M. Ishizuka, M. Mikami, J.F. Leys, Further development of a parameterization for convective turbulent dust emission and evaluation based on field observations. J. Geophys. Res., Atmos. 119, 10,441–10,457 (2014). doi: 10.1002/2014JD021688 CrossRefGoogle Scholar
  74. M. Kocifaj, J. Klačka, G. Wurm, T. Kelling, I. Kohút, Dust ejection from (pre-)planetary bodies by temperature gradients: radiative and heat transfer. Mon. Not. R. Astron. Soc. 404, 1512–1518 (2010) ADSGoogle Scholar
  75. J.F. Kok, An improved parameterization of wind-blown sand flux on Mars that includes the effect of hysteresis. Geophys. Res. Lett. 37, L12202 (2010a) ADSCrossRefGoogle Scholar
  76. J.F. Kok, Difference in the wind speeds required for initiation versus continuation of sand transport on Mars: implications for dunes and dust storms. Phys. Rev. Lett. 104, 074502 (2010b) ADSCrossRefGoogle Scholar
  77. J.F. Kok, A scaling theory for the size distribution of emitted dust aerosols suggests climate models underestimate the size of the global dust cycle. Proc. Natl. Acad. Sci. USA 108(3), 1016–1021 (2011b) ADSMathSciNetCrossRefGoogle Scholar
  78. J. Kok, Planetary science: Martian sand blowing in the wind. Nature 485, 312–313 (2012). doi: 10.1038/nature11193 ADSCrossRefGoogle Scholar
  79. J.F. Kok, S. Albani, N.M. Mahowald, D.S. Ward, An improved dust emission model—part 2: evaluation in the community Earth system model, with implications for the use of dust source functions. Atmos. Chem. Phys. 14, 13043–13061 (2014a) ADSCrossRefGoogle Scholar
  80. J.F. Kok, N.M. Mahowald, G. Fratini, J.A. Gillies, M. Ishizuka, J.F. Leys, M. Mikami, M.S. Park, S.U. Park, R.S. Van Pelt, T.M. Zobeck, An improved dust emission model—part 1: model description and comparison against measurements. Atmos. Chem. Phys. 14, 13023–13041 (2014b) ADSCrossRefGoogle Scholar
  81. J.F. Kok, E.J.R. Parteli, T.I. Michaels, D. Bou Karam, The physics of wind-blown sand and dust. Rep. Prog. Phys. 75, 106901 (2012) ADSCrossRefGoogle Scholar
  82. J.F. Kok, N.O. Renno, Enhancement of the emission of mineral dust aerosols by electric forces. Geophys. Res. Lett. 33, L19S10 (2006) CrossRefGoogle Scholar
  83. J.F. Kok, N.O. Renno, Electrostatics in wind-blown sand. Phys. Rev. Lett. 100, 014501 (2008) ADSCrossRefGoogle Scholar
  84. M. Küpper, G. Wurm, Thermal creep assisted dust lifting on Mars: wind tunnel experiments for the entrainment threshold velocity. J. Geophys. Res. 120, 1346–1356 (2015) CrossRefGoogle Scholar
  85. M.V. Kurgansky, A. Montecinos, V. Villagran, S.M. Metzger, Micrometeorological conditions for dust-devil occurrence in the Atacama Desert. Bound.-Layer Meteorol. 138(2), 285–298 (2011). doi: 10.1007/s10546-010-9549-1 ADSCrossRefGoogle Scholar
  86. K. Lettau, H. Lettau, Experimental and micrometeorological field studies of dune migration, in Exploring the World’s Driest Climate, ed. by H.H. Lettau, K. Lettau (Center for Climatic Research, Univ. Wisconsin, Madison, 1978) Google Scholar
  87. G.A. Loosmore, J.R. Hunt, Dust resuspension without saltation. J. Geophys. Res. 105(D16), 20,663–20,671 (2000). doi: 10.1029/2000JD900271 ADSCrossRefGoogle Scholar
  88. R.D. Lorenz, L.D. Neakrase, J.D. Anderson, In-situ measurement of dust devil activity at La Jornada experimental range, New Mexico, USA. Aeolian Res. (2015). doi: 10.1016/j.aeolia.2015.01.012 Google Scholar
  89. R.D. Lorenz, D. Reiss, Solar panel clearing events, dust devil tracks and in-situ vortex detections on Mars. Icarus 248, 162–164 (2015). doi: 10.1016/j.icarus.2014.10.034 ADSCrossRefGoogle Scholar
  90. H. Lu, Y. Shao, A new model for dust emission by saltation bombardment. J. Geophys. Res. 104, 16,827–16,842 (1999) ADSCrossRefGoogle Scholar
  91. T. Macpherson, W.G. Nickling, J.A. Gillies, V. Etyemezian, Dust emissions from undisturbed and disturbed supply-limited desert surfaces. J. Geophys. Res., Earth Surf. 113, F02S04 (2008). doi: 10.1029/2007JF000800 ADSCrossRefGoogle Scholar
  92. N. Mahowald, S. Albani, J.F. Kok, S. Engelstaeder, R. Scanza, D.S. Ward, M.G. Flanner, The size distribution of desert dust aerosols and its impact on the Earth system. Aeolian Res. 15, 53–71 (2014) ADSCrossRefGoogle Scholar
  93. B. Marticorena, G. Bergametti, Modeling the atmospheric dust cycle: 1. Design of a soil-derived dust emission scheme. J. Geophys. Res. 100(D8), 16,415–16,430 (1995) ADSCrossRefGoogle Scholar
  94. B. Marticorena, G. Bergametti, D.A. Gillette, J. Belnap, Factors controlling threshold friction velocity in semi-arid and arid areas of the United States. J. Geophys. Res. 102, 23277–23287 (1997) ADSCrossRefGoogle Scholar
  95. R.L. Martin, T.E. Barchyn, C.H. Hugenholtz, D.J. Jerolmack, Timescale dependence of aeolian sand flux observations under atmospheric turbulence. J. Geophys. Res., Atmos. 118, 9078–9092 (2013). doi: 10.1002/jgrd.50687 ADSCrossRefGoogle Scholar
  96. R.L. Martin, J.F. Kok, Linear scaling of wind-driven sand flux with shear stress. (2016), in review Google Scholar
  97. C. McKenna Neuman, Effects of temperature and humidity upon the entrainment of sedimentary particles by wind. Bound.-Layer Meteorol. 108, 61–89 (2003) ADSCrossRefGoogle Scholar
  98. C. McKenna Neuman, W.G. Nickling, A theoretical and wind tunnel investigation of the effect of capillary water on the entrainment of sediment by wind. Can. J. Soil Sci. 69, 79–96 (1989) CrossRefGoogle Scholar
  99. R.J. McKim, The dust storms of Mars. J. Br. Astron. Assoc. 106, 185–200 (1996) ADSGoogle Scholar
  100. J.P. Merrison, Sand transport, erosion and granular electrification. Aeolian Res. 4, 1–16 (2012) ADSCrossRefGoogle Scholar
  101. J.P. Merrison, H.P. Gunnlaugsson, P. Nørnberg, A.E. Jensen, K.R. Rasmussen, Determination of the wind induced detachment threshold for granular material on Mars using wind tunnel simulations. Icarus 191, 568–580 (2007) ADSCrossRefGoogle Scholar
  102. S.M. Metzger, M.R. Balme, M.C. Towner, B.J. Bos, T.J. Ringrose, M.R. Patel, In situ measurements of particle load and transport in dust devils. Icarus 214, 766–772 (2011). doi: 10.1016/j.icarus.2011.03.013 ADSCrossRefGoogle Scholar
  103. S.M. Metzger, J.R. Carr, J.R. Johnson, T.J. Parker, M.T. Lemmon, Dust devil vortices seen by the Mars Pathfinder camera. Geophys. Res. Lett. 26(18), 2781–2784 (1999). doi: 10.1029/1999GL008341 ADSCrossRefGoogle Scholar
  104. L. Montabone, F. Forget, E. Millour, R.J. Wilson, S.R. Lewis, B. Cantor, D. Kass, A. Kleinböhl, M.T. Lemmon, M.D. Smith, M.J. Wolff, Eight-year climatology of dust optical depth on Mars. Icarus 251, 65–95 (2015). doi: 10.1016/j.icarus.2014.12.034 ADSCrossRefGoogle Scholar
  105. D.P. Mulholland, A. Spiga, C. Listowski, P.L. Read, An assessment of the impact of local processes on dust lifting in martian climate models. Icarus 252, 212–227 (2015). doi: 10.1016/j.icarus.2015.01.017 ADSCrossRefGoogle Scholar
  106. E.P. Muntz, Y. Sone, K. Aoki, S. Vargo, M. Young, J. Vac. Sci. Technol. A 20, 214 (2002) ADSCrossRefGoogle Scholar
  107. J.R. Murphy, S. Nelli, Mars Pathfinder convective vortices: frequency of occurrence. Geophys. Res. Lett. 29(23), 2103 (2002). doi: 10.1029/2002GL015214 ADSCrossRefGoogle Scholar
  108. S.L. Namikas, B.O. Bauer, D.J. Sherman, Influence of averaging interval on shear velocity estimates for aeolian transport modeling. Geomorphology 53, 235–246 (2003). doi: 10.1016/S0169-555X(02)00314-8 ADSCrossRefGoogle Scholar
  109. L.D.V. Neakrase, A Laboratory Study of Sediment Flux Within Dust Devils on Earth and Mars (Doctoral Dissertation) (Arizona State University, Tempe, Arizona, USA, 2009) Google Scholar
  110. L.D.V. Neakrase, R. Greeley, Dust devil sediment flux on Earth and Mars: laboratory simulations. Icarus 206, 306–318 (2010a). doi: 10.1016/j.icarus.2009.08.028 ADSCrossRefGoogle Scholar
  111. L.D.V. Neakrase, R. Greeley, Dust devils in the laboratory: effects of surface roughness on vortex dynamics. J. Geophys. Res. 115, E05003 (2010b). doi: 10.1029/2009JE003465 ADSCrossRefGoogle Scholar
  112. L.D.V. Neakrase, R. Greeley, J.D. Iversen, M.R. Balme, E.E. Eddlemon, Dust flux within dust devils: preliminary laboratory simulations. Geophys. Res. Lett. 33, L19S09 (2006). doi: 10.1029/2006GL026810 CrossRefGoogle Scholar
  113. L.D.V. Neakrase, J. McHone, P.L. Whelley, R. Greeley, Terrestrial analogs to Mars: East-central Saharan dust devil tracks (Abstract), in Proceedings of the 43rd Lunar and Planetary Science Conference, The Woodlands, Texas (2012) Google Scholar
  114. C.E. Newman, S.R. Lewis, P.L. Read, F. Forget, Modeling the Martian dust cycle 1. Representations of dust transport processes. J. Geophys. Res. 107(E12), 5123 (2002). doi: 10.1029/2002JE001910 Google Scholar
  115. C.E. Newman, M.I. Richardson, The impact of surface dust source exhaustion on the martian dust cycle, dust storms and interannual variability, as simulated by the MarsWRF General Circulation Model. Icarus 257, 47–87 (2015). doi: 10.1016/j.icarus.2015.03.030 ADSCrossRefGoogle Scholar
  116. W.G. Nickling, Grain-size characteristics of sediment transported during dust storms. J. Sediment. Petrol. 53(3), 1011–1024 (1983) Google Scholar
  117. W.G. Nickling, J.A. Gillies, Dust emission and transport in Mali, West Africa. Sedimentology 40, 859–868 (1993) ADSCrossRefGoogle Scholar
  118. W.G. Nickling, G.H. McTainsh, J.F. Leys, Dust emissions from the Channel Country of western Queensland, Australia. Z. Geomorphol., Suppl.bd 116, 1–17 (1999) Google Scholar
  119. A.M.C. Oke, N.J. Tapper, D. Dunkerley, Willy-willies in the Australian landscape: the role of key meteorological variables and surface conditions in defining frequency and spatial characteristics. J. Arid Environ. 71, 201–215 (2007). doi: 10.1016/j.jaridenv.2007.03.008 CrossRefGoogle Scholar
  120. R.P. Owen, Saltation of uniform grains in air. J. Fluid Mech. 20, 225–242 (1964) ADSzbMATHCrossRefGoogle Scholar
  121. T. Pähtz, J.F. Kok, H.J. Herrmann, The apparent roughness of a sand surface blown by wind from an analytical model of saltation. New J. Phys. 14, 043035 (2012) CrossRefGoogle Scholar
  122. J.L. Rajot, S.C. Alfaro, L. Gomes, A. Gaudichet, Soil crusting on sandy soils and its influence on wind erosion. Catena 53, 1–16 (2003). doi: 10.1016/S0341-8162(02)00201-1 CrossRefGoogle Scholar
  123. K.R. Rasmussen, M. Sørensen, Vertical variation of particle speed and flux density in aeolian saltation: measurement and modeling. J. Geophys. Res. 113(F2), 2156–2202 (2008). doi: 10.1029/2007JF000774 CrossRefGoogle Scholar
  124. K.R. Rasmussen, A. Valance, J. Merrison, Laboratory studies of aeolian sediment transport processes on planetary surfaces. Geomorphology 244, 74–94 (2015). doi: 10.1016/j.geomorph.2015.03.041 ADSCrossRefGoogle Scholar
  125. M. Raupach, Drag and drag partition on rough surfaces. Bound.-Layer Meteorol. 60(4), 375–395 (1992). doi: 10.1007/BF00155203 ADSCrossRefGoogle Scholar
  126. M. Raupach, J. Finnigan, Y. Brunei, Coherent eddies and turbulence in vegetation canopies: the mixing-layer analogy. Bound.-Layer Meteorol. 78(3–4), 351–382 (1996). doi: 10.1007/BF00120941 ADSCrossRefGoogle Scholar
  127. M.R. Raupach, D.A. Gilette, J.F. Leys, The effect of roughness elements on wind erosion threshold. J. Geophys. Res. 98(D2), 3023–3029 (1993). doi: 10.1029/92JD01922 ADSCrossRefGoogle Scholar
  128. M.R. Raupach, H. Lu, Representation of land-surface processes in aeolian transport models. Environ. Model. Softw. 19(2), 93–112 (2004). Modelling of Wind Erosion and Aeolian Processes. doi: 10.1016/S1364-8152(03)00113-0 CrossRefGoogle Scholar
  129. M.W. Reeks, D. Hall, Kinetic models for particle resuspension in turbulent flows: theory and measurement. J. Aerosol Sci. 32, 1–31 (2001) CrossRefGoogle Scholar
  130. D. Reiss, J. Raack, A.P. Rossi, G. Di Achille, H. Hiesinger, First in-situ analysis of dust devil tracks on Earth and their comparison with tracks on Mars. Geophys. Res. Lett. 37, L14203 (2010). doi: 10.1029/2010GL044016 ADSGoogle Scholar
  131. N.O. Renno, V.J. Abreu, J. Koch, P.H. Smith, o.K. Hartogensis, H.A.R. De Bruin, D. Burose, G.T. Delory, W.M. Farrell, C.J. Watts, J. Garatuza, M. Parker, A. Carswell, MATADOR 2002: a pilot field experiment on convective plumes and dust devils. J. Geophys. Res. 109, E07001 (2004). doi: 10.1029/2003JE002219 ADSCrossRefGoogle Scholar
  132. D.A. Ridley, C.L. Heald, J.R. Pierce, M.J. Evans, Toward resolution-independent dust emissions in global models: impacts on the seasonal and spatial distribution of dust. Geophys. Res. Lett. 40, 2873–2877 (2013). doi: 10.1002/grl.50409 ADSCrossRefGoogle Scholar
  133. T.J. Ringrose, M.C. Towner, J.C. Zarnecki, Vortices on Mars: a reanalysis of Viking Lander 2 meterological data, sols 1–60. Icarus 163, 78–87 (2003). doi: 10.1016/S0019-1035(03)00073-3 ADSCrossRefGoogle Scholar
  134. A. Rondeau, J. Merrison, J.J. Iversen, S. Peillona, J.-C. Sabroux, P. Lemaitre, F. Gensdarmes, E. Chassefièrec, First experimental results of particle re-suspension in a low pressurewind tunnel applied to the issue of dust in fusion reactors. Fusion Eng. Des. (2015). doi: 10.1016/j.fusengdes.2014.12.038 Google Scholar
  135. J.A. Roney, B.R. White, Definition and measurement of dust aeolian thresholds. J. Geophys. Res., Earth Surf. 109, F01013 (2004). doi: 10.1029/2003JF000061 ADSCrossRefGoogle Scholar
  136. W.A.D. Rudge, Atmospheric electrification during South African dust storms. Nature 91, 31 (1913) ADSCrossRefGoogle Scholar
  137. J.A. Ryan, R.D. Lucich, Possible dust devils, vortices on Mars. J. Geophys. Res. 88, 11,005–11,011 (1983) ADSCrossRefGoogle Scholar
  138. H. Schlichting, Dusty ice clouds over Alaska. Ing.-Arch. 7, 1–34 (1936). English translation, NACA Technical Memorandum, No. 823-1936 CrossRefGoogle Scholar
  139. D.S. Schmidt, R.A. Schmidt, J.D. Dent, Electrostatic force on saltating sand. J. Geophys. Res. 103(D8), 8997–9001 (1998) ADSCrossRefGoogle Scholar
  140. Y. Shao, A model for mineral dust emission. J. Geophys. Res. 106(D17), 20,239–20,254 (2001) ADSCrossRefGoogle Scholar
  141. Y. Shao, Simplification of a dust emission scheme and comparison with data. J. Geophys. Res. 109, D10202 (2004). doi: 10.1029/2003JD004372 ADSCrossRefGoogle Scholar
  142. Y. Shao, Physics and Modelling of Wind Erosion, 2nd edn. (Springer, Berlin, 2008). 452 p. Google Scholar
  143. Y. Shao, A.H. Fink, M. Klose, Numerical simulation of a continental-scale Saharan dust event. J. Geophys. Res. 115, D13205 (2010). doi: 10.1029/2009JD012678 ADSCrossRefGoogle Scholar
  144. Y. Shao, M. Ishizuka, M. Mikami, J.F. Leys, Parameterization of size-resolved dust emission and validation with measurements. J. Geophys. Res. 116, D08203 (2011). doi: 10.1029/2010JD014527 ADSGoogle Scholar
  145. Y. Shao, M. Klose, A note on the stochastic nature of particle cohesive force and implications to threshold friction velocity for aerodynamic dust entrainment. Aeolian Res. 22, 123–125 (2016). doi: 10.1016/j.aeolia.2016.08.004 ADSCrossRefGoogle Scholar
  146. Y. Shao, H. Lu, A simple expression for wind erosion threshold friction velocity. J. Geophys. Res. 105, 22,437–22,443 (2000) ADSCrossRefGoogle Scholar
  147. Y. Shao, M.R. Raupach, P.A. Findlater, The effect of saltation bombardment on the entrainment of dust by wind. J. Geophys. Res. 98, 12,719–12,726 (1993) ADSCrossRefGoogle Scholar
  148. Y. Shao, M.R. Raupach, J.F. Leys, A model for predicting aeolian sand drift and dust entrainment on scales from paddock to region. Aust. J. Soil Res. 34, 309–342 (1996) CrossRefGoogle Scholar
  149. Y. Shao, Y. Yang, A theory for drag partition over rough surfaces. J. Geophys. Res. 113, F02S05 (2008). doi: 10.1029/2007JF000791 ADSCrossRefGoogle Scholar
  150. P.C. Sinclair, General characteristics of dust devils. J. Appl. Meteorol. 8, 32–45 (1969). doi: 10.1175/1520-0450(1969)008<0032:GCODD>2.0.CO;2 ADSCrossRefGoogle Scholar
  151. A.J. Smits, B.J. McKeon, I. Marusic, High-Reynolds number wall turbulence. Annu. Rev. Fluid Mech. 43, 353–375 (2011) ADSzbMATHCrossRefGoogle Scholar
  152. J.T. Snow, T.M. McClelland, Dust devils at white sands missile range, New Mexico: 1. Temporal and spatial distributions. J. Geophys. Res., Atmos. 95(D9), 13,707–13,721 (1990). doi: 10.1029/JD095iD09p13707 ADSCrossRefGoogle Scholar
  153. M. Sow, S.C. Alfaro, J.L. Rajot, B. Marticorena, Size resolved dust emission fluxes measured in Niger during 3 dust storms of the AMMA experiment. Atmos. Chem. Phys. 9(12), 3881–3891 (2009) ADSCrossRefGoogle Scholar
  154. J.E. Stout, T.M. Zobeck, Intermittent saltation. Sedimentology 44, 959–970 (1997) ADSCrossRefGoogle Scholar
  155. C.D. Stow, Dust and sand storm electrification. Weather 24, 134–137 (1969) ADSCrossRefGoogle Scholar
  156. R.B. Stull, An Introduction to Boundary Layer Meteorology (Kluwer Academic Publishers, Norwell, 1988). 666 p. zbMATHCrossRefGoogle Scholar
  157. R. Sullivan, R. Arvidson, J.F. Bell III., R. Gellert, M. Golombek, R. Greeley, K. Herkenhoff, J. Johnson, S. Thompson, P. Whelley, J. Wray, Wind-driven particle mobility on Mars: insights from Mars exploration rover observations at ‘El Dorado’ and surroundings at Gusev Crater. J. Geophys. Res. 113, E06S07 (2008). doi: 10.1029/2008JE003101 ADSGoogle Scholar
  158. R. Sullivan, D. Banfield, J.F. Bell III., W. Calvin, D. Fike, M. Golombek, R. Greeley, J. Grotzinger, K. Herkenhoff, D. Jerolmack, M. Malin, D. Ming, L.A. Soderblom, S.W. Squyres, S. Thompson, W.A. Watters, C.M. Weitz, A. Yen, Aeolian processes at the Mars exploration rover Meridiani Planum landing site. Nature 436, 58–61 (2005) ADSCrossRefGoogle Scholar
  159. M.C. Towner, M.R. Patel, T.J. Ringrose, J.C. Zarnecki, D. Pullan, M.R. Sims, S. Haapanala, A.-M. Harri, J. Polkko, C.F. Wilson, R.C. Quinn, F.J. Grunthaner, M.H. Hecht, J.R.C. Garry, The Beagle 2 environmental sensors: science goals and instrument description. Planet. Space Sci. 52(13), 1141–1156 (2004). doi: 10.1016/j.pss.2004.07.015 ADSCrossRefGoogle Scholar
  160. J.E. Ungar, P.K. Haff, Steady-state saltation in air. Sedimentology 34, 289–299 (1987) ADSCrossRefGoogle Scholar
  161. S. Wagner, An Assessment of Dust Effects on Planetary Surface Systems to Support Exploration Requirements, NASA Technical Report, CTSD-AIM-0029, JSC-62198, 20080047665, p. 23 (2004) Google Scholar
  162. Z.-T. Wang, A theoretical note on aerodynamic lifting in dust devils. Icarus 265, 79–83 (2016). doi: 10.1016/j.icarus.2015.10.016 ADSCrossRefGoogle Scholar
  163. B.R. White, Soil transport by winds on Mars. J. Geophys. Res. 84(B9), 4643–4651 (1979). doi: 10.1029/JB084iB09p04643 ADSCrossRefGoogle Scholar
  164. J. Wieringa, Representative roughness parameters for homogeneous terrains. Bound.-Layer Meteorol. 63, 323–363 (1993) ADSCrossRefGoogle Scholar
  165. E. Williams, N. Nathou, E. Hicks, C. Pontikis, B. Russel, M. Miller, M.J. Bartholomew, The electrification of dust-lofting gust fronts (‘haboobs’) in the Sahel. Atmos. Res. 91, 292–298 (2009) CrossRefGoogle Scholar
  166. G. Wurm, O. Krauss, Dust eruptions by photophoresis and solid state greenhouse effects. Phys. Rev. Lett. 96, 134301 (2006) ADSCrossRefGoogle Scholar
  167. G. Wurm, J. Teiser, D. Reiss, Greenhouse and thermophoretic effects in dust layers: the missing link for lifting dust on Mars. Geophys. Res. Lett. 35, L10201 (2008) ADSCrossRefGoogle Scholar
  168. H. Yizhaq, J.F. Kok, I. Katra, Basaltic sand ripples at Eagle crater as indirect evidence for the hysteresis effect in martian saltation. Icarus 230, 143–150 (2014) ADSCrossRefGoogle Scholar
  169. X.J. Zheng, N. Huang, Y.H. Zhou, Laboratory measurement of electrification of wind-blown sands and simulation of its effect on sand saltation movement. J. Geophys. Res. 108, 4322 (2003) CrossRefGoogle Scholar
  170. A.D. Zimon, Adhesion of Dust and Powder (Consultants Bureau, New York, 1982). 438 p. CrossRefGoogle Scholar
  171. G. Ziskind, M. Fichman, C. Gutfinger, Resuspension of particulates from surfaces to turbulent flows—review and analysis. J. Aerosol Sci. 26, 613–644 (1995) CrossRefGoogle Scholar
  172. R.W. Zurek, L.J. Martin, Interannual variability of planet-encircling dust activity on Mars. J. Geophys. Res. 98, 3247–3259 (1993) ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • L. D. V. Neakrase
    • 1
    Email author
  • M. R. Balme
    • 2
  • F. Esposito
    • 3
  • T. Kelling
    • 4
  • M. Klose
    • 10
    • 7
  • J. F. Kok
    • 6
  • B. Marticorena
    • 5
  • J. Merrison
    • 8
  • M. Patel
    • 2
    • 9
  • G. Wurm
    • 4
  1. 1.Department of AstronomyNew Mexico State UniversityLas CrucesUSA
  2. 2.Open UniversityMilton KeynesUK
  3. 3.INAF—Osservatorio Astronomico di CapodimonteNapoliItaly
  4. 4.Faculty of PhysicsUniversity of Duisburg-EssenDuisburgGermany
  5. 5.Laboratoire Interuniversitaire des Systèmes AtmosphériquesUniversité ParisCréteilFrance
  6. 6.Department of Atmospheric and Oceanic SciencesUCLALos AngelesUSA
  7. 7.Institute for Geophysics and MeteorologyUniversity of CologneCologneGermany
  8. 8.Institute of Physics and AstronomyAarhus UniversityAarhusDenmark
  9. 9.Space PhysicsRutherford Appleton LaboratoryOxfordshireUK
  10. 10.USDA-ARS Jornada Experimental RangeLas CrucesUSA

Personalised recommendations