Space Science Reviews

, Volume 211, Issue 1–4, pp 109–133 | Cite as

Analysis of Local Slopes at the InSight Landing Site on Mars

  • R. L. FergasonEmail author
  • R. L. Kirk
  • G. Cushing
  • D. M. Galuszka
  • M. P. Golombek
  • T. M. Hare
  • E. Howington-Kraus
  • D. M. Kipp
  • B. L. Redding


To evaluate the topography of the surface within the InSight candidate landing ellipses, we generated Digital Terrain Models (DTMs) at lander scales and those appropriate for entry, descent, and landing simulations, along with orthoimages of both images in each stereopair, and adirectional slope images. These products were used to assess the distribution of slopes for each candidate ellipse and terrain type in the landing site region, paying particular attention to how these slopes impact InSight landing and engineering safety, and results are reported here. Overall, this region has extremely low slopes at 1-meter baseline scales and meets the safety constraints of the InSight lander. The majority of the landing ellipse has a mean slope at 1-meter baselines of 3.2°. In addition, a mosaic of HRSC, CTX, and HiRISE DTMs within the final landing ellipse (ellipse 9) was generated to support entry, descent, and landing simulations and evaluations. Several methods were tested to generate this mosaic and the NASA Ames Stereo Pipeline program dem_mosaic produced the best results. For the HRSC-CTX-HiRISE DTM mosaic, more than 99 % of the mosaic has slopes less than 15°, and the introduction of artificially high slopes along image seams was minimized.


Mars Topography DTM Slope InSight 



The research described in this paper was supported by funding through an agreement through the InSight Project at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. Specifically, R.L. Fergason managed the project, provided technical advice throughout the project (particularly with regards to the re-fitting process), tested and determined mosaic methods, and performed all data analysis. R.L. Kirk provided senior advisement throughout this project, and provided significant help in developing the re-fitting process. E. Howington-Kraus developed the procedures and tools used to derive DTMs from CTX and HiRISE data, and particularly developed the methods to incorporate pc_align into the DTM generation process. T.M. Hare tested and determined mosaic methods and led the effort to release all data products to the InSight Council of Terrains. Emery Littlefield and Melissa Theobald edited DEMs at the USGS, significantly improving the quality of the final product. NASA Ames Research Center (and particularly Ross Beyer and Oleg Alexandrov) made necessary changes to the ASP tool dem_mosaic that enabled a higher quality DTM mosaic to be produced in this work. MRO CTX and HiRISE instrument teams helped identify appropriate stereopairs and acquired new images, as needed, to help in the characterization of the InSight landing site region. Michael Bland and Chris Okubo reviewed early drafts of this manuscript and two anonymous reviews provided invaluable comments. These suggestions greatly improved the clarity and presentation of this work.


  1. J.A. Anderson, S.C. Sides, D.L. Soltesz, T. Sucharski, K.J. Becker, Modernization of the integrated software for imagers and spectrometers, in XXXV Lunar Planet. Sci. Conf., Abstract #2039 (Lunar and Planetary Institute, Houston, 2004) Google Scholar
  2. R. Arvidson, D. Adams, G. Bonfiglio, P. Christensen, S. Cull, M. Golombek, J. Guinn, E. Guinness, T. Heet, R. Kirk, A. Knudson, M. Malin, M. Mellon, a. McEwen, A. Mushkin, T. Parker, F. Seelos IV., K. Seelos, P. Smith, D. Spencer, T. Stein, L. Tamppari, Mars Exploration Program 2007 Phoenix landing site selection and characteristics. J. Geophys. Res. 113, E00A03 (2008). doi: 10.1029/2007JE003021 ADSGoogle Scholar
  3. W.B. Banerdt, S. Smrekar, P. Lognonné, T. Spohn, S.W. Asmar, D. Banfield, L. Boschi, U. Christensen, V. Dehant, W. Folkner, D. Giardini, W. Goetze, M. Golombek, M. Grott, T. Hudson, C. Johnson, G. Kargl, N. Kobayashi, J. Maki, D. Mimoun, A. Mocquet, P. Morgan, M. Panning, W.T. Pike, J. Tromp, T. van Zoest, R. Weber, M.A. Wieczorek, R. Garcia, K. Hurst, InSight: a discovery mission to explore the interior of Mars, in 44th Lunar and Planetary Science, Abstract #1915 (Lunar and Planetary Institute, Houston, 2013) Google Scholar
  4. K.J. Becker, B.A. Archinal, T.M. Hare, R.L. Kirk, E. Howington-Kraus, M.S. Robinson, M.R. Rosiek, Criteria for automated identification of stereo image pairs, in 46th Lunar Planet Sci. Conf., Abstract #2703 (Lunar and Planetary Institute, Houston, 2015) Google Scholar
  5. C.B. Beddingfield, D.M. Burr, J.P. Emery, Fault geometries on Uranus’ satellite, Miranda: Implications for internal structure and heat flow. Icarus 247, 35–52 (2015). doi: 10.1016/j.icarus.2014.090.048 ADSCrossRefGoogle Scholar
  6. R.A. Beyer, Meter-scale slopes of candidate InSight landings sites from point photoclinometry. Space Sci. Rev. (2016). doi: 10.1007/s11214-016-0287-7 Google Scholar
  7. R.A. Beyer, O. Alexandrov, Z.M. Moratto, Aligning terrain model and laser altimeter point clouds with the Ames Stereo Pipeline, in 45th Lunar Planet Sci. Conf., Abstract #1777 (Lunar and Planetary Institute, Houston, 2014) Google Scholar
  8. M.J. Broxton, L.J. Edwards, The Ames Stereo Pipeline: automated 3D surface reconstruction from orbital imagery, in 39th Lunar Planet Sci. Conf., Abstract #2419 (Lunar and Planetary Institute, Houston, 2008) Google Scholar
  9. M.J. Broxton, R.A. Beyer, Z. Moratto, M. Lundy, K. Husmann, The Ames Stereo Pipeline: NASA’s Open Source Automated Stereogrammetry Software (User’s Guide and Documentation). A part of the NASA NeoGeography Toolkit. Version 1.0.0 Beta (2010) Google Scholar
  10. A.C. Cook, J. Oberst, T. Roatsch, R. Jaumann, C. Acton, Clementine imagery: selenographic coverage for cartographic and scientific use. Planet. Space Sci. 144(10), 1135–1148 (1996). doi: 10.1016/S0032-0633(96)00061-X ADSCrossRefGoogle Scholar
  11. E. Eliason, B. Castalia, S. Mattson R, Heyd, K. Becker, J. Andeson, S. Sides, Software interface specification for HiRISE reduced data record products. MRO JPL Document D-32006 (2009). Online at:
  12. M. Golombek, J. Grant, D. Kipp, A. Vasavada, R. Kirk, R. Fergason, P. Bellutta, F. Calef, K. Larsen, Y. Katayama, A. Huertas, R. Beyer, A. Chen, T. Parker, B. Pollard, S. Lee, Y. Sun, R. Hoover, H. Sladek, J. Grotzinger, R. Welch, E. Noe Dobrea, J. Michalski, M. Watkins, Selection of the Mars Exploration Rover landing sites. J. Geophys. Res. 108(E12), 8072 (2003). doi: 10.1029/2003JE002074 Google Scholar
  13. M. Golombek, J. Grant, D. Kipp, A. Vasavada, R. Kirk, R. Fergason, P. Bellutta, F. Calef, K. Larsen, Y. Katayama, A. Huertas, R. Beyer, A. Chen, T. Parker, B. Pollard, S. Lee, Y. Sun, R. Hoover, H. Sladek, J. Grotzinger, R. Welch, E. Noe Dobrea, J. Michalscki, M. Watkins, Selection of the Mars Science Laboratory landing site. Space Sci. Rev. 170, 641–737 (2012). doi: 10.1007/s11214-012-9916-y ADSCrossRefGoogle Scholar
  14. M. Golombek, N. Warner, C. Schwartz, J. Green, Surface characteristics of prospective InSight landing sites in Elysium Planitia, in 44th Lunar and Planetary Science, Abstract #1719 (Lunar and Planetary Institute, Houston, 2013a) Google Scholar
  15. M. Golombek, L. Redmond, H. Gengl, C. Schwartz, N. Warner, B. Banerdt, S. Smrekar, Selection of the InSight landing site: constraints, plans, and progress, in 45th Lunar Planet. Science Conf., Abstract #1691 (Lunar and Planetary Institute, Houston, 2013b) Google Scholar
  16. M. Golombek, N. Warner, N. Wigton, C. Bloom, C. Schwartz, S. Kannan, D. Kipp, A. Huertas, B. Banerdt, Final four landing sites for the InSight geophysical lander, in 45th Lunar and Planetary Science Conf., Abstract #1499 (Lunar and Planetary Institute, Houston, 2014) Google Scholar
  17. M. Golombek, N. Warner, I.J. Daubar, D. Kipp, R. Fergason, R. Kirk, A. Huertas, R. Beyer, S. Piqueux, N.E. Putzig, F. Calef, W.B. Banerdt, Surface and subsurface characteristics of western Elysium Planitia, Mars, in 47th Lunar and Planetary Science Conf., Abstract #1572 (Lunar and Planetary Institute, Houston, 2016a) Google Scholar
  18. M. Golombek, D. Kipp, N. Warner, I. Daubar, R. Fergason, R. Kirk, R. Beyer, A. Huertas, S. Piqueux, N. Putzig, B.A. Campbell, G.A. Morgan, C. Constantinos, T. Pike, K. Gwinner, F. Calef, J. Ashley, D. Kass, M. Mischna, C. Bloom, N. Wigton, C. Schwartz, H. Gengl, L. Redmond, J. Sweeney, E. Sklyanskiy, M. Lisano, J. Benardino, S. Smrkar, B. Banerdt, Selection of the InSight Landing Site. Space Sci. Rev. (2016b, this issue) Google Scholar
  19. C. Heipke, J. Oberst, J. Albertz, M. Attwenger, P. Dorninger, E. Dorrer, M. Ewe, S. Gehrke, K. Gwinner, H. Hirschmüller, J.R. Kim, R.L. Kirk, H. Mayer, J.-P. Muller, R. Rengarajan, M. Rentsch, R. Schmidt, F. Scholten, J. Shan, M. Spiegel, M. Wählisch, G. Neukum (The HRSC Co-Investigator Team), Evaluating planetary digital terrain models: the HRSC DTM test. Planet. Space Sci. 55, 2173–2191 (2007). doi: 10.1016/j.pss.2007.07.006 ADSCrossRefGoogle Scholar
  20. E. Howington-Kraus, R.L. Kirk, B. Redding, L.A. Soderblom, High-resolution topographic map of the Ares Tiu landing site from Viking Orbiter data, in Mars Pathfinder Landing Site Workshop II: Characteristics of the Ares Vallis Region and Fieldtrips in the Channeled Scabland, Washington. LPI Tech. Report 95-01, Part 2, pp. 38–39 (1995) Google Scholar
  21. R. Jaumann, G. Neukum, T. Behnke, T.C. Duxbury, E. Eichentopf, H. Hoffmann, A. Hoffmeister, U. Köhler, K–D. Matz, T.B. McCord, V. Mertens, J. Obserst, R. Pischel, D. Reiss, E. Ress, T. Roatsch, P. Saiger, F. Scholten, G. Schwartz, K. Stephan, M. Wählisch (The HRSC Co-Investigator Team), The High-Resolution Stereo Camera (HRSC) experiment on the Mars Express: instrument aspects and experiment conduct from interplanetary cruise through the nominal mission. Planet. Space Sci. 55, 852–928 (2007) CrossRefGoogle Scholar
  22. J.-R. Kim, J.-P. Muller, Multi-resolution topographic data extraction from Martian stereo imagery. Planet. Space Sci. 57, 2095–2112 (2009). doi: 10.1016/j.pss.2009.09.024 ADSCrossRefGoogle Scholar
  23. R.L. Kirk, A.C. Cook, Quality control and assessment of the accuracy of Lunar digital elevation model (DEM) dataset products. Unpublished manuscript (2010) Google Scholar
  24. R.L. Kirk, E. Howington-Kraus, T. Hare, E. Dorrer, D. Cook, K. Becker, K. Thomas, B. Redding, J. Blue, D. Galuszka, E.M. Lee, L.R. Gaddis, J.R. Johnson, L.A. Soderblom, A.W. Ward, P.H. Smith, D.T. Britt, Digital photogrammetric analysis of the IMP camera images: mapping the Mars Pathfinder landing site in three dimensions. J. Geophys. Res. 104(E4), 8868–8888 (1999) ADSCrossRefGoogle Scholar
  25. R.L. Kirk, E. Howington-Kraus, B. Redding, D. Galuszka, T.M. Hare, B.A. Archinal, L.A. Soderblom, J.M. Barrett, High-resolution topomapping of candidate MER landing sites with Mars Orbiter Camera Narrow-Angle images. J. Geophys. Res. 108(E12), 8088 (2003). doi: 10.1029/2003JE002131 CrossRefGoogle Scholar
  26. R.L. Kirk, B.A. Archinal, L.R. Gaddis, M.R. Rosiek, Cartography for lunar exploration: 2006 status and planned missions, in International Archives of Photogrammetry, Remote Sensing, and Spatial Information Sciences, XXXVI, Part 4, “Geospatial Databases for Sustainable Development”, Goa (CD-ROM) (2006) Google Scholar
  27. R.L. Kirk, E. Howington-Kraus, M.R. Rosiek, J.A. Anderson, B.A. Archinal, K.J. Becker, D.A. Cook, D.M. Galuszka, P.E. Geissler, T.M. Hare, I.M. Holmberg, L.P. Keszthelyi, B.L. Redding, A.W. Delamere, D. Gallagher, J.D. Chapel, E.M. Eliason, R. King, A.S. McEwen (The HiRISE Team), Ultrahigh resolution topographic mapping of Mars with MRO HiRISE stereo images: meter-scale slopes of candidate Phoenix landing sites. J. Geophys. Res. 113, E00A24 (2008). doi: 10.1029/2007JE003000 ADSCrossRefGoogle Scholar
  28. R.L. Kirk, E. Howington-Kraus, D. Galuszka, B. Redding, J. Antonsen, K. Coker, E. Foster, M. Hopkins, A. Licht, A. Fennema, F. Calef, S. Nuti, T.J. Parker, M.P. Golombek, “Wall-to-wall” 1-m topographic coverage of the Mars Science Laboratory candidate landing sites, in 42nd Lunar Planet. Sci., Abstract #2407 (2011a) Google Scholar
  29. R.L. Kirk, E. Howington-Kraus, D. Galuszka, B. Redding, J. Antonsen, K. Coker, E. Foster, M. Hopkins, A. Licht, A. Fennema, F. Calef, S. Nuti, T.J. Parker, M.P. Golombek, Near-complete 1-m topographic models of the MSL candidate landing sites: site safety and quality evaluation, in European Planetary Science Conference, vol. 6, Abstract EPSC2011-1465 (2011b) Google Scholar
  30. R.L. Kirk, K.L. Edmundson, E. Howington-Kraus, B. Redding, O. Thomas, R. Jaumann (The HRSC Co-Investigator Team), Practical processing of Mars Express HRSC images in ISIS and SOCET SET, in 45th Lunar Planet. Science Conf., Abstract #2535 (Lunar and Planetary Institute, Houston, 2014) Google Scholar
  31. R.L. Kirk, E. Howington-Kraus, T.M. Hare, L. Jorda, The effect of incidence angle on stereo DTM quality: simulations in support of Europa Exploration, in ISPRS Commission IV, WG IV/8, Prague, Czech Republic (2016) Google Scholar
  32. S.-Y. Lin, J.-P. Muller, J.P. Mills, P.E. Miller, An assessment of surface matching for the automated co-registration of MOLA, HRSC and HiRISE DTMs. Earth Planet. Sci. Lett. 294, 520–533 (2010) ADSCrossRefGoogle Scholar
  33. M.C. Malin et al., Context camera investigation on board the Mars Reconnaissance Orbiter. J. Geophys. Res. 112, E05S04 (2007). doi: 10.1029/2006JE002808 CrossRefGoogle Scholar
  34. A. Mattson, A. Boyd, R.L. Kirk, D.A. Cook, E. Howington-Kraus, HiJACK: correcting spacecraft jitter in HiRISE images of Mars, in European Planetary Science Conference, vol. 4, Abstract EPSC2009-0604 (2009) Google Scholar
  35. A.S. McEwen et al., Mars Reconnaissance Orbiter’s High Resolution Imaging Science Experiment (HiRISE). J. Geophys. Res. 112, E05S02 (2007). doi: 10.1029/2005JE002605 CrossRefGoogle Scholar
  36. A.S. McEwen et al., The High Resolution Imaging Science Experiment (HiRISE) during MRO’s Primary Science Phase (PSP). Icarus 205, 2–37 (2010). doi: 10.1016/j.icarus.2009.04.023 ADSCrossRefGoogle Scholar
  37. S.B. Miller, A.S. Walker, Further developments of Leica digital photogrammetric systems by Helava. in ACSM/ASPRS Annual Conv. vol. 3, 256–263 (1993) Google Scholar
  38. Z.M. Moratto, M.J. Broxton, R.A. Beyer, M. Lundy, K. Husmann, Ames Stereo Pipeline, NASA’s Open Source Automated Stereogrammetry Software, in 41st Lunar Planet. Science Conf., Abstract #2364 (Lunar and Planetary Institute, Houston, 2010) Google Scholar
  39. G. Neukum, R. Jaumann (The HRSC Co-Investigator Team), HRSC: The High Resolution Stereo Camera of Mars Express. ESA Special Publications, vol. SP-1240 (2004) Google Scholar
  40. M.R. Rosiek, E.M. Lee, E.T. Howington-Kraus, R.L. Fergason, L.A. Weller, D.M. Galuszka, B.L. Redding, O.H. Thomas, R.A. Saleh, J.O. Richie, J.R. Shinaman, B.A. Archinal, T.M. Hare, USGS Digital Terrain Models and Mosaics for LMMP, in 43rd Lunar Planet. Science Conf., Abstract #2343 (Lunar and Planetary Institute, Houston, 2012) Google Scholar
  41. D. Smith, M. Zuber, H. Frey, J. Garvin, J. Head, D. Muhleman, G. Pettengill, R. Phillips, S. Solomon, H. Zwally, W. Banerdt, T. Duxbury, M. Golombek, F. Lemoine, G. Neumann, D. Rowlands, O. Aharonson, P. Ford, A. Ivanov, C. Johnson, P. McGovern, J. Abshire, R. Afzal, X. Sun, Mars Orbiter Laser Altimeter: experiment summary after first year of global mapping of Mars. J. Geophys. Res. 106(E10), 23698–23722 (2001) ADSGoogle Scholar
  42. M. Spiegel, Improvement of interior and exterior orientation of the three-line camera HRSC with a simultaneous adjustment. Int. Arch. Photogramm. Remote Sens. 36(3/W49B), 161–166 (2007) Google Scholar
  43. K.L. Tanaka, J.A. Skinner Jr., J.M. Dohm, R.P. Irwin III., E.J. Kolb, C.M. Fortezzo, T. Platz, G.G. Michael, T.M. Hare, Geologic map of Mars, in U.S. Geol. Surv. Sci. Invest. Map, vol. 3292 (2014) Google Scholar
  44. N.R. Wigton, N. Warner, M. Golombek, Terrain mapping of the InSight landing region: Western Elysium Planitia, Mars, in 45th Lunar and Planetary Science, Abstract #1234 (Lunar and Planetary Institute, Houston, 2014) Google Scholar
  45. B. Zhang, Towards a higher level of automation in softcopy photogrammetry: NGATE and LIDAR processing in SOCET SET®, in GeoCue Corporation 2nd Annual Technical Exchange Conference, Nashville (2006) Google Scholar
  46. B. Zhang, S. Miller, Adaptive automatic terrain extraction, in Integrating Photogrammetric Techniques with Scene Analysis and Machine Vision III, ed. by D.M. McKeown, J.C. McGlone, O. Jamet. Proc. SPIE, vol. 3072 (1997), pp. 27–36 CrossRefGoogle Scholar
  47. B. Zhang, S. Miller, K. DeVenecia, S. Walker, Automatic terrain extraction using multiple image pair and back matching, in ASPRS 2006 Annual Conference, Reno (2006) Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht (outside the USA) 2016

Authors and Affiliations

  • R. L. Fergason
    • 1
    Email author
  • R. L. Kirk
    • 1
  • G. Cushing
    • 1
  • D. M. Galuszka
    • 1
  • M. P. Golombek
    • 2
  • T. M. Hare
    • 1
  • E. Howington-Kraus
    • 1
  • D. M. Kipp
    • 2
  • B. L. Redding
    • 1
  1. 1.U.S. Geological SurveyAstrogeology Science CenterFlagstaffUSA
  2. 2.Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaUSA

Personalised recommendations