Space Science Reviews

, Volume 206, Issue 1–4, pp 123–156 | Cite as

Key Ground-Based and Space-Based Assets to Disentangle Magnetic Field Sources in the Earth’s Environment

  • A. Chulliat
  • J. Matzka
  • A. Masson
  • S. E. Milan


The magnetic field measured on the ground or in space is the addition of several sources: from flows within the Earth’s core to electric currents in distant regions of the magnetosphere. Properly separating and characterizing these sources requires appropriate observations, both ground-based and space-based. In the present paper, we review the existing observational infrastructure, from magnetic observatories and magnetometer arrays on the ground to satellites in low-Earth (Swarm) and highly elliptical (Cluster) orbits. We also review the capability of SuperDARN to provide polar ionospheric convection patterns supporting magnetic observations. The past two decades have been marked by exciting new developments in all observation types. We review these developments, focusing on how they complement each other and how they have led or could lead in the near future to improved separation and modeling of the geomagnetic sources.


Geomagnetism Observatories Magnetometer Swarm Cluster SuperDARN 



We thank the International Space Science Institute (ISSI) for hosting the workshop Earth’s Magnetic Field: Understanding Sources from the Earth’s Interior and its Environment in May 2015 and the conveners C. Stolle, A. Richmond, N. Olsen and H. Opgenoorth for inviting us to write this review. We acknowledge fruitful discussions with C.P. Escoubet, M. Dunlop and H. Middleton.


  1. L.N.S. Alconcel, P. Fox, P. Brown, T.M. Oddy, E.L. Lucek, C.M. Carr, An initial investigation of the long-term trends in the fluxgate magnetometer (FGM) calibration parameters on the four Cluster spacecraft. Geosci. Instrum. Method. Data Syst. 3, 95–109 (2014). doi: 10.5194/gi-3-95-2014 ADSCrossRefGoogle Scholar
  2. P. Alken, Observations and modeling of the ionospheric gravity and diamagnetic current systems from CHAMP and Swarm measurements. J. Geophys. Res. Space Phys. 121, 589–601 (2016). doi: 10.1002/2015JA022163 ADSCrossRefGoogle Scholar
  3. P. Alken, S. Maus, A. Chulliat, C. Manoj, NOAA/NGDC candidate models for the 12th generation international geomagnetic reference field. Earth Planets Space 67, 68 (2015a). doi: 10.1186/s40623-015-0215-1 ADSCrossRefGoogle Scholar
  4. P. Alken, S. Maus, A. Chulliat, P. Vigneron, O. Sirol, G. Hulot, Swarm equatorial electric field chain: first results. Geophys. Res. Lett. 42, 673–680 (2015b). doi: 10.1002/2014GL062658 ADSCrossRefGoogle Scholar
  5. A. Anderson, A. Anghel, K. Yumoto, M. Ishitsuka, E. Kudeki, Estimating daytime vertical ExB drift velocities in the equatorial F-region using ground-based magnetometer observations. Geophys. Res. Lett. 29(12), 1596 (2002). doi: 10.1029/2001GL014562 ADSCrossRefGoogle Scholar
  6. V. Angelopoulos, The THEMIS mission. Space Sci. Rev. 141, 5–34 (2008) ADSCrossRefGoogle Scholar
  7. G.E. Backus, Non-uniqueness of the external geomagnetic field determined by surface intensity measurements. J. Geophys. Res. 75, 6337–6341 (1970) CrossRefGoogle Scholar
  8. A. Balogh, C.M. Carr, M.H. Acuna, M.W. Dunlop, T.J. Beek, P. Brown, K.-H. Fornacon, E. Georgescu, K.-H. Glassmeier, J. Harris, G. Musmann, T. Oddy, K. Schwingenschuh, The Cluster magnetic field investigation: overview of in-flight performance and initial results. Ann. Geophys. 19, 1207–1217 (2001) ADSCrossRefGoogle Scholar
  9. W. Baumjohann, R. Nakamura, Magnetospheric contributions to the terrestrial magnetic field, in Treatise on Geophysics, ed. by M. Kono, G. Schubert (Elsevier, Amsterdam, 2009), pp. 77–92 Google Scholar
  10. K. Birkeland, The Norwegian Aurora Polaris Expedition 1902–1903, vol. 1, Sect. 1 (H. Aschehoug, Christiana, Norway, 1908) Google Scholar
  11. J. Bitterly, X. Lalanne, Observatoire Magnétique Planétaire—Manuel d’opérations (Institut de Physique du Globe de Paris, Paris, 2003) Google Scholar
  12. J.L. Burch, T.E. Moore, R.B. Torbert, B.L. Giles, Magnetospheric multiscale overview and science objectives. Space Sci. Rev. 199, 5–21 (2016). doi: 10.1007/s11214-015-0164-9 ADSCrossRefGoogle Scholar
  13. J.C. Cain, S.J. Hendricks, R.A. Langel, W.V. Hudson, A proposed model for the international geomagnetic reference field-1965. J. Geomagn. Geoelectr. 19, 335–355 (1967) CrossRefGoogle Scholar
  14. G. Chisham, M. Lester, S.E. Milan, M.P. Freeman, W.A. Bristow, A. Grocott, K.A. McWilliams, J.M. Ruohoniemi, T.K. Yeoman, P.L. Dyson, R.A. Greenwald, T. Kikuchi, M. Pinnock, J.P.S. Rash, N. Sato, G.J. Sofko, J.-P. Villain, A.D.M. Walker, A decade of the Super Dual Auroral Radar Network (SuperDARN): scientific achievements, new techniques and future directions. Surv. Geophys. 28, 33–109 (2007). doi: 10.1007/s10712-007-9017-8 ADSCrossRefGoogle Scholar
  15. A. Chulliat, S. Maus, Geomagnetic secular acceleration, jerks, and a localized standing wave at the core surface from 2000 to 2010. J. Geophys. Res., Solid Earth 119, 1531–1543 (2014). doi: 10.1002/2013JB010604 ADSCrossRefGoogle Scholar
  16. A. Chulliat, J. Savary, K. Telali, X. Lalanne, Acquisition of 1-second data in IPGP magnetic observatories, in Proceedings of the XIIIth IAGA Workshop on Geomagnetic Observatory Instruments, Data Acquisition and Processing, ed. by J.J. Love (2009), pp. 54–59, U.S. Geological Survey Open-File Report 2009–1226 Google Scholar
  17. A. Chulliat, S. Macmillan, P. Alken, C. Beggan, M. Nair, B. Hamilton, A. Woods, V. Ridley, S. Maus, A. Thomson, The US/UK world magnetic model for 2015–2020, Technical report, National Geophysical Data, Center, NOAA, 2015a. doi: 10.7289/V5TB14V7
  18. A. Chulliat, P. Alken, S. Maus, Fast equatorial waves propagating at the top of the Earth’s core. Geophys. Res. Lett. 42, 3321–3329 (2015b). doi: 10.1002/2015GL064067 ADSCrossRefGoogle Scholar
  19. A. Chulliat, P. Vigneron, G. Hulot, First results from the swarm dedicated ionospheric field inversion chain. Earth Planets Space 68, 104 (2016). doi: 10.1186/s40623-016-0481-6 ADSCrossRefGoogle Scholar
  20. E. Clarke, O. Baillie, S.J. Reay, C.W. Turbitt, A method for the near real-time production of quasi-definitive magnetic observatory data. Earth Planets Space 65, 1363–1374 (2013) ADSCrossRefGoogle Scholar
  21. Y. Cohen, J. Achache, New global vector magnetic anomaly maps derived from magsat data. J. Geophys. Res. 95(B7), 10783–10800 (1990) ADSCrossRefGoogle Scholar
  22. N. Cornilleau-Wehrlin, G. Chanteur, S. Perraut, L. Rezeau, P. Robert, A. Roux, C. de Villedary, P. Canu, M. Maksimovic, Y. de Conchy, D. Hubert, C. Lacombe, F. Lefeuvre, M. Parrot, J.L. Pinçon, P.M.E. Décréau, C.C. Harvey, P. Louarn, O. Santolik, H.S.C. Alleyne, M. Roth, T. Chust, O. Le Contel (STAFF team), First results obtained by the Cluster STAFF experiment. Ann. Geophys. 21, 437–456 (2003). doi: 10.5194/angeo-21-437-2003 ADSCrossRefGoogle Scholar
  23. O. Darrigol, Electrodynamics from Ampère to Einstein, reprint edn. (Oxford University Press, Oxford, 2003) zbMATHGoogle Scholar
  24. M.W. Dunlop, Y.-Y. Yang, J.-Y. Yang, H. Lühr, C. Shen, N. Olsen, P. Ritter, Q.-H. Zhang, J.-B. Cao, H.-S. Fu, R. Haagmans, Multispacecraft current estimates at Swarm. J. Geophys. Res. Space Phys. 120, 8307–8316 (2015a). doi: 10.1002/2015JA021707 ADSCrossRefGoogle Scholar
  25. M.W. Dunlop, J.-Y. Yang, Y.-Y. Yang, C. Xiong, H. Lühr, Y.V. Bogdanova, C. Shen, N. Olsen, Q.-H. Zhang, J.-B. Cao, H.-S. Fu, W.-L. Liu, C.M. Carr, P. Ritter, A. Masson, R. Haagmans, Simultaneous field-aligned currents at Swarm and Cluster satellites. Geophys. Res. Lett. 42, 3683–3691 (2015b) ADSCrossRefGoogle Scholar
  26. J.T. Emmert, A.D. Richmond, D.P. Drob, A computationally compact representation of magnetic-apex and quasi-dipole coordinates with smooth base vectors. J. Geophys. Res. 115, A08322 (2010). doi: 10.1029/2010JA015326 ADSGoogle Scholar
  27. C.P. Escoubet, M. Fehringer, M.L. Goldstein, The Cluster mission. Ann. Geophys. 19, 1197–1200 (2001). doi: 10.5194/angeo-19-1197-2001 ADSCrossRefGoogle Scholar
  28. C.P. Escoubet, A. Masson, H. Laakso, M.L. Goldstein, Recent highlights from Cluster, the first 3-D magnetospheric mission. Ann. Geophys. 33, 1221–1235 (2015). doi: 10.5194/angeo-33-1221-2015 ADSCrossRefGoogle Scholar
  29. D. Fouassier, A. Chulliat, Extending backwards to 1883 the French magnetic hourly data series, in Proceedings of the XIIIth IAGA Workshop on Geomagnetic Observatory Instruments, Data Acquisition and Processing, ed. by J.J. Love (2009), pp. 86–94, U.S. Geological Survey Open-File Report 2009–1226 Google Scholar
  30. C. Fox Maule, P. Thejll, A. Neska, J. Matzka, L.W. Pedersen, A. Nilsson, Analyzing and correcting for contaminating magnetic fields at the Brorfelde geomagnetic observatory due to high-voltage DC power lines. Earth Planets Space 61, 1233–1241 (2009) ADSCrossRefGoogle Scholar
  31. E. Friis-Christensen, H. Lühr, G. Hulot, Swarm: a constellation to study the Earth’s magnetic field. Earth Planets Space 58, 351–358 (2006) ADSCrossRefGoogle Scholar
  32. N. Gillet, D. Jault, E. Canet, A. Fournier, Fast torsional waves and strong magnetic field within the Earth’s core. Nature 465, 74–77 (2010). doi: 10.1038/nature09010 ADSCrossRefGoogle Scholar
  33. J.W. Gjerloev, The SuperMAG data processing technique. J. Geophys. Res. 117, A09213 (2012). doi: 10.1029/2012JA017683 ADSCrossRefGoogle Scholar
  34. J.W. Gjerloev, R.A. Hoffman, The large-scale current system during auroral substorms. J. Geophys. Res. Space Phys. 119, 4591–4606 (2014). doi: 10.1002/2013JA019176 ADSCrossRefGoogle Scholar
  35. A. Gonsette, J. Rasson, J.-L. Marin, AUTODIF: automatic absolute DI measurements, in Proceedings of the XVth IAGA Workshop on Geomagnetic Observatory Instruments, Data Acquisition, and Processing, ed. by P. Hejda, A. Chulliat, M. Catalan (Real Instituto Y Observatorio de la Armada en San Fernando, San Fernando, 2013), pp. 16–19, Boletin Roa No. 03/13 Google Scholar
  36. O. Gravrand, A. Khokhlov, J.-L. Le Mouël, J.-M. Léger, On the calibration of a vectorial 4He pumped magnetometer. Earth Planets Space 53, 949–958 (2001) ADSCrossRefGoogle Scholar
  37. R.A. Greenwald, K.B. Baker, J.R. Dudeney, M. Pinnock, T.B. Jones, E.C. Thomas, J.-P. Villain, J.-C. Cerisier, C. Senior, C. Hanuise, R.D. Hunsucker, G. Sofko, J. Koehler, E. Nielsen, R. Pellinen, A.D.M. Walker, N. Sato, H. Yamagishi, DARN/SuperDARN: a global view of the dynamics of high-latitude convection. Space Sci. Rev. 71, 761–796 (1995) ADSCrossRefGoogle Scholar
  38. D.A. Gurnett, R.L. Hu, J.S. Pickett, A.M. Persoon, R.L. Mutel, I.W. Christopher, C.A. Kletzing, U.S. Inan, W.L. Martin, J.-L. Bougeret, H.St.C. Alleyne, K.H. Yearby, First results from the Cluster wideband plasma wave investigation. Ann. Geophys. 19, 1259–1272 (2001) ADSCrossRefGoogle Scholar
  39. I. Hrvoic, L.R. Newitt, Instruments and methodologies for measurement of the Earth’s magnetic field, in Geomagnetic Observations and Models, ed. by M. Mandea, M. Korte. IAGA Special Sopron Book Series, vol. 5 (Springer, Dordrecht, 2011), pp. 105–126 CrossRefGoogle Scholar
  40. G. Hulot, T.J. Sabaka, N. Olsen, The present field, in Treatise on Geophysics, ed. by M. Kono, G. Schubert (Elsevier, Amsterdam, 2009), pp. 33–75 Google Scholar
  41. G. Hulot, P. Vigneron, J.M. Léger, I. Fratter, N. Olsen, T. Jager, F. Bertrand, L. Brocco, O. Sirol, X. Lalanne, A. Boness, V. Cattin, Swarm’s absolute magnetometer experimental vector mode, an innovative capability for space magnetometry. Geophys. Res. Lett. 42, 1352–1359 (2015). doi: 10.1002/2014GL062700 ADSCrossRefGoogle Scholar
  42. S.M. Imber, S.E. Milan, M. Lester, Solar cycle variations in polar cap area measured by the SuperDARN radars. J. Geophys. Res. Space Phys. 118, 6188–6196 (2013). doi: 10.1002/jgra.50509 ADSCrossRefGoogle Scholar
  43. T. Iyemori, K. Nakanishi, T. Aoyama, Y. Yokoyama, Y. Koyama, H. Lühr, Confirmation of existence of the small-scale field-aligned currents in middle and low latitudes and an estimate of time scale of their temporal variation. Geophys. Res. Lett. 42, 22–28 (2015). doi: 10.1002/2014GL062555 ADSCrossRefGoogle Scholar
  44. J.E. Jackson, J.I. Vette, OGO Program Summary, NASA SP-7601 (1975) Google Scholar
  45. J. Jankowski, C. Suckdorf, IAGA Guide for Magnetic Measurements and Observatory Practice (International Association of Geomagnetism and Aeronomy, Warsaw, 1996) Google Scholar
  46. A.D. Johnston, C. Alsop et al., PEACE: a plasma electron and current experiment. Space Sci. Rev. 79, 351–398 (1997) ADSCrossRefGoogle Scholar
  47. A. Kelbert, A. Schultz, G. Egbert, Global electromagnetic induction constraints on transition-zone water content variations. Nature 460, 1003–1007 (2009) ADSCrossRefGoogle Scholar
  48. H. Kim, X. Cai, C.R. Clauer, B.S.R. Kunduri, J. Matzka, C. Stolle, D.R. Weimer, Geomagnetic response to solar wind dynamic pressure impulse events at high-latitude conjugate points. J. Geophys. Res. 118, 6055–6071 (2013) CrossRefGoogle Scholar
  49. H. Kim, C.R. Clauer, M.J. Engebretson, J. Matzka, D.G. Sibeck, H.J. Singer, C. Stolle, D.R. Weimer, Z. Xu, Conjugate observations of traveling convection vortices associated with transient events at the magnetopause. J. Geophys. Res. Space Phys. 120, 2015–2035 (2015). doi: 10.1002/2014JA020743 ADSCrossRefGoogle Scholar
  50. M. Kono, Geomagnetism in perspective, in Treatise on Geophysics, ed. by M. Kono, G. Schubert (Elsevier, Amsterdam, 2009), pp. 1–32 Google Scholar
  51. V. Korepanov, Y. Klymovych, O. Kuznetsov, A. Pristay, A. Marusenkov, J. Rasson, New INTERMAGNET fluxgate magnetometer. Publs. Inst. Geophys. Pol. Acad. Sc. C-99(398), 291–298 (2007) Google Scholar
  52. E. Kring Lauridsen, Experiences with the Declination-Inclination (DI) Fluxgate Magnetometer Including Theory of the Instrument and Comparison with Other Methods. Geophysical Papers, vol. R-71 (Danish Meteorological Institute, Copenhagen, 1985) Google Scholar
  53. A. Kuvshinov, 3-D global induction in the oceans and solid Earth: recent progress in modeling magnetic and electric fields from sources of magnetospheric, ionospheric and oceanic origin. Surv. Geophys. 29, 139–186 (2008) ADSCrossRefGoogle Scholar
  54. A. Kuvshinov, C. Manoj, N. Olsen, T. Sabaka, On induction effects of geomagnetic daily variations from equatorial electrojet and solar quiet sources at low and middle latitudes. J. Geophys. Res. 112, B10102 (2007). doi: 10.1029/2007JB004955 ADSCrossRefGoogle Scholar
  55. R.A. Langel, The main geomagnetic field, in Geomagnetism, vol. 1, ed. by J. Jacobs (Academic Press, London, 1988), pp. 249–512 Google Scholar
  56. R.A. Langel, R.H. Estes, A geomagnetic field spectrum. Geophys. Res. Lett. 94(42), 250–253 (1982) ADSCrossRefGoogle Scholar
  57. R.A. Langel, R.H. Estes, The near-Earth magnetic field at 1980 determined from Magsat data. J. Geophys. Res. 90, 2495–2509 (1985) ADSCrossRefGoogle Scholar
  58. R.A. Langel, R.T. Baldwin, A.W. Green, Toward an improved distribution of magnetic observatories for modeling of the main geomagnetic field and its temporal change. J. Geomagn. Geoelectr. 47, 475–508 (1995) CrossRefGoogle Scholar
  59. K.M. Laundal, J.W. Gjerloev, N. Østgaard, J.P. Reistad, S. Haaland, K. Snekvik, P. Tenfjord, S. Ohtani, S.E. Milan, The impact of sunlight on high-latitude equivalent currents. J. Geophys. Res. Space Phys. 121, 2715–2726 (2016). doi: 10.1002/2015JA022236 ADSCrossRefGoogle Scholar
  60. J.-M. Léger, T. Jager, F. Bertrand, G. Hulot, L. Brocco, P. Vigneron, X. Lalanne, A. Chulliat, I. Fratter, In-flight performance of the absolute scalar magnetometer vector mode on board the Swarm satellites. Earth Planets Space 67, 1–12 (2015). doi: 10.1186/s40623-015-0231-1 CrossRefGoogle Scholar
  61. M. Lester, P.J. Chapman, S.W.H. Cowley, S. Crooks, J.A. Davies, K. McWillaims, S.E. Milan, M. Parsons, D. Payne, E.C. Thomas, J. Thornhill, N.M. Wade, T.K. Yeoman, R.J. Barnes, Stereo-CUTLASS—a new capability of the SuperDARN HF radars. Ann. Geophys. 22, 459–473 (2004) ADSCrossRefGoogle Scholar
  62. V. Lesur, M. Rother, I. Wardinski, R. Schachtschneider, M. Hamoudi, A. Chambodut, Parent magnetic field models for the IGRF-12 GFZ-candidates. Earth Planets Space 67, 87 (2015). doi: 10.1186/s40623-015-0239-6 ADSCrossRefGoogle Scholar
  63. J.J. Love, A. Chulliat, An international network of magnetic observatories. Eos 9(4), 373–374 (2013). doi: 10.1002/2013EO420001 ADSCrossRefGoogle Scholar
  64. J.J. Love, C.A. Finn, The USGS geomagnetism program and its role in space weather monitoring. Space Weather 9, S07001 (2011). doi: 10.1029/2011SW000684 ADSCrossRefGoogle Scholar
  65. J.J. Love, E.J. Rigler, A. Pulkkinen, P. Riley, On the lognormality of historical magnetic storm intensity statistics: implications for extreme-event probabilities. Geophys. Res. Lett. 42, 6544–6553 (2015). doi: 10.1002/2015GL064842 ADSCrossRefGoogle Scholar
  66. H. Lühr, G. Kervalishvili, I. Michaelis, J. Rauberg, P. Ritter, J. Park, J.M.G. Merayo, P. Brauer, The interhemispheric and F region dynamo currents revisited with the Swarm constellation. Geophys. Res. Lett. 42, 3069–3075 (2015a). doi: 10.1002/2015GL063662 ADSCrossRefGoogle Scholar
  67. H. Lühr, J. Park, J.W. Gjerloev, J. Rauberg, I. Michaelis, J.M.G. Merayo, P. Brauer, Field-aligned currents’ scale analysis performed with the Swarm constellation. Geophys. Res. Lett. 42, 1–8 (2015b). doi: 10.1002/2014GL062453 ADSCrossRefGoogle Scholar
  68. R.T. Marriott, A.D. Richmond, S.V. Venkateswaran, The quiet-time equatorial electrojet and counter-electrojet. J. Geomagn. Geoelectr. 31, 311–340 (1979) ADSCrossRefGoogle Scholar
  69. J. Matzka, Preparation of quasi-definitive (QD) data for the observatories Narsarsuaq, Qeqertarsuaq and Tristan da Cunha, in Proceedings of the XVth IAGA Workshop on Geomagnetic Observatory Instruments, Data Acquisition, and Processing, ed. by P. Hejda, A. Chulliat, M. Catalan (Real Instituto Y Observatorio de la Armada en San Fernando, San Fernando, 2012), pp. 50–53, Boletin Roa No. 03/13 Google Scholar
  70. J. Matzka, A. Chulliat, M. Mandea, C.C. Finlay, E. Qamili, Geomagnetic observations for main field studies: from ground to space. Space Sci. Rev. 155, 29–64 (2011) ADSCrossRefGoogle Scholar
  71. B.H. Mauk, N.J. Fox, S.G. Kanekal, R.L. Kessel, D.G. Sibeck, A. Ukhorskiy, Science objectives and rationale for the radiation belt storm probes mission. Space Sci. Rev. 179, 3–27 (2013). doi: 10.1007/s11214-012-9908-y ADSCrossRefGoogle Scholar
  72. S. Maus, Mysterious misalignments between geomagnetic and stellar reference frames seen in CHAMP and Swarm satellite measurements. Geophys. J. Int. 203, 1873–1876 (2015) ADSCrossRefGoogle Scholar
  73. S. Maus, H. Lühr, Signature of the quiet-time magnetospheric magnetic field and its electromagnetic induction in the rotating Earth. Geophys. J. Int. 162, 755–763 (2005). doi: 10.1111/j.1365-246X.2005.02691.x ADSCrossRefGoogle Scholar
  74. S. Maus, F. Yin, H. Lühr, C. Manoj, M. Rother, J. Rauberg, I. Michaelis, C. Stolle, R.D. Müller, Resolution of direction of oceanic magnetic lineations by the sixth-generation lithospheric magnetic field model from CHAMP satellite magnetic measurements. Geochem. Geophys. Geosyst. 9, Q07021 (2008). doi: 10.1029/2008GC001949 ADSCrossRefGoogle Scholar
  75. M. Menvielle, T. Iyemori, A. Marchaudon, M. Nosé, Geomagnetic indices, in Geomagnetic Observations and Models, ed. by M. Mandea, M. Korte. IAGA Special Sopron Book Series, vol. 5 (Springer, Dordrecht, 2011), pp. 183–228 CrossRefGoogle Scholar
  76. S.E. Milan, T.K. Yeoman, M. Lester, E.C. Thomas, T.B. Jones, Initial backscatter occurrence statistics from the CUTLASS HF radars. Ann. Geophys. 15, 703–718 (1997) ADSCrossRefGoogle Scholar
  77. S.E. Milan, Sun et Lumière: solar wind-magnetosphere coupling as deduced from ionospheric flows and polar auroras, in Magnetospheric Plasma Physics: The Impact of Jim Dungey’s Research, ed. by D. Southwood et al.. Astrophysics and Space Science Proceedings, vol. 41 (Springer, Berlin, 2015). doi: 10.1007/978-3-319-18359-6_2 Google Scholar
  78. L.R. Newitt, C.E. Barton, J. Bitterly, Guide for Magnetic Repeat Stations (International Association of Geomagnetism and Aeronomy, Boulder, 1996) Google Scholar
  79. A. Nishida, The GEOTAIL mission. Geophys. Res. Lett. 21, 2871–2873 (1994) ADSCrossRefGoogle Scholar
  80. N. Olsen, S. Kotsiaros, Magnetic satellite missions and data, in Geomagnetic Observations and Models, ed. by M. Mandea, M. Korte. IAGA Special Sopron Book Series, vol. 5 (Springer, Dordrecht, 2011), pp. 27–44 CrossRefGoogle Scholar
  81. N. Olsen, M. Mandea, Rapidly changing flows in the Earth’s core. Nat. Geosci. 1, 390–394 (2008). doi: 10.1038/ngeo203 ADSCrossRefGoogle Scholar
  82. N. Olsen, L. Tøffner-Clausen, T.J. Sabaka, P. Brauer, J.M.G. Merayo, J.L. Jørgensen, J.-M. Léger, O.V. Nielsen, F. Primdahl, T. Risbo, Calibration of the Ørsted vector magnetometer. Earth Planets Space 55, 11–18 (2003) ADSCrossRefGoogle Scholar
  83. N. Olsen, R. Haagmans, T.J. Sabaka, A. Kuvshinov, S. Maus, M.E. Purucker, M. Rother, V. Lesur, M. Mandea, The Swarm end-to-end mission simulator study: a demonstration of separating the various contributions to Earth’s magnetic field using synthetic data. Earth Planets Space 58, 359–370 (2006) ADSCrossRefGoogle Scholar
  84. N. Olsen, E. Friis-Christensen, R. Floberghagen, P. Alken, C.D. Beggan, A. Chulliat, E. Doornbos, J. Teixeira da Encarnac, B. Hamilton, G. Hulot, J. van den IJssel, A. Kuvshinov, V. Lesur, H. Lühr, S. Macmillan, S. Maus, M. Noja, P.E.H. Olsen, J. Park, G. Plank, C. Puthe, J. Rauberg, P. Ritter, M. Rother, T.J. Sabaka, R. Schachtschneider, O. Sirol, C. Stolle, E. Thébault, A.W.P. Thomson, L. Tøffner-Clausen, J. Velimski, P.N. Visser, P. Vigneron, The Swarm Satellite Constellation Application and Research Facility (SCARF) and Swarm data products. Earth Planets Space 65(11), 1189–1200 (2013). doi: 10.5047/eps.2013.07.001 ADSCrossRefGoogle Scholar
  85. N. Olsen, G. Hulot, V. Lesur, C.C. Finlay, C. Beggan, A. Chulliat, T.J. Sabaka, R. Floberghagen, E. Friis-Christensen, R. Haagmans, S. Kotsiaros, H. Lühr, L. Tøffner-Clausen, P. Vigneron, The Swarm initial field model for the 2014 geomagnetic field. Geophys. Res. Lett. 42, 1092–1098 (2014). doi: 10.1002/2014GL062659 ADSCrossRefGoogle Scholar
  86. A. Peltier, A. Chulliat, On the feasibility of promptly producing quasi-definitive magnetic observatory data. Earth Planets Space 62(2), e5–e8 (2010) ADSCrossRefGoogle Scholar
  87. B. Poedjono, N. Beck, A. Buchanan, L. Borri, S. Maus, C.A. Finn, E.W. Worthington, T. White, in Improved Geomagnetic Referencing in the Arctic Environment. SPE-166850-PP, SPE Arctic and Extreme Environments Conference & Exhibition, Moscow, Russia (2013) Google Scholar
  88. A. Pulkkinen, O. Amm, A. Viljanen (BEAR Working Group), Ionospheric equivalent current distributions determined with the method of spherical elementary current systems. J. Geophys. Res. 108, 1053 (2003). doi: 10.1029/2001JA005085 Google Scholar
  89. J.L. Rasson, A. Gonsette, The mark II automatic diflux. J. Data Sci. 10(0), IAGA169–IAGA173 (2011). doi: 10.2481/dsj.IAGA-24 Google Scholar
  90. S.J. Reay, D.C. Herzog, S. Alex, E.P. Kharin, S. McLean, M. Nosé, N.A. Sergeyeva, Magnetic observatory data and metadata: types and availability, in Geomagnetic Observations and Models, ed. by M. Mandea, M. Korte. IAGA Special Sopron Book Series, vol. 5 (Springer, Dordrecht, 2011), pp. 127–148 Google Scholar
  91. J. Reda, D. Fouassier, A. Isac, H.-J. Linthe, J. Matzka, C.W. Turbitt, Improvements in geomagnetic observatory data quality, in Geomagnetic Observations and Models, ed. by M. Mandea, M. Korte. IAGA Special Sopron Book Series, vol. 5 (Springer, Dordrecht, 2011), pp. 127–148 CrossRefGoogle Scholar
  92. J.M. Ruohoniemi, K.B. Baker, Large-scale imaging of high-latitude convection with super dual auroral radar network HF radar observations. J. Geophys. Res. 103, 20797–20811 (1998) ADSCrossRefGoogle Scholar
  93. C.T. Russell, A brief history of solar-terrestrial physics, in Introduction to Space Physics, ed. by M.G. Kivelson, C.T. Russell (Cambridge University Press, Cambridge, 1995), pp. 1–26 Google Scholar
  94. T.J. Sabaka, N. Olsen, R.H. Tyler, A. Kuvshinov, CM5, a pre-Swarm comprehensive geomagnetic field model derived from over 12 yr of CHAMP, Ørsted, SAC-C and observatory data. Geophys. J. Int. 200, 1596–1626 (2015) ADSCrossRefGoogle Scholar
  95. A. Semenov, A. Kuvshinov, Global 3-D imaging of mantle conductivity based on inversion of observatory C-responses—II. Data analysis and results. Geophys. J. Int. 191, 965–992 (2012). doi: 10.1111/j.1365-246X.2012.05665.x ADSGoogle Scholar
  96. R.C. Snare, A history of vector magnetometry in space, in Measurement Techniques in Space Plasmas Fields, ed. by R.F. Pfaff, J.E. Borovsky, D.T. Young (Am. Geophys. Union, Washington, 1998), pp. 101–114. doi: 10.1002/9781118664391.ch12 CrossRefGoogle Scholar
  97. R.J. Stening, Modeling the equatorial electrojet. J. Geophys. Res. 90(A2), 1705–1719 (1985) ADSCrossRefGoogle Scholar
  98. D.P. Stern, A brief history of magnetospheric physics during the space age. Rev. Geophys. 34(1), 1–31 (1996) ADSCrossRefGoogle Scholar
  99. D.P. Stern, A millennium of geomagnetism. Rev. Geophys. 40(3), B1–B30 (2002) CrossRefGoogle Scholar
  100. D.P. Stern, J.H. Bredekamp, Error enhancement in geomagnetic models derived from scalar data. J. Geophys. Res. 80, 1776–1782 (1975) ADSCrossRefGoogle Scholar
  101. C. Stolle, C. Manoj, H. Lühr, S. Maus, P. Alken, Estimating the daytime equatorial ionization anomaly strength from electric field proxies. J. Geophys. Res. 113, A09310 (2008). doi: 10.1029/2007JA012781 ADSCrossRefGoogle Scholar
  102. C. Stolle, H. Lühr, M. Rother, G. Balasis, Magnetic signatures of equatorial spread F as observed by the CHAMP satellite. J. Geophys. Res. 111, A02304 (2006). doi: 10.1029/2005JA011184 ADSCrossRefGoogle Scholar
  103. E. Thébault, C.C. Finlay, C. Beggan, P. Alken, J. Aubert, O. Barrois, F. Bertrand, T. Bondar, A. Boness, L. Brocco, E. Canet, A. Chambodut, A. Chulliat, P. Coïsson, F. Civet, A. Du, A. Fournier, I. Fratter, N. Gillet, B. Hamilton, M. Hamoudi, G. Hulot, T. Jager, M. Korte, W. Kuang, X. Lalanne, B. Langlais, J.M. Léger, V. Lesur, F.J. Lowes, S. Macmillan, M. Mandea, C. Manoj, S. Maus, N. Olsen, V. Petrov, M. Rother, T.J. Sabaka, D. Saturnino, R. Schachtschneider, O. Sirol, A. Tangborn, V. Taylor, A. Thomson, L. Tøffner-Clausen, P. Vigneron, I. Wardinski, T. Zvereva, International geomagnetic reference field: the twelfth generation. Earth Planets Space 67, 79 (2015). doi: 10.1186/s40623-015-0228-9 ADSCrossRefGoogle Scholar
  104. L. Tøffner-Clausen, V. Lesur, N. Olsen, C.C. Finlay, In-flight scalar calibration and characterisation of the Swarm magnetometry package. Earth Planets Space (2016). doi: 10.1186/s40623-016-0501-6 Google Scholar
  105. J.M. Torta, F.J. Pavon-Carrasco, S. Marsal, C.C. Finlay, Evidence for a new geomagnetic jerk in 2014. Geophys. Res. Lett. 42, 7933–7940 (2015). doi: 10.1002/2015GL065501 ADSCrossRefGoogle Scholar
  106. G.M. Turner, J.L. Rasson, C.V. Reeves, Observation and measurement techniques, in Treatise on Geophysics, ed. by M. Kono, G. Schubert (Elsevier, Amsterdam, 2009), pp. 93–146 Google Scholar
  107. R.H. Tyler, S. Maus, H. Lühr, Satellite observations of magnetic fields due to ocean tidal flow. Science 299, 239–241 (2003) ADSCrossRefGoogle Scholar
  108. J.M. Weygand, O. Amm, V. Angelopoulos, S.E. Milan, A. Grocott, H. Gleisner, C. Stolle, Comparison between SuperDARN flow vectors and equivalent ionospheric currents from ground magnetometer arrays. J. Geophys. Res. 117, A05325 (2012). doi: 10.1029/2011JA017407 ADSCrossRefGoogle Scholar
  109. Y. Yamazaki, K. Yumoto, T. Uozumi, M.G. Cardinal, Intensity variations of the equivalent Sq current system along the 210 magnetic meridian. J. Geophys. Res. 116, A10308 (2011). doi: 10.1029/2011JA016632 ADSCrossRefGoogle Scholar
  110. Y. Yamazaki, A.D. Richmond, A. Maute, Q. Wu, D.A. Ortland, A. Yoshikawa, I.A. Adimula, B. Rabiu, M. Kunitake, T. Tsugawa, Ground magnetic effects of the equatorial electrojet simulated by the TIE-GCM driven by TIMED satellite data. J. Geophys. Res. Space Phys. 119, 3150–3161 (2014). doi: 10.1002/2013JA019487 ADSCrossRefGoogle Scholar
  111. K. Yumoto et al., ULTIMA: array of ground-based magnetometer arrays for monitoring magnetospheric and ionospheric perturbations on a global scale, in Abstract SM14A-01 Presented at 2012 Fall Meeting, 3–7 Dec. (AGU, San Francisco, 2012), pp. 3–7 Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • A. Chulliat
    • 1
  • J. Matzka
    • 2
  • A. Masson
    • 3
  • S. E. Milan
    • 4
  1. 1.Cooperative Institute for Research in Environmental SciencesUniversity of Colorado Boulder & NOAA National Centers for Environmental InformationBoulderUSA
  2. 2.GFZ German Research Centre for GeosciencesPotsdamGermany
  3. 3.European Space Astronomy CentreEuropean Space AgencyVillanueva de la CañadaSpain
  4. 4.Department of Physics and AstronomyUniversity of LeicesterLeicesterUK

Personalised recommendations