Advertisement

Space Science Reviews

, Volume 208, Issue 1–4, pp 187–212 | Cite as

Scientific Objectives of Small Carry-on Impactor (SCI) and Deployable Camera 3 Digital (DCAM3-D): Observation of an Ejecta Curtain and a Crater Formed on the Surface of Ryugu by an Artificial High-Velocity Impact

  • M. ArakawaEmail author
  • K. Wada
  • T. Saiki
  • T. Kadono
  • Y. Takagi
  • K. Shirai
  • C. Okamoto
  • H. Yano
  • M. Hayakawa
  • S. Nakazawa
  • N. Hirata
  • M. Kobayashi
  • P. Michel
  • M. Jutzi
  • H. Imamura
  • K. Ogawa
  • N. Sakatani
  • Y. Iijima
  • R. Honda
  • K. Ishibashi
  • H. Hayakawa
  • H. Sawada
Article

Abstract

The Small Carry-on Impactor (SCI) equipped on Hayabusa2 was developed to produce an artificial impact crater on the primitive Near-Earth Asteroid (NEA) 162173 Ryugu (Ryugu) in order to explore the asteroid subsurface material unaffected by space weathering and thermal alteration by solar radiation. An exposed fresh surface by the impactor and/or the ejecta deposit excavated from the crater will be observed by remote sensing instruments, and a subsurface fresh sample of the asteroid will be collected there. The SCI impact experiment will be observed by a Deployable CAMera 3-D (DCAM3-D) at a distance of ∼1 km from the impact point, and the time evolution of the ejecta curtain will be observed by this camera to confirm the impact point on the asteroid surface. As a result of the observation of the ejecta curtain by DCAM3-D and the crater morphology by onboard cameras, the subsurface structure and the physical properties of the constituting materials will be derived from crater scaling laws. Moreover, the SCI experiment on Ryugu gives us a precious opportunity to clarify effects of microgravity on the cratering process and to validate numerical simulations and models of the cratering process.

Keywords

Impact crater Ejecta curtain Crater scaling laws Asteroid Microgravity 

Notes

Acknowledgements

We are grateful to anonymous referees for many useful suggestions and corrections that helped us to improve this paper. We thank Mr. S. Nakatsubo of the Contribution Division of the Institute of Low Temperature Science, Hokkaido University, and Mr. K. Sangen of Kobe University for their technical help, and we also thank Dr. A.M. Nakamura and Dr. S. Watanabe for their fruitful discussions. We appreciate the help with experiments provided by Dr. Sunao Hasegawa of the Institute of Space and Astronautical Science, JAXA. This work was supported in part by a Grant for a Joint Research Program from the Space Plasma Laboratory, ISAS, JAXA, and was also supported in part by Grants-in-Aid for Scientific Research (23103004, 25610135 and 15K05273) from the Japan Ministry of Education, Culture, Sports, Science and Technology P.M. acknowledges support from the French space agency CNES.

References

  1. M.F. A’Hearn et al., Deep impact: excavating comet Tempel 1. Science 310, 258 (2005) ADSCrossRefGoogle Scholar
  2. W.F. Bottke, D.D. Durda, D. Nesvorný, R. Jedicke, A. Morbidelli, D. Vokrouhlický, H. Levison, The fossilized size distribution of the main asteroid belt. Icarus 175, 111 (2005) ADSCrossRefGoogle Scholar
  3. D.T. Britt, D. Yeomans, K. Housen, G. Consolmagno, Asteroid density, porosity, and structure, in Asteroids III (2002), p. 485 Google Scholar
  4. A. Colaprete et al., Detection of water in the LCROSS ejecta plume. Science 330, 463 (2010) ADSCrossRefGoogle Scholar
  5. S.K. Croft, Cratering flow fields - implications for the excavation and transient expansion stages of crater formation, in Lunar and Planetary Science Conference Proceedings, vol. 11 (1980), p. 2347 Google Scholar
  6. A. Fujiwara et al., The rubble-pile asteroid Itokawa as observed by Hayabusa. Science 312, 1330 (2006) ADSCrossRefGoogle Scholar
  7. D.E. Gault, J.A. Wedekind, Experimental studies of oblique impact, in Lunar and Planetary Science Conference Proceedings, vol. 9 (1978), p. 3843 Google Scholar
  8. B. Hapke, Theory of Reflectance and Emittance Spectroscopy, 2nd edn. (Cambridge University Press, Cambridge, 2012) Google Scholar
  9. C.E. Helfrich, A.S. Konopliv, J.V. McAdams, J.K. Miller, W.M. Owen Jr., D.J. Scheeres, S.P. Synnott, B.G. Williams, Estimating the mass of asteroid 253 Mathilde from tracking data during the NEAR flyby. Science 278, 2106 (1997) ADSCrossRefGoogle Scholar
  10. B. Hermalyn, P.H. Schultz, Time-resolved studies of hypervelocity vertical impacts into porous particulate targets: effects of projectile density on early-time coupling and crater growth. Icarus 216, 269 (2011) ADSCrossRefGoogle Scholar
  11. K.A. Holsapple, K.R. Housen, A crater and its ejecta: an interpretation of Deep Impact. Icarus 187, 345 (2007) ADSCrossRefGoogle Scholar
  12. K.A. Holsapple, I. Giblin, K.R. Housen, A. Nakamura, E. Ryan, Asteroid impacts: laboratory experiments and scaling laws, in Asteroids III, vol. 443 (2002) Google Scholar
  13. K.R. Housen, K.A. Holsapple, Ejecta from impact craters. Icarus 211, 856 (2011) ADSCrossRefGoogle Scholar
  14. K.R. Housen, K.A. Holsapple, M.E. Voss, Compaction as the origin of the unusual craters on the asteroid Mathilde. Nature 402, 155 (1999) ADSCrossRefGoogle Scholar
  15. K. Ishibashi, K. Shirai, K. Wada, K. Ogawa, R. Honda, M. Arakawa, N. Sakatani, Y. Ikeda, Optical Performance of Hayabusa2 DCAM3-D camera for short-range imaging of SCI and ejecta. curtain generated from the artificial impact crater formed on Ryugu (2016, accepted) Google Scholar
  16. M. Ishiguro et al., Optical properties of (162173) Ryugu: in preparation for the JAXA Hayabusa2 sample return mission. Astrophys. J. 792, 74 (2014) ADSCrossRefGoogle Scholar
  17. M. Jutzi, P. Michel, W. Benz, D.C. Richardson, Fragment properties at the catastrophic disruption threshold: the effect of the parent body’s internal structure. Icarus 207, 54 (2010) ADSCrossRefGoogle Scholar
  18. M. Kiuchi, A.M. Nakamura, Relationship between regolith particle size and porosity on small bodies. Icarus 239, 291 (2014) ADSCrossRefGoogle Scholar
  19. J.-Y. Li, M.F. A’Hearn, T.L. Farnham, L.A. McFadden, Photometric analysis of the nucleus of Comet 81P/Wild 2 from Stardust images. Icarus 204, 209 (2009) ADSCrossRefGoogle Scholar
  20. D.E. Maxwell, Simple Z model for cratering, ejection, and the overturned flap, in Impact and Explosion Cratering (Planetary and Terrestrial Implications) (1977), pp. 1003–1008 Google Scholar
  21. A. McGarr, G.V. Latham, D.E. Gault, Meteoroid impacts as sources of seismicity on the Moon. J. Geophys. Res. 74, 5981 (1969) ADSCrossRefGoogle Scholar
  22. P. Michel, M. Delbo, Orbital and thermal evolutions of four potential targets for a sample return space mission to a primitive near-Earth asteroid. Icarus 209, 520 (2010) ADSCrossRefGoogle Scholar
  23. P. Michel, W. Benz, P. Tanga, D.C. Richardson, Collision and gravitational reaccumulation: forming asteroid families and satellites. Science 294, 1696 (2001) ADSCrossRefGoogle Scholar
  24. P. Michel, D.P. O’Brien, S. Abe, N. Hirata, Itokawa’s cratering record as observed by Hayabusa: implications for its age and collisional history. Icarus 200, 503 (2009) ADSCrossRefGoogle Scholar
  25. J.K. Miller, A.S. Konopliv, P.G. Antreasian, J.J. Bordi, S. Chesley, C.E. Helfrich, W.M. Owen, T.C. Wang, B.G. Williams, D.K. Yeomans, D.J. Scheeres, Determination of shape, gravity, and rotational state of asteroid 433 Eros. Icarus 155, 3 (2002) ADSCrossRefGoogle Scholar
  26. K. Ogawa, K. Shirai, H. Sawada, M. Arakawa, K. Wada, R. Honda, K. Ishibashi, N. Sakatani, S. Nakazawa, H. Hayakawa, System configuration and operation plan of Hayabusa2. DCAM3-D for scientific observation in SCI impact experiment. Space Sci. Rev. (2016, accepted) Google Scholar
  27. J.E. Richardson, H.J. Melosh, An examination of the Deep Impact collision site on Comet Tempel 1 via Stardust-NExT: placing further constraints on cometary surface properties. Icarus 222, 492 (2013) ADSCrossRefGoogle Scholar
  28. J.E. Richardson Jr., H.J. Melosh, R.J. Greenberg, D.P. O’Brien, The global effects of impact-induced seismic activity on fractured asteroid morphology. Icarus 179, 325 (2005) ADSCrossRefGoogle Scholar
  29. J.E. Richardson, H.J. Melosh, C.M. Lisse, B. Carcich, A ballistics analysis of the Deep Impact ejecta plume: determining Comet Tempel 1’s gravity, mass, and density. Icarus 191, 176 (2007) ADSCrossRefGoogle Scholar
  30. M.S. Robinson, P.C. Thomas, J. Veverka, S.L. Murchie, B.B. Wilcox, The geology of 433 Eros. Meteorit. Planet. Sci. 37, 1651 (2002) ADSCrossRefGoogle Scholar
  31. T. Saiki, H. Imamura, M. Arakawa, K. Wada, Y. Takagi, M. Hayakawa, K. Shirai, H. Yano, C. Okamoto. Small Carry-on Impactor (SCI) for Hayabusa2 Impact Experiment. Space Sci. Rev. (2016, accepted).  10.1007/s11214-016-0297-5 Google Scholar
  32. D.J. Scheeres, C.M. Hartzell, P. Sánchez, M. Swift, Scaling forces to asteroid surfaces: The role of cohesion. Icarus 210, 968 (2010) ADSCrossRefGoogle Scholar
  33. P.H. Schultz, D.E. Gault, Seismically induced modification of lunar surface features, in Lunar and Planetary Science Conference Proceedings, vol. 6 (1975), p. 2845 Google Scholar
  34. P.H. Schultz, D.E. Gault, Clustered impacts: experiments and implications. J. Geophys. Res., Solid Earth 90, 3701 (1985) CrossRefGoogle Scholar
  35. P.H. Schultz, C.M. Ernst, J.L. Anderson, Expectations for crater size and photometric evolution from the Deep Impact collision, in Deep Impact Mission: Looking Beneath the Surface of a Cometary Nucleus (2005), p. 207 CrossRefGoogle Scholar
  36. P.H. Schultz, C.A. Eberhardy, C.M. Ernst, M.F. A’Hearn, J.M. Sunshine, C.M. Lisse, The Deep Impact oblique impact cratering experiment. Icarus 191, 84 (2007) ADSCrossRefGoogle Scholar
  37. P.H. Schultz, B. Hermalyn, A. Colaprete, K. Ennico, M. Shirley, W.S. Marshall, The LCROSS cratering experiment. Science 330, 468 (2010) ADSCrossRefGoogle Scholar
  38. P.H. Schultz, B. Hermalyn, J. Veverka, The Deep Impact crater on 9P/Tempel-1 from Stardust-NExT. Icarus 222, 502 (2012) ADSCrossRefGoogle Scholar
  39. P. Shalima, K. Wada, H. Kimura, Ejecta curtain radiative transfer modeling for probing its geometry and dust optical properties. Planet. Space Sci. 116, 39–47 (2015) ADSCrossRefGoogle Scholar
  40. S. Tachibana et al., Hayabusa2: Scientific importance of samples returned from C-type near-Earth asteroid (162173) Ryugu. Geochem. J. 48, 571 (2014) CrossRefGoogle Scholar
  41. Y. Takagi, S. Hasegawa, H. Yano, S. Syamamoto, S. Sugita, K. Teramoto, C. Honda, K. Kurosawa, T. Nakada, M. Abe, A. Fujiwara, Impact cratering experiments in microgravity environment, in Proc. Lunar Planet. Sci. XXXVIII (2007), p. 1634 Google Scholar
  42. Y. Tsuda, M. Yoshikawa, M. Abe, H. Minamino, S. Nakazawa, System design of the Hayabusa2—asteroid sample return mission to Ryugu. Acta Astronaut. 91, 356 (2013) ADSCrossRefGoogle Scholar
  43. S. Tsujido, M. Arakawa, K. Wada, A.I. Suzuki, Experimental study on the ejecta velocity distribution during the crater formation and implication for Wada’s method, in 2013 Fall Meeting of Japanese Planetary Science Society. Proceedings of the Conference (2013) (in Japanese) Google Scholar
  44. S. Tsujido, M. Arakawa, A.I. Suzuki, M. Yasui, Ejecta velocity distribution of impact craters formed on quartz sand: effect of projectile density on crater scaling law. Icarus 262, 79 (2015) ADSCrossRefGoogle Scholar
  45. J. Veverka et al., Imaging of small-scale features on 433 Eros from NEAR: evidence for a complex regolith. Science 292, 484 (2001a) ADSCrossRefGoogle Scholar
  46. J. Veverka et al., The landing of the NEAR-shoemaker spacecraft on asteroid 433 Eros. Nature 413, 390 (2001b) ADSCrossRefGoogle Scholar
  47. K. Wada et al., Large scale impact experiments simulating Small Carry-on Impactor (SCI) equipped on Hayabusa2, in Lunar and Planetary Science Conference, vol. 45 (2014), p. 1768 Google Scholar
  48. M. Yasui, M. Arakawa, Compaction experiments on ice-silica particle mixtures: implication for residual porosity of small icy bodies. J. Geophys. Res., Planets 114, E09004 (2009) ADSCrossRefGoogle Scholar
  49. M. Yasui et al., In situ flash X-ray observation of projectile penetration processes and crater cavity growth in porous gypsum target analogous to low-density asteroids. Icarus 221, 646 (2012) ADSCrossRefGoogle Scholar
  50. M. Yasui, E. Matsumoto, M. Arakawa, Experimental study on impact-induced seismic wave propagation through granular materials. Icarus 260, 320–331 (2015) ADSCrossRefGoogle Scholar
  51. D.K. Yeomans et al., Estimating the mass of asteroid 253 Mathilde from tracking data during the NEAR flyby. Science 278, 2106 (1997) ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • M. Arakawa
    • 1
    Email author
  • K. Wada
    • 2
  • T. Saiki
    • 3
  • T. Kadono
    • 5
  • Y. Takagi
    • 6
  • K. Shirai
    • 7
  • C. Okamoto
    • 1
  • H. Yano
    • 3
  • M. Hayakawa
    • 3
  • S. Nakazawa
    • 4
  • N. Hirata
    • 8
  • M. Kobayashi
    • 2
  • P. Michel
    • 9
  • M. Jutzi
    • 10
  • H. Imamura
    • 4
  • K. Ogawa
    • 1
  • N. Sakatani
    • 12
  • Y. Iijima
    • 3
  • R. Honda
    • 11
  • K. Ishibashi
    • 2
  • H. Hayakawa
    • 3
  • H. Sawada
    • 4
  1. 1.Graduate School of ScienceKobe UniversityKobeJapan
  2. 2.Planetary Exploration Research CenterChiba Institute of TechnologyNarashinoJapan
  3. 3.Institute of Space and Astronautical ScienceJapan Aerospace Exploration AgencySagamiharaJapan
  4. 4.Japan Aerospace Exploration AgencySagamiharaJapan
  5. 5.University of Occupational and Environmental HealthSchool of MedicineKitakyusyuJapan
  6. 6.Aichi Toho UniversityNagoyaJapan
  7. 7.The Graduate University for Advanced StudiesKanagawaJapan
  8. 8.University of AizuAizu-Wakamatsu CityJapan
  9. 9.UMR 7293 Lagrange/CNRSObservatoire de la Côte d’AzurNice Cedex 4France
  10. 10.Physics Institute, Space Research and Planetary Sciences, Center for Space and HabitabilityUniversity of BernBernSwitzerland
  11. 11.Kochi UnivsesityKochiJapan
  12. 12.School of Science and TechnologyMeiji UniversityKawasakiJapan

Personalised recommendations