Space Science Reviews

, Volume 203, Issue 1–4, pp 245–275 | Cite as

Large-Eddy Simulations of Dust Devils and Convective Vortices

  • Aymeric SpigaEmail author
  • Erika Barth
  • Zhaolin Gu
  • Fabian Hoffmann
  • Junshi Ito
  • Bradley Jemmett-Smith
  • Martina Klose
  • Seiya Nishizawa
  • Siegfried Raasch
  • Scot Rafkin
  • Tetsuya Takemi
  • Daniel Tyler
  • Wei Wei


In this review, we address the use of numerical computations called Large-Eddy Simulations (LES) to study dust devils, and the more general class of atmospheric phenomena they belong to (convective vortices). We describe the main elements of the LES methodology. We review the properties, statistics, and variability of dust devils and convective vortices resolved by LES in both terrestrial and Martian environments. The current challenges faced by modelers using LES for dust devils are also discussed in detail.


Dust devils Large-Eddy Simulations Convective vortices Convective boundary layer 



We acknowledge the logistic and financial help of the International Space Science Institute (ISSI, Bern, Switzerland) for the organization of a “dust devils” international workshop that led to the writing of this review chapter. We are indebted to two anonymous reviewers and associate editor Ralph Lorenz for constructive comments which helped to improve this review.


  1. M. Balme, R. Greeley, Dust devils on earth and mars. Rev. Geophys. 44(3) (2006) Google Scholar
  2. E.L. Barth, W.M. Farrell, S.C.R. Rafkin, Electric fields in simulated martian dust devils, in Mars Atmosphere: Modelling and Observation, 5th International Workshop, ed. by F. Forget, M. Millour, 2014, p. 2204 Google Scholar
  3. H.B. Bluestein, C.C. Weiss, A.L. Pazmany, Doppler radar observations of dust devils in Texas. Mon. Weather Rev. 132, 209 (2004). doi: 10.1175/1520-0493(2004)132<0209:DROODD>2.0.CO;2 ADSCrossRefGoogle Scholar
  4. D.S. Choi, C.M. Dundas, Measurements of martian dust devil winds with HiRISE. Geophys. Res. Lett. 38, 24206 (2011). doi: 10.1029/2011GL049806 ADSCrossRefGoogle Scholar
  5. T. Cortese, S. Balachandar, Vortical nature of thermal plumes in turbulent convection. Phys. Fluids A, Fluid Dyn. (1989–1993) 5(12), 3226–3232 (1993) ADSCrossRefzbMATHGoogle Scholar
  6. J.W. Deardorff, Numerical investigation of neutral and unstable planetary boundary layers. J. Atmos. Sci. 29, 91–115 (1972). doi: 10.1175/1520-0469(1972)029<0091:NIONAU>2.0.CO;2 ADSCrossRefGoogle Scholar
  7. S. Dupont, G. Bergametti, B. Marticorena, S. SimoëNs, Modeling saltation intermittency. J. Geophys. Res., Atmos. 118, 7109–7128 (2013). doi: 10.1002/jgrd.50528 ADSCrossRefGoogle Scholar
  8. D.R. Durran, Numerical Methods for Fluid Dynamics: With Applications to Geophysics. Texts in Applied Mathematics (Springer, Berlin, 2010) CrossRefzbMATHGoogle Scholar
  9. M.D. Ellehoj, H.P. Gunnlaugsson, P.A. Taylor, H. Kahanpää, K.M. Bean, B.A. Cantor, B.T. Gheynani, L. Drube, D. Fisher, A.-M. Harri, C. Holstein-Rathlou, M.T. Lemmon, M.B. Madsen, M.C. Malin, J. Polkko, P.H. Smith, L.K. Tamppari, W. Weng, J. Whiteway, Convective vortices and dust devils at the Phoenix Mars mission landing site. J. Geophys. Res., Planets 115(E14), 16 (2010). doi: 10.1029/2009JE003413 Google Scholar
  10. L.K. Fenton, R. Lorenz, Dust devil height and spacing with relation to the martian planetary boundary layer thickness. Icarus 260, 246–262 (2015). doi: 10.1016/j.icarus.2015.07.028 ADSCrossRefGoogle Scholar
  11. L.K. Fenton, T.I. Michaels, Characterizing the sensitivity of daytime turbulent activity on Mars with the MRAMS LES: early results. Int. J. Mars Sci. Explor. 5, 159–171 (2010). doi: 10.1555/mars.2010.0007 Google Scholar
  12. L. Fenton, D. Reiss, M. Lemmon, B. Marticorena, S. Lewis, B. Cantor, Orbital observations of dust lofted by daytime convective turbulence. Space Sci. Rev. 1–54 (2016). doi: 10.1007/s11214-016-0243-6
  13. B.H. Fiedler, K.M. Kanak, Rayleigh–Bénard convection as a tool for studying dust devils. Atmos. Sci. Lett. 2, 104–113 (2001). doi: 10.1006/asle.2001.0043 ADSCrossRefGoogle Scholar
  14. J.A. Fisher, M.I. Richardson, C.E. Newman, M.A. Szwast, C. Graf, S. Basu, S.P. Ewald, A.D. Toigo, R.J. Wilson, A survey of martian dust devil activity using Mars global surveyor Mars orbiter camera images. J. Geophys. Res., Planets 110(E9), 3004 (2005). doi: 10.1029/2003JE002165 ADSGoogle Scholar
  15. S.D. Fuerstenau, Solar heating of suspended particles and the dynamics of martian dust devils. Geophys. Res. Lett. 33, 19 (2006). doi: 10.1029/2006GL026798 CrossRefGoogle Scholar
  16. B.T. Gheynani, P.A. Taylor, Large-eddy simulations of vertical vortex formation in the terrestrial and martian convective boundary layers. Bound.-Layer Meteorol. 137, 223–235 (2010). doi: 10.1007/s10546-010-9530-z ADSCrossRefGoogle Scholar
  17. B.T. Gheynani, P.A. Taylor, Large eddy simulation of typical dust devil-like vortices in highly convective martian boundary layers at the Phoenix lander site. Planet. Space Sci. 59, 43–50 (2011). doi: 10.1016/j.pss.2010.10.011 ADSCrossRefGoogle Scholar
  18. R. Greeley, P.L. Whelley, R.E. Arvidson, N.A. Cabrol, D.J. Foley, B.J. Franklin, P.G. Geissler, M.P. Golombek, R.O. Kuzmin, G.A. Landis, M.T. Lemmon, L.D.V. Neakrase, S.W. Squyres, S.D. Thompson, Active dust devils in Gusev crater, Mars: observations from the Mars exploration rover spirit. J. Geophys. Res., Planets 111(E10), 12 (2006). doi: 10.1029/2006JE002743 Google Scholar
  19. Z. Gu, Y. Zhao, Y. Li, Y. Yu, X. Feng, Numerical simulation of dust lifting within dust devils simulation of an intense vortex. J. Atmos. Sci. 63, 2630–2641 (2006). doi: 10.1175/JAS3748.1 ADSCrossRefGoogle Scholar
  20. R.M. Haberle, H.C. Houben, R. Hertenstein, T. Herdtle, A boundary layer model for Mars: comparison with Viking lander and entry data. J. Atmos. Sci. 50, 1544–1559 (1993) ADSCrossRefGoogle Scholar
  21. R.G. Harrison, E. Barth, F. Esposito, J. Merrison, F. Montmessin, K.L. Aplin, C. Borlina, J.J. Berthelier, G. Déprez, W.M. Farrell, I.M.P. Houghton, N.O. Renno, K.A. Nicoll, S.N. Tripathi, M. Zimmerman, Applications of electrified dust and dust devil electrodynamics to martian atmospheric electricity. Space Sci. Rev. 1–47 (2016). doi: 10.1007/s11214-016-0241-8
  22. D.P. Hinson, M. Pätzold, S. Tellmann, B. Häusler, G.L. Tyler, The depth of the convective boundary layer on Mars. Icarus 198, 57–66 (2008). doi: 10.1016/j.icarus.2008.07.003 ADSCrossRefGoogle Scholar
  23. N. Huang, G. Yue, X. Zheng, Numerical simulations of a dust devil and the electric field in it. J. Geophys. Res., Atmos. 113(D20) (2008) Google Scholar
  24. J. Ito, H. Niino, M. Nakanishi, Large eddy simulation on dust suspension in a convective mixed layer. SOLA 6, 133–136 (2010). doi: 10.2151/sola.2010-034 CrossRefGoogle Scholar
  25. J. Ito, R. Tanaka, H. Niino, M. Nakanishi, Large eddy simulation of dust devils in a diurnally-evolving convective mixed layer. J. Meteorol. Soc. Jpn. 88, 64–77 (2010) CrossRefGoogle Scholar
  26. J. Ito, H. Niino, M. Nakanishi, Effects of ambient rotation on dust devils. SOLA 7, 165–168 (2011). doi: 10.2151/sola.2011-042 CrossRefGoogle Scholar
  27. J. Ito, H. Niino, M. Nakanishi, Formation mechanism of dust devil-like vortices in idealized convective mixed layers. J. Atmos. Sci. 70, 1173–1186 (2013). doi: 10.1175/JAS-D-12-085.1 ADSCrossRefGoogle Scholar
  28. K.M. Kanak, Numerical simulation of dust devil-scale vortices. Q. J. R. Meteorol. Soc. 131(607), 1271–1292 (2005) ADSCrossRefGoogle Scholar
  29. K.M. Kanak, On the numerical simulation of dust devil-like vortices in terrestrial and martian convective boundary layers. Geophys. Res. Lett. 33(19) (2006) Google Scholar
  30. K.M. Kanak, D.K. Lilly, J.T. Snow, The formation of vertical vortices in the convective boundary layer. Q. J. R. Meteorol. Soc. 126(569), 2789–2810 (2000) ADSCrossRefGoogle Scholar
  31. M. Klose, Y. Shao, Stochastic parameterization of dust emission and application to convective atmospheric conditions. Atmos. Chem. Phys. 12(12), 7309–7320 (2012). doi: 10.5194/acp-12-7309-2012 ADSCrossRefGoogle Scholar
  32. M. Klose, Y. Shao, Large-eddy simulation of turbulent dust emission. Aeolian Res. 8, 49–58 (2013). doi: 10.1016/j.aeolia.2012.10.010 ADSCrossRefGoogle Scholar
  33. M. Klose, Y. Shao, A numerical study on dust devils with implications to global dust budget estimates. Aeolian Res. 22, 47–58 (2016). doi: 10.1016/j.aeolia.2016.05.003 ADSCrossRefGoogle Scholar
  34. M. Klose, Y. Shao, X.L. Li, H.S. Zhang, M. Ishizuka, M. Mikami, J.F. Leys, Further development of a parameterization for convective turbulent dust emission and evaluation based on field observations. J. Geophys. Res., Atmos. 119, 10441–10457 (2014). doi: 10.1002/2014JD021688 ADSCrossRefGoogle Scholar
  35. M. Klose, B.C. Jemmett-Smith, H. Kahanpää, M. Kahre, P. Knippertz, M.T. Lemmon, S.R. Lewis, R.D. Lorenz, L.D.V. Neakrase, C. Newman, M.R. Patel, D. Reiss, A. Spiga, P.L. Whelley, Dust devil sediment transport: from lab to field to global impact. Space Sci. Rev. 1–50 (2016). doi: 10.1007/s11214-016-0261-4
  36. P. Knippertz, J.-B.W. Stuut, Mineral Dust: A Key Player in the Earth System (Springer, Netherlands, 2014) CrossRefGoogle Scholar
  37. M.V. Kurgansky, R.D. Lorenz, N.O. Renno, T. Takemi, Z. Gu, W. Wei, Dust devil steady-state structure from a fluid dynamics perspective. Space Sci. Rev. [“Dust devils” special issue] (2016, submitted). doi: 10.1007/s11214-016-0281-0
  38. C.B. Leovy, Martian meteorological variability. Adv. Space Res. 2, 19–44 (1982) ADSCrossRefGoogle Scholar
  39. D.K. Lilly, On the numerical simulation of buoyant convection. Tellus 14(2), 148–172 (1962) ADSCrossRefGoogle Scholar
  40. G.A. Loosmore, J.R. Hunt, Dust resuspension without saltation. J. Geophys. Res. 105(D16), 20663–20671 (2000). doi: 10.1029/2000JD900271 ADSCrossRefGoogle Scholar
  41. R. Lorenz, On the statistical distribution of dust devil diameters. Icarus 215, 381–390 (2011). doi: 10.1016/j.icarus.2011.06.005 ADSCrossRefGoogle Scholar
  42. R.D. Lorenz, Vortex encounter rates with fixed barometer stations: comparison with visual dust devil counts and large-eddy simulations. J. Atmos. Sci. 71(12), 4461–4472 (2014) ADSMathSciNetCrossRefGoogle Scholar
  43. R.D. Lorenz, B.K. Jackson, Dust devil populations and statistics. Space Sci. Rev. 1–21 (2016). doi: 10.1007/s11214-016-0277-9
  44. R.D. Lorenz, D. Reiss, Solar panel clearing events, dust devil tracks, and in-situ vortex detections on Mars. Icarus 248, 162–164 (2015). doi: 10.1016/j.icarus.2014.10.034 ADSCrossRefGoogle Scholar
  45. R.D. Lorenz, M.R. Balme, Z. Gu, H. Kahanpää, M. Klose, M.V. Kurgansky, M.R. Patel, D. Reiss, A.P. Rossi, A. Spiga, T. Takemi, W. Wei, History and applications of dust devil studies. Space Sci. Rev. 1–33 (2016). doi: 10.1007/s11214-016-0239-2
  46. M.C. Malin, K.S. Edgett, Mars global surveyor Mars orbiter camera: interplanetary cruise through primary mission. J. Geophys. Res. 106, 23429–23570 (2001). doi: 10.1029/2000JE001455 ADSCrossRefGoogle Scholar
  47. P. Mason, Large-eddy simulation of the convective atmospheric boundary layer. J. Atmos. Sci. 46(11), 1492–1516 (1989) ADSCrossRefGoogle Scholar
  48. S.M. Metzger, M.R. Balme, M.C. Towner, B.J. Bos, T.J. Ringrose, M.R. Patel, In situ measurements of particle load and transport in dust devils. Icarus 214(2), 766–772 (2011). doi: 10.1016/j.icarus.2011.03.013 ADSCrossRefGoogle Scholar
  49. T.I. Michaels, Numerical modeling of Mars dust devils: albedo track generation. Geophys. Res. Lett. 33(19) (2006). doi: 10.1029/2006GL026268
  50. T.I. Michaels, S.C.R. Rafkin, Large eddy simulation of atmospheric convection on Mars. Q. J. R. Meteorol. Soc. 130, 1251–1274 (2004). doi: 10.1256/qj.02.169 ADSCrossRefGoogle Scholar
  51. J.D. Mirocha, J.K. Lundquist, B. Kosovic, Implementation of a nonlinear subfilter turbulence stress model for large-eddy simulation in the advanced research WRF model. Mon. Weather Rev. 138, 4212–4228 (2010) ADSCrossRefGoogle Scholar
  52. C. Moeng, J. Dudhia, J. Klemp, P. Sullivan, Examining two-way grid nesting for large eddy simulation of the PBL using the WRF model. Mon. Weather Rev. 135(6), 2295–2311 (2007) ADSCrossRefGoogle Scholar
  53. J.E. Moores, M.T. Lemmon, H. Kahanpää, S.C.R. Rafkin, R. Francis, J. Pla-Garcia, K. Bean, R. Haberle, C. Newman, M. Mischna, A.R. Vasavada, M. de la Torre Juárez, N. Rennó, J. Bell, F. Calef, B. Cantor, T.H. Mcconnochie, A.-M. Harri, M. Genzer, M.H. Wong, M.D. Smith, F.J. Martín-Torres, M.-P. Zorzano, O. Kemppinen, E. McCullough, Observational evidence of a suppressed planetary boundary layer in northern Gale crater, Mars as seen by the Navcam instrument onboard the Mars Science Laboratory rover. Icarus 249, 129–142 (2015). doi: 10.1016/j.icarus.2014.09.020 ADSCrossRefGoogle Scholar
  54. D.P. Mulholland, A. Spiga, C. Listowski, P.L. Read, An assessment of the impact of local processes on dust lifting in martian climate models. Icarus 252, 212–227 (2015). doi: 10.1016/j.icarus.2015.01.017 ADSCrossRefGoogle Scholar
  55. J. Murphy, K. Steakley, M.B. Balme, G. Deprez, F. Esposito, H. Kahanpää, M. Lemmon, R.D. Lorenz, N. Murdoch, L.D.V. Neakrase, M. Patel, P. Whelley, Field measurements of terrestrial and martian dust devils. Space Sci. Rev. [“Dust devils” special issue] (2016, submitted). doi: 10.1007/s11214-016-0283-y
  56. L.D.V. Neakrase, M.B. Balme, F. Esposito, T. Kelling, M. Klose, J.F. Kok, B. Marticonera, J. Merrison, M.R. Patel, G. Wurm, Particle lifting processes in dust devils. Space Sci. Rev. [“Dust devils” special issue] (2016, submitted) Google Scholar
  57. C.E. Newman, S.R. Lewis, P.L. Read, F. Forget, Modeling the martian dust cycle, 1. Representations of dust transport processes. J. Geophys. Res., Planets 107, 5123 (2002). doi: 10.1029/2002JE001910 ADSGoogle Scholar
  58. S. Nishizawa, H. Yashiro, Y. Sato, Y. Miyamoto, H. Tomita, Influence of grid aspect ratio on planetary boundary layer turbulence in large-eddy simulations. Geosci. Model Dev. 8(10), 3393–3419 (2015). doi: 10.5194/gmd-8-3393-2015. ADSCrossRefGoogle Scholar
  59. S. Nishizawa, M. Odaka, Y.O. Takahashi, K. Sugiyama, K. Nakajima, M. Ishiwatari, S. Takehiro, H. Yashiro, Y. Sato, H. Tomita, Y.-Y. Hayashi, Martian dust devil statistics from high-resolution large-eddy simulations. Geophys. Res. Lett. 43(9), 4180–4188 (2016). doi: 10.1002/2016GL068896 ADSCrossRefGoogle Scholar
  60. M. Odaka, K. Nakajima, S. Takehiro, M. Ishiwatari, Y. Hayashi, A numerical study of the martian atmospheric convection with a two-dimensional anelastic model. Earth Planets Space 50, 431–437 (1998) ADSCrossRefGoogle Scholar
  61. H. Ohno, T. Takemi, Mechanisms for intensification and maintenance of numerically simulated dust devils. Atmos. Sci. Lett. 11(1), 27–32 (2010a) Google Scholar
  62. H. Ohno, T. Takemi, Numerical study for the effects of mean wind on the intensity and evolution of dust devils. SOLA 6(1), 5–8 (2010b). doi: 10.2151/sola.6A-002 CrossRefGoogle Scholar
  63. A. Petrosyan, B. Galperin, S.E. Larsen, S.R. Lewis, A. Määttänen, P.L. Read, N. Renno, L.P.H.T. Rogberg, H. Savijärvi, T. Siili, A. Spiga, A. Toigo, L. Vázquez, The martian atmospheric boundary layer. Rev. Geophys. 49, 3005 (2011). doi: 10.1029/2010RG000351 ADSCrossRefGoogle Scholar
  64. R. Pielke, W. Cotton, R. Walko, C. Trembaek, W. Lyons, L. Grasso, M. Nieholls, M. Moran, D. Wesley, T. Lee, et al., A comprehensive meteorological modeling system-RAMS. Meteorol. Atmos. Phys. 49, 69–91 (1992) ADSCrossRefGoogle Scholar
  65. S. Raasch, T. Franke, Structure and formation of dust devil-like vortices in the atmospheric boundary layer: a high-resolution numerical study. J. Geophys. Res., Atmos. (1984–2012) 116(D16) (2011) Google Scholar
  66. S.C.R. Rafkin, R.M. Haberle, T.I. Michaels, The Mars regional atmospheric modeling system: model description and selected simulations. Icarus 151, 228–256 (2001) ADSCrossRefGoogle Scholar
  67. S. Rafkin, L. Fenton, R. Lorenz, B. Jemmett-Smith, N. Renno, T. Takemi, P. Knippertz, J. Ito, D. Tyler, Dust devil formation conditions and process. Space Sci. Rev. [“Dust devils” special issue] (2016, submitted) Google Scholar
  68. D. Reiss, D. Lüsebrink, H. Hiesinger, T. Kelling, G. Wurm, J. Teiser, High altitude dust devils on Arsia Mons, Mars: testing the greenhouse and thermophoresis hypothesis of dust lifting, in Lunar and Planetary Institute Science Conference Abstracts. Lunar and Planetary Inst. Technical Report, vol. 40, 2009, p. 1961 Google Scholar
  69. D. Reiss, P. Whelley, L.D.V. Neakrase, M. Zimmerman, L. Fenton, M. Balme, A.P. Rossi, T. Statella, Dust devil tracks and surface albedo changes. Space Sci. Rev. [“Dust devils” special issue] (2016, submitted) Google Scholar
  70. N.O. Renno, M.L. Burkett, M.P. Larkin, A simple thermodynamical theory for dust devils. J. Atmos. Sci. 55, 3244–3252 (1998) ADSMathSciNetCrossRefGoogle Scholar
  71. N.O. Renno, A.-S. Wong, S.K. Atreya, I. de Pater, M. Roos-Serote, Electrical discharges and broadband radio emission by martian dust devils and dust storms. Geophys. Res. Lett. 30(22), 220000-1 (2003) CrossRefGoogle Scholar
  72. N.O. Renno, V.J. Abreu, J. Koch, P.H. Smith, O.K. Hartogensis, H.A.R. De Bruin, D. Burose, G.T. Delory, W.M. Farrell, C.J. Watts, J. Garatuza, M. Parker, A. Carswell, MATADOR 2002: a pilot field experiment on convective plumes and dust devils. J. Geophys. Res. 109(E18), 7001 (2004). doi: 10.1029/2003JE002219 CrossRefGoogle Scholar
  73. M.I. Richardson, A.D. Toigo, C.E. Newman, PlanetWRF: a general purpose, local to global numerical model for planetary atmospheric and climate dynamics. J. Geophys. Res. 112(E09001) (2007). doi: 10.1029/2005JE002636
  74. R. Rotunno, The fluid dynamics of tornadoes. Annu. Rev. Fluid Mech. 45, 59–84 (2013). doi: 10.1146/annurev-fluid-011212-140639 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  75. P. Sagaut, Large Eddy Simulation for Incompressible Flows: An Introduction (Springer, Berlin, 2006) zbMATHGoogle Scholar
  76. H. Sävijarvi, A model study of the atmospheric boundary layer in the Mars Pathfinder lander conditions. Q. J. R. Meteorol. Soc. 125(554), 483–493 (1999) ADSCrossRefGoogle Scholar
  77. J.T. Schofield, D. Crisp, J.R. Barnes, R.M. Haberle, J.A. Magalhaães, J.R. Murphy, A. Seiff, S. Larsen, G. Wilson, The Mars Pathfinder atmospheric structure investigation/meteorology (ASI/MET) experiment. Science 278, 1752–1757 (1997) ADSCrossRefGoogle Scholar
  78. Y. Shao, S. Liu, J. Schween, S. Crewell, Large-eddy atmosphere—land-surface modelling over heterogeneous surfaces: model development and comparison with measurements. Bound.-Layer Meteorol. 148(2), 333–356 (2013). doi: 10.1007/s10546-013-9823-0 ADSCrossRefGoogle Scholar
  79. Y. Shao, W. Nickling, G. Bergametti, H. Butler, A. Chappell, P. Findlater, J. Gillies, M. Ishizuka, M. Klose, J. Kok, J. Leys, H. Lu, B. Marticorena, G. McTainsh, C. McKenna-Neuman, G. Okin, C. Strong, N. Webb, A tribute to M.R. Raupach for contributions to aeolian fluid dynamics. Aeolian Res. 19 Part A, 37–54 (2015). doi: 10.1016/j.aeolia.2015.09.004 ADSCrossRefGoogle Scholar
  80. P.C. Sinclair, The lower structure of dust devils. J. Atmos. Sci. 30(8), 1599–1619 (1973) ADSMathSciNetCrossRefGoogle Scholar
  81. W.C. Skamarock, J.B. Klemp, A time-split nonhydrostatic atmospheric model for weather research and forecasting applications. J. Comput. Phys. 227, 3465–3485 (2008). doi: 10.1016/ ADSMathSciNetCrossRefzbMATHGoogle Scholar
  82. J. Smagorinsky, General circulation experiments with the primitive equations. I. The basic experiment. Mon. Weather Rev. 91, 99–164 (1963) ADSCrossRefGoogle Scholar
  83. Z. Sorbjan, Statistics of shallow convection on Mars based on large-eddy simulations. Part 1: shearless conditions. Bound.-Layer Meteorol. 123, 121–142 (2007). doi: 10.1007/s10546-006-9128-7 ADSCrossRefGoogle Scholar
  84. A. Spiga, Elements of comparison between martian and terrestrial mesoscale meteorological phenomena: katabatic winds and boundary layer convection. Planet. Space Sci. 59, 915–922 (2011). doi: 10.1016/j.pss.2010.04.025 ADSCrossRefGoogle Scholar
  85. A. Spiga, F. Forget, A new model to simulate the martian mesoscale and microscale atmospheric circulation: validation and first results. J. Geophys. Res., Planets 114, 02009 (2009). doi: 10.1029/2008JE003242 ADSCrossRefGoogle Scholar
  86. A. Spiga, S.R. Lewis, Martian mesoscale and microscale wind variability of relevance for dust lifting. Int. J. Mars Sci. Explor. 5, 146–158 (2010). doi: 10.1555/mars.2010.0006 Google Scholar
  87. A. Spiga, F. Forget, S.R. Lewis, D.P. Hinson, Structure and dynamics of the convective boundary layer on mars as inferred from large-eddy simulations and remote-sensing measurements. Q. J. R. Meteorol. Soc. 136, 414–428 (2010). doi: 10.1002/qj.563 ADSCrossRefGoogle Scholar
  88. P.P. Sullivan, E.G. Patton, The effect of mesh resolution on convective boundary layer statistics and structures generated by large-eddy simulation. J. Atmos. Sci. 68, 2395–2415 (2011). doi: 10.1175/JAS-D-10-05010.1 ADSCrossRefGoogle Scholar
  89. T. Takemi, An eddy-resolving simulation of the diurnal variation of fair-weather convection and tracer transport. Atmos. Res. 89, 270–282 (2008). doi: 10.1016/j.atmosres.2008.02.012 CrossRefGoogle Scholar
  90. P.C. Thomas, P.J. Gierasch, Dust devils on Mars. Science 230, 175–177 (1985) ADSCrossRefGoogle Scholar
  91. A.D. Toigo, M.I. Richardson, Meteorology of proposed Mars exploration rover landing sites. J. Geophys. Res., Planets 108(E12), 8092 (2003). doi: 10.1029/2003JE002064 ADSCrossRefGoogle Scholar
  92. A.D. Toigo, M.I. Richardson, S.P. Ewald, P.J. Gierasch, Numerical simulation of martian dust devils. J. Geophys. Res., Planets 108, 5047 (2003). doi: 10.1029/2002JE002002 ADSCrossRefGoogle Scholar
  93. D. Tyler, J.R. Barnes, Mesoscale modeling of the circulation in the Gale crater region: an investigation into the complex forcing of convective boundary layer depths. Mars 8, 58–77 (2013). doi: 10.1555/mars.2013.0003 ADSGoogle Scholar
  94. D. Tyler, J.R. Barnes, Convergent crater circulations on mars: influence on the surface pressure cycle and the depth of the convective boundary layer. Geophys. Res. Lett. 42 (2015). doi: 10.1002/2015GL064957
  95. D. Tyler, J.R. Barnes, E.D. Skyllingstad, Mesoscale and large-eddy simulation model studies of the martian atmosphere in support of Phoenix. J. Geophys. Res., Planets 113(E12) (2008). doi: 10.1029/2007JE003012
  96. M. Weißmüller, F. Hoffmann, , S. Raasch, Towards large-eddy simulations of dust devils with observed intensity: effects of numerics and surface heterogeneities. J. Geophys. Res. (2016, submitted) Google Scholar
  97. Y.Z. Zhao, Z.L. Gu, Y.Z. Yu, Y. Ge, Y. Li, X. Feng, Mechanism and large eddy simulation of dust devils. Atmos.-Ocean 42(1), 61–84 (2004). doi: 10.3137/ao.420105 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Aymeric Spiga
    • 1
    Email author
  • Erika Barth
    • 2
  • Zhaolin Gu
    • 3
  • Fabian Hoffmann
    • 4
  • Junshi Ito
    • 5
  • Bradley Jemmett-Smith
    • 6
  • Martina Klose
    • 8
    • 7
  • Seiya Nishizawa
    • 9
  • Siegfried Raasch
    • 4
  • Scot Rafkin
    • 2
  • Tetsuya Takemi
    • 10
  • Daniel Tyler
    • 11
  • Wei Wei
    • 12
  1. 1.Laboratoire de Météorologie Dynamique, UMR CNRS 8539, Institut Pierre-Simon LaplaceSorbonne UniversitésParisFrance
  2. 2.SouthWest Research InstituteBoulderUSA
  3. 3.Xi’an Jiaotong UniversityXi’anChina
  4. 4.Institute of Meteorology and ClimatologyLeibniz Universität HannoverHannoverGermany
  5. 5.Meteorological Research InstituteIbarakiJapan
  6. 6.Institute of Climate and Atmospheric ScienceUniversity of LeedsLeedsUK
  7. 7.Institute for Geophysics and MeteorologyUniversity of CologneCologneGermany
  8. 8.USDA-ARS Jornada Experimental RangeLas CrucesUSA
  9. 9.RIKEN Advanced Institute for Computational ScienceKobeJapan
  10. 10.Disaster Prevention Research InstituteKyoto UniversityKyotoJapan
  11. 11.Oregon State UniversityCorvallisUSA
  12. 12.Wuhan University of TechnologyWuhanChina

Personalised recommendations