Space Science Reviews

, Volume 203, Issue 1–4, pp 39–87 | Cite as

Field Measurements of Terrestrial and Martian Dust Devils

  • Jim Murphy
  • Kathryn Steakley
  • Matt Balme
  • Gregoire Deprez
  • Francesca Esposito
  • Henrik Kahanpää
  • Mark Lemmon
  • Ralph Lorenz
  • Naomi Murdoch
  • Lynn Neakrase
  • Manish Patel
  • Patrick Whelley
Article

Abstract

Surface-based measurements of terrestrial and martian dust devils/convective vortices provided from mobile and stationary platforms are discussed. Imaging of terrestrial dust devils has quantified their rotational and vertical wind speeds, translation speeds, dimensions, dust load, and frequency of occurrence. Imaging of martian dust devils has provided translation speeds and constraints on dimensions, but only limited constraints on vertical motion within a vortex. The longer mission durations on Mars afforded by long operating robotic landers and rovers have provided statistical quantification of vortex occurrence (time-of-sol, and recently seasonal) that has until recently not been a primary outcome of more temporally limited terrestrial dust devil measurement campaigns. Terrestrial measurement campaigns have included a more extensive range of measured vortex parameters (pressure, wind, morphology, etc.) than have martian opportunities, with electric field and direct measure of dust abundance not yet obtained on Mars. No martian robotic mission has yet provided contemporaneous high frequency wind and pressure measurements. Comparison of measured terrestrial and martian dust devil characteristics suggests that martian dust devils are larger and possess faster maximum rotational wind speeds, that the absolute magnitude of the pressure deficit within a terrestrial dust devil is an order of magnitude greater than a martian dust devil, and that the time-of-day variation in vortex frequency is similar. Recent terrestrial investigations have demonstrated the presence of diagnostic dust devil signals within seismic and infrasound measurements; an upcoming Mars robotic mission will obtain similar measurement types.

Keywords

Dust devils 

References

  1. R.A. Bagnold, The Physics of Blown Sand and Desert Dunes (Dover, Mineola, 1941) Google Scholar
  2. M.R. Balme, A. Pathare, S.M. Metzger, M.C. Towner, S.R. Lewis, A. Spiga, L.K. Fenton, N.O. Renno, H.M. Elliott, F.A. Saca, T.I. Michaels, P. Russell, J. Verdasca, Field measurements of horizontal forward motion velocities of terrestrial dust devils: towards a proxy for ambient winds on Mars and Earth. Icarus 221(2), 632–645 (2012) ADSCrossRefGoogle Scholar
  3. M. Balme, R. Greeley, Dust devils on Earth and Mars. Rev. Geophys. 44, RG3003 (2006) ADSCrossRefGoogle Scholar
  4. M. Balme, S. Metzger, M. Towner, T. Ringrose, R. Greeley, J. Iversen, Friction wind speeds in dust devils: a field study. Geophys. Res. Lett. 30(16), 1830 (2003). doi:10.1029/2003GL017493 ADSCrossRefGoogle Scholar
  5. D. Banfield, Mars acoustic anemometer, AGU Fall Meeting 2012, San Francisco, California, USA. Poster presentation (2012), http://abstractsearch.agu.org/meetings/2012/FM/P23A-1916.html
  6. D. Banfield, Atmospheric observations from the Mars insight mission, in Fifth International Workshop on the Mars Atmosphere: Modelling and Observations, Oxford, UK (2014). Oral presentation, http://www-mars.lmd.jussieu.fr/oxford2014/abstracts/banfield_oxford2014.pdf Google Scholar
  7. A.J. Bedard, Low frequency atmospheric acoustic energy associated with vortices produced by thunderstorms. Mon. Weather Rev. 241–243 (2005) Google Scholar
  8. F. Bell, Dust devils and aviation, report, Meteorol. Note 27, Aust. Bur. of Meteorol., Melbourne, Victoria, 1967 Google Scholar
  9. J.-J. Berthelier, ARES, atmospheric relaxation and electric field sensor, the electric field experiment on NETLANDER. Planet. Space Sci. 48(12–14), 1193–2000 (2000) ADSCrossRefGoogle Scholar
  10. C. Bettanini et al., The DREAMS experiment on the ExoMars 2016 mission for the study of martian environment during the dust storm season. MetroAeroSpace 167(173), 29–30 (2014). doi:10.1109/MetroAeroSpace.2014.6865914 Google Scholar
  11. H.B. Bluestein, A.L. Pazmany, Observations of tornadoes and other convective phenomena with a mobile, 3-mm wavelength, Doppler radar: the spring 1999 field experiment. Bull. Am. Meteorol. Soc. 81, 2939–2951 (2000) ADSCrossRefGoogle Scholar
  12. J.J. Carroll, J.A. Ryan, Atmospheric vorticity and dust devil rotation. J. Geophys. Res. 75, 5179–5184 (1970) ADSCrossRefGoogle Scholar
  13. W.D. Crozier, Dust devil properties. J. Geophys. Res. 75, 4583–4585 (1970) ADSCrossRefGoogle Scholar
  14. R. Davy, J.A. Davies, P.A. Taylor, C. Lange, W. Weng, J. Whiteway, H.P. Gunnlaugson, Initial analysis of air temperature and related data from the Phoenix MET station and their use in estimating turbulent heat fluxes. J. Geophys. Res. 115, E00E13 (2010). doi:10.1029/2009JE003444 ADSCrossRefGoogle Scholar
  15. S.J. Desch, J.N. Cuzzi, The generation of lightning in the solar nebula. Icarus 143, 87–105 (2000). doi:10.1006/icar.1999.6245 ADSCrossRefGoogle Scholar
  16. M. Domínguez, V. Jiménez, J. Ricart, L. Kowalski, J. Torres, S. Navarro, J. Romeral, L. Castañer, A hot film anemometer for the martian atmosphere. Planet. Space Sci. 56(8), 1169–1179 (2008). doi:10.1016/j.pss.2008.02.013 ADSCrossRefGoogle Scholar
  17. N. Duff, D.J. Lacks, Particle dynamics simulations of triboelectric charging in granular insulator systems. J. Electrost. 66, 51 (2008). doi:10.1016/j.elstat.2007.08.005 CrossRefGoogle Scholar
  18. R. Edmonds, Examination of two martian atmosphere phenomena: dust devil acoustics and gravity wave forcing of dust storm development. PhD dissertation, New Mexico State University, 2014, p. 223 Google Scholar
  19. M.D. Ellehoj, H.P. Gunnlaugsson, P.A. Taylor, H. Kahanpää, K.M. Bean, B.A. Cantor, B.T. Gheynani, L. Drube, D. Fisher, A.-M. Harri, C. Holstein-Rathlou, M.T. Lemmon, M.B. Madsen, M.C. Malin, J. Polkko, P.H. Smith, L.K. Tamppari, W. Weng, J. Whiteway, Convective vortices and dust devils as the Phoenix Mars mission landing site. J. Geophys. Res. 115, E00E16 (2010). doi:10.1029/2009JE003413 ADSCrossRefGoogle Scholar
  20. F. Esposito, MEDUSA: observation of atmospheric dust and water vapor close to the surface of Mars. Mars 6, 1–12 (2011). http://www.marsjournal.org/contents/2011/0001/. doi:10.1555/mars.2011.0001 ADSGoogle Scholar
  21. F. Esposito, R. Molinaro, C.I. Popa, C. Molfese, F. Cozzolino, L. Marty, K. Taj-Eddine, G. Di Achille, G. Franzese, S. Silvestro, G.C. Ori, The role of atmospheric electric field in the dust lifting process. Geophys. Res. Lett. (2016, in press) Google Scholar
  22. L.K. Fenton, R. Lorenz, Dust devil height and spacing with relation to the martian planetary boundary layer thickness. Icarus 260, 246–262 (2015). doi:10.1016/j.icarus2015.07.028 ADSCrossRefGoogle Scholar
  23. L. Fenton, D. Reiss, M. Lemmon, B. Marticorena, S. Lewis, B. Cantor, Orbital observations of dust lofted by daytime convective turbulence. Space Sci. Rev. (2016). doi:10.1007/s11214-016-0243-6 Google Scholar
  24. F. Ferri, P.H. Smith, M.T. Lemmon, N. Renno, Dust devils as observed by Mars Pathfinder. J. Geophys. Res. 108(E12), 5133 (2003). doi:10.1029/2000JE001421 CrossRefGoogle Scholar
  25. D.E. Fitzjarrald, A field investigation of dust devils. J. Appl. Meteorol. 12, 808–813 (1973) ADSCrossRefGoogle Scholar
  26. W.D. Flower, Sand devils. Lond. Meteorol. Off. Prof. Notes 5(71), 1–16 (1936) Google Scholar
  27. K.M. Forward, D.J. Lacks, R.M. Sankaran, Particle-size dependent bipolar charging of martian regolith simulant. Geophys. Res. Lett. 36(13), L13201 (2009) ADSCrossRefGoogle Scholar
  28. G.D. Freier, The electric field of a large dust devil. J. Geophys. Res. 65, 3504 (1960). doi:10.1029/JZ065i010p03504 ADSCrossRefGoogle Scholar
  29. S.D. Fuerstenau, Solar heating of suspended particles and the dynamics of martian dust devils. Geophys. Res. Lett. 33, 19 (2006). doi:10.1029/2006GL026798 CrossRefGoogle Scholar
  30. E.W.B. Gill, Friction electrification of sand. Nature 162, 568 (1948) ADSCrossRefGoogle Scholar
  31. D.A. Gillette, P. Sinclair, Estimation of suspension of alkaline material by dust devils in the United States. Atmos. Environ. 24(A), 1135–1142 (1990) ADSCrossRefGoogle Scholar
  32. D.A. Gillette, I.H. Blifford, D.W. Fryrear, Influence of wind velocity on size distributions of aerosols generated by wind erosion of soils. J. Geophys. Res. 79, 4068–4075 (1974) ADSCrossRefGoogle Scholar
  33. M. Golombek et al., Overview of the Mars Pathfinder mission and assessment of landing site predictions. Science 278, 5344 (1997). doi:10.1126/science.278.5344.1743 CrossRefGoogle Scholar
  34. J. Gómez-Elvira et al., REMS: the environmental sensor suite for the Mars science laboratory rover. Space Sci. Rev. 170, 583–640 (2012). doi:10.1007/s11214-012-9921-1 ADSCrossRefGoogle Scholar
  35. J. Gómez-Elvira et al., Curiosity’s rover environmental monitoring station: overview of the first 100 sols. J. Geophys. Res., Planets 119, 1680–1688 (2014). doi:10.1002/2013JE004576 ADSCrossRefGoogle Scholar
  36. C.G. Grant, Dust devils in the sub-arctic. Weather 4, 402–403 (1949) CrossRefGoogle Scholar
  37. R. Greeley, J.D. Iversen, Wind as a Geological Process. Cambridge Planetary Science Series (Cambridge University Press, Cambridge, 1985). ISBN 0521356927 CrossRefGoogle Scholar
  38. R. Greeley et al., Wind related features in Gusev crater, Mars. J. Geophys. Res. 108(E12), 8077 (2003) Google Scholar
  39. R. Greeley, P.L. Whelley, R.E. Arvidson, N.A. Cabrol, D.J. Foley, B.J. Franklin, P.G. Geissler, M.P. Golombek, R.O. Kuzmin, G.A. Landis, M.T. Lemmon, L.D.V. Neakrase, S.W. Squyres, S.D. Thompson, Active dust devils in Gusev Crater, Mars: observations from the Mars exploration rover spirit. J. Geophys. Res. 111(E12) (2006). doi:10.1029/2006JE002743
  40. R. Greeley, D.A. Waller, N.A. Cabrol, G.A. Landis, M.T. Lemmon, L.V. Nekarase, M. Pendelton Hoffer, S.D. Thompson, Gusev Crater, Mars: observations of three dust devil seasons. J. Geophys. Res. 115 (2010) Google Scholar
  41. J. Grotzinger et al., Mars science laboratory mission and science investigation. Space Sci. Rev. 170(1), 5–56 (2012). doi:10.1007/s11214-012-9892-2 ADSCrossRefGoogle Scholar
  42. H.P. Gunnlaugsson et al., Telltale wind indicator for the Mars Phoenix lander. J. Geophys. Res. 113, E00A04 (2008). doi:10.1029/2007JE003008 ADSCrossRefGoogle Scholar
  43. R.M. Haberle, J. Gómez-Elvira, M. de la Torre Juárez, A.-M. Harri, J.L. Hollingsworth, H. Kahanpää, M.A. Kahre, M. Lemmon, F.J. Martín-Torres, M. Mischna, J.E. Moores, C. Newman, S.C.R. Rafkin, N. Rennó, M.I. Richardson, J.A. Rodríguez-Manfredi, A.R. Vasavada, M.-P. Zorzano-Mier, REMS/MSL Science Teams, Preliminary interpretation of the REMS pressure data from the first 100 sols of the MSL mission. J. Geophys. Res., Planets 119, 440–453 (2014). doi:10.1002/2013JE004488 ADSCrossRefGoogle Scholar
  44. J. Hallett, T. Hoffer, Dust devil systems. Weather 26, 247–250 (1971) ADSCrossRefGoogle Scholar
  45. W.R. Harper, Contact and Frictional Dissipation (Clarendon Press, Oxford, 1967) Google Scholar
  46. A.-M. Harri, M. Genzer, O. Kemppinen, H. Kahanpää, J. Gomez-Elvira, J.A. Rodriguez-Manfredi, R. Haberle, J. Polkko, W. Schmidt, H. Savijärvi, J. Kauhanen, E. Atlaskin, M. Richardson, T. Siili, M. Paton, M. de la Torre Juarez, C. Newman, S. Rafkin, M.T. Lemmon, M. Mischna, S. Merikallio, H. Haukka, J. Martin-Torres, M.-P. Zorzano, V. Peinado, R. Urqui, A. Lapinette, A. Scodary, T. Mäkinen, L. Vazquez, N. Rennó, The REMS/MSL Science Team, Pressure observations by the curiosity rover: initial results. J. Geophys. Res., Planets 119, 82–92 (2014). doi:10.1002/2013JE004423 ADSCrossRefGoogle Scholar
  47. R.G. Harrison, E. Barth, F. Esposito, J. Merrison, F. Montmessin, K.L. Aplin, C. Borlina, J.J. Berthelier, G. Déprez, W.M. Farrell, I.M.P. Houghton, N.O. Renno, K.A. Nicoll, S.N. Tripathi, M. Zimmerman, Applications of electrified dust and dust devil electrodynamics to martian atmospheric electricity. Space Sci. Rev. (2016). doi:10.1007/s11214-016-0241-8 Google Scholar
  48. M. Hecht, M.D. Tratt, D. Catling, S. Samulon, MATADOR dust devil campaign (2001) Google Scholar
  49. G.D. Hess, K.T. Spillane, Characteristics of dust devils in Australia. J. Appl. Meteorol. 29, 498–507 (1990) ADSCrossRefGoogle Scholar
  50. S.L. Hess, R.M. Henry, C.B. Leovy, J.A. Ryan, J.E. Tillman, Meteorological results from the surface of Mars: viking 1 and 2. J. Geophys. Res. 82(28), 4559–4574 (1977). doi:10.1029/JS082i028p04559 ADSCrossRefGoogle Scholar
  51. C. Holstein-Rathlou et al., Winds at the Phoenix landing site. J. Geophys. Res. 115, E00E18 (2010). doi:10.1029/2009JE003411 ADSCrossRefGoogle Scholar
  52. R.G. Horn, D.T. Smith, A. Grabbe, Contact electrification induced by monolayer modification of a surface and relation to acid-base interactions. Nature 366, 442–443 (1993). doi:10.1038/366442a0 ADSCrossRefGoogle Scholar
  53. M.S. Howe, Theory of Vortex Sound (Cambridge University Press, Cambridge, 2003) MATHGoogle Scholar
  54. I.I. Inculet, G.S.P. Castle, G. Aartsen, Generation of bipolar electric fields during industrial handling of powders. Chem. Eng. Sci. 61, 2249–2253 (2006). doi:10.1016/j.ces.2005.05.005 CrossRefGoogle Scholar
  55. J. Ito, H. Niino, Particle image velocimetry of a dust devil observed in a desert. Sci. Online Lett. Atmos. 10(1), 108–111 (2014) Google Scholar
  56. R.L. Ives, Behavior of dust devils. Bull. Am. Meteorol. Soc. 28, 168–174 (1947) Google Scholar
  57. D.J. Lacks, A. Levandovsky, Effect of particle size distribution on the polarity of triboelectric charging in granular insulator systems. J. Electrost. 65, 107 (2007) CrossRefGoogle Scholar
  58. T.L. Jackson, W.M. Farrell, IEEE Trans. Geosci. Remote Sens. 44, 2942 (2006). doi:10.1109/TGRS.2006.875785 ADSCrossRefGoogle Scholar
  59. B. Jackson, R. Lorenz, A multiyear dust devil vortex survey using an automated search of pressure time series. J. Geophys. Res. 120(2), 401–412 (2015). doi:10.1092/2014JE004712 CrossRefGoogle Scholar
  60. H. Kahanpää, C. Newman, J. Moores, M-P. Zorzano, J. Martín-Torres, S. Navarro, A. Lepinette, M.T. Lemmon, B. Cantor, P. Valentín-Serrano, A. Ullán, W. Schmidt, Convective vortices and dust devils at the MSL landing site: annual variability. J. Geophys. Res. Planets 121 (2016). doi:10.1002/2016JE005027
  61. M. Kahre, J. Murphy, R. Haberle, Modeling the martian dust cycle and surface dust reservoirs with the NASA Ames general circulation model. J. Geophys. Res., Planets 111, E6 (2006) CrossRefGoogle Scholar
  62. J.C. Kaimal, J.A. Bussinger, Case studies of a convective plume and a dust devil. J. Appl. Meteorol. 9, 612–620 (1970) ADSCrossRefGoogle Scholar
  63. M. Klose, B.C. Jemmet-Smith, H. Kahanpää, M. Kahre, P. Knippertz, M. Lemmon, S. Lewis, R. Lorenz, L. Neakrase, C. Newman, M. Patel, D. Reiss, A. Spioga, P. Whelley, Space Sci. Rev. (2016). doi:10.1007/s11214-016-0261-4 Google Scholar
  64. J.F. Kok, N.O. Renno, Enhancement of the emission of mineral dust aerosols by electric forces. Geophys. Res. Lett. 33, L19S10 (2006) CrossRefGoogle Scholar
  65. J.F. Kok, N.O. Renno, Electrostatics in wind-blown sand. Phys. Rev. Lett. 100, 014501 (2008) ADSCrossRefGoogle Scholar
  66. M.V. Kurgansky, Size distribution of dust devils in the atmosphere. Izv., Atmos. Ocean. Phys. 42(3), 319–325 (2006) CrossRefGoogle Scholar
  67. M.V. Kurgansky et al., Dust devil steady-state structure from a fluid dynamic perspective. Space Sci. Rev. (2016). doi:10.1007/s11214-016-0281-0 Google Scholar
  68. M.V. Kurgansky, A. Montecinos, V. Villagran, S.M. Metzger, Micrometeorological conditions for dust-devil occurrence in the Atacama Desert. Bound.-Layer Meteorol. 138, 285–298 (2011). doi:10.1007/s10546-010-9549-1 ADSCrossRefGoogle Scholar
  69. R.I. Lambeth, On the measurement of dust devil parameters. Bull. Am. Meteorol. Soc. 47, 522–526 (1966) Google Scholar
  70. G.A. Landis, P.P. Jenkins, Measurement of the settling rate of atmospheric dust on Mars by the MAE instrument on Mars Pathfinder. J. Geophys. Res. 105(E1), 1855–1857 (2000). doi:10.1029/1999JE001029 ADSCrossRefGoogle Scholar
  71. J. Latham, The electrification of snowstorms and sandstorms. Q. J. R. Meteorol. Soc. 90, 383 (1964). doi:10.1002/qj.49709038310 Google Scholar
  72. J. Latham, C.D. Stow, A laboratory investigation of the electrification of snowstorms. Q. J. R. Meteorol. Soc. 94, 415 (1968) ADSCrossRefGoogle Scholar
  73. M.T. Lemmon, M.J. Wolff, M.D. Smith, R.T. Clancy, D. Banfield, G.A. Landis, A. Ghosh, P.H. Smith, N. Spanovich, B. Whitney, P. Whelley, R. Greeley, S. Thompson, J.F. Bell III, S.W. Squyres, Atmospheric imaging results from the Mars exploration rovers: spirit and opportunity. Science 306, 1753–1756 (2004) ADSCrossRefGoogle Scholar
  74. M.T. Lemmon, M.J. Wolff, J.F. Bell III., M.D. Smith, B.A. Cantor, P.H. Smith, Dust aerosol, clouds and the atmospheric optical depth record over 5 Mars years of the Mars exploration rover mission. Icarus 251, 96–111 (2015) ADSCrossRefGoogle Scholar
  75. B. Lenoir, D. Banfield, D.A. Caughey, Accommodation study for an anemometer on a martian lander. J. Atmos. Ocean. Technol. 28, 210–218 (2011). doi:10.1175/2010JTECHA1490.1 ADSCrossRefGoogle Scholar
  76. E. Leonard-Pugh, C. Wilson, S. Calcutt, L. Davis, Capacitive ultrasonic transducer development for acoustic anemometry on Mars in 44th Annual Meeting of the Division for Planetary Sciences of the American Astronomical Society, Reno, NV, USA (2012). Poster presentation, http://adsabs.harvard.edu/abs/2012DPS....4421523L Google Scholar
  77. P. Lognonné, B. Mosser, Planetary seismology. Surv. Geophys. 14, 239–302 (1993) ADSCrossRefGoogle Scholar
  78. P. Lognonné, W.B. Banerdt, K. Hurst, D. Mimoun, R. Garcia, M. Lefeuvre, J. Gagnepain-Beyneix, M. Wieczorek, A. Mocquet, M. Panning, E. Beucler, S. Deraucourt, D. Giardini, L. Boschi, U. Christensen, W. Goetz, T. Pike, C. Johnson, R. Weber, K. Larmat, N. Kobayashi, J. Tromp, Insight and single-station broadband seismology: from signal and noise to interior structure determination, in 43rd Lunar and Planetary Science Conference, Houston, TX, March 2012 (2012). Abstract #1983 Google Scholar
  79. R. Lorenz, Thermal imaging of a desert dust devil. J. Meteorol. 29(292), 275–276 (2004) Google Scholar
  80. R.D. Lorenz, Power law of dust devil diameters on Mars and Earth. Icarus 203(2), 683–684 (2009) ADSCrossRefGoogle Scholar
  81. R. Lorenz, On the statistical distribution of dust devil diameter. Icarus 215(1), 381–390 (2011) ADSCrossRefGoogle Scholar
  82. R.D. Lorenz, Power law distribution of pressure drops in dust devils: observation techniques and Earth–Mars comparison. Planet. Space Sci. 60, 370–375 (2012a). doi:10.1016/j.pss.2011.11.003 ADSCrossRefGoogle Scholar
  83. R.D. Lorenz, Observing desert dust devils with a pressure logger. Geosci. Instrum. Method. Data Syst. 1, 209–220 (2012b) ADSCrossRefGoogle Scholar
  84. R. Lorenz, The longevity and aspect ratio of dust devils: effects on detection efficiencies and comparison of landed and orbital imaging at Mars. Icarus 226, 964–970 (2013) ADSCrossRefGoogle Scholar
  85. R.D. Lorenz, Vortex encounter rates with fixed barometer stations: comparison with visual dust devil counts and large eddy simulations. J. Atmos. Sci. 71, 4461–4472 (2014) ADSCrossRefGoogle Scholar
  86. R.D. Lorenz, Heuristic estimation of dust devil vortex parameters and trajectories from single-station meteorological observations: application to InSight at Mars. Icarus 271(2–16), 326–337 (2016) ADSCrossRefGoogle Scholar
  87. R.D. Lorenz, D. Christie, Dust devil signatures in infrasound records of the international monitoring system. Geophys. Res. Lett. 42(6), 2009–2014 (2015) ADSCrossRefGoogle Scholar
  88. R.D. Lorenz, B.K. Jackson, Dust devils and dustless vortices on a desert playa observed with surface pressure and solar flux logging. GeoResJ 5, 1–11 (2015). doi:10.1016/j.grj.2014.11.002 CrossRefGoogle Scholar
  89. R.D. Lorenz, B. Jackson, Dust devil populations and statistics. Space Sci. Rev. (2016). doi:10.1007/s11214-016-0277-9 Google Scholar
  90. R.D. Lorenz, P.D. Lanagan, A barometric survey of dust devil vortices on a desert playa. Bound.-Layer Meteorol. 53, 555–568 (2014). doi:10.1007/s10546-014-9954-y ADSCrossRefGoogle Scholar
  91. R. Lorenz, J. Radebaugh, Dust devils in thin air: vortex observations at a high elevation Mars analog site in the Argentinian Puna. Geophys. Res. Lett. 43 (2016). doi:10.1002/2015GL067412
  92. R.D. Lorenz, D. Reiss, Solar panel clearing events, dust devil tracks, and in-situ vortex detections on Mars. Icarus 248, 162–164 (2015) ADSCrossRefGoogle Scholar
  93. R.D. Lorenz, K.S. Sotzen, Buoyant thermal plumes from planetary landers and rovers: application to sizing of meteorological masts. Planet. Space Sci. 90, 81–89 (2014). doi:10.1016/j.pss.2013.10.011 ADSCrossRefGoogle Scholar
  94. R.D. Lorenz, S. Kedar, N. Murdoch, P. Lognonné, T. Kawamurak, D. Mimoun, W.B. Banerdt, Seismometer signature of dust devils: implication for InSight, in 2015 European and Planetary Science Conference, Nantes (2015a) Google Scholar
  95. R.D. Lorenz, S. Kedar, N. Murdoch, P. Lognonné, T. Kawamurak, D. Mimoun, W.B. Banerdt, Seismometer detection of dust devil vortices by ground tilt. Bull. Seismol. Soc. Am. BSSA-S-15-00169 (2015b) Google Scholar
  96. R.D. Lorenz, L.D. Neakrase, J.D. Anderson, In-situ measurement of dust devil activity at La Jornada Experimental Range, New Mexico, USA. Aeolian Res. 19, 183–194 (2015c) ADSCrossRefGoogle Scholar
  97. R.D. Lorenz, M. Balme, Z. Gu et al., History and application of dust devil studies. Space Sci. Rev. (2016). doi:10.1007/s11214-016-0239-2 Google Scholar
  98. J. Lowell, W.S. Truscott, Triboelectrification of identical insulators. II. Theory and further experiments. J. Phys. D, Appl. Phys. 19, 1281–1298 (1986). doi:10.1088/0022-3727/19/7/018 ADSCrossRefGoogle Scholar
  99. J.P. Mason, M.R. Patel, S.R. Lewis, Radiative transfer modelling of dust devils. Icarus 223, 1–10 (2013) ADSCrossRefGoogle Scholar
  100. J.P. Mason, M.R. Patel, S.W. Lewis, The retrieval of optical properties from terrestrial dust devil vortices. Icarus 231, 385–393 (2014) ADSCrossRefGoogle Scholar
  101. S. Maurice, R.C. Wiens, W. Rapin, D. Mimoun, X. Jacob, B. Betts, S. Clegg, A. Cousin, O. Gasnault, O. Forni, J. Lasue, P.-Y. Meslin, J.F. Bell, G. Delory, A microphone supporting LIBS investigation on Mars. Lunar Planet. Sci. Conf. 47, 3044 (2016) ADSGoogle Scholar
  102. J.P. Merrison, H.P. Gunnlaugsson, K. Kinch, T.L. Jacobsen, A.E. Jensen, P. Nørnberg, H. Wahlgreen, An integrated laser anemometer and dust accumulator for studying wind-induced dust transport on Mars. Planet. Space Sci. 54(11), 1065–1072 (2006). doi:10.1016/j.pss.2006.05.026 ADSCrossRefGoogle Scholar
  103. S.M. Metzger, Dust devils as aeolian transport mechanisms in southern Nevada and in the Mars Pathfinder landing site. Ph.D. thesis, Univ. of Nev., Reno (1999) Google Scholar
  104. S.M. Metzger, J.R. Carr, J.R. Johnson, T.J. Parker, M.T. Lemmon, Dust devil vortices seen by the Mars Pathfinder camera. Geophys. Res. Lett. 26(18), 2781–2784 (1999) ADSCrossRefGoogle Scholar
  105. S.M. Metzger, M. Kurgansky, A. Montecinos, V. Villagram, H. Verdejo, Chasing dust devils in Chile’s Atacama Desert. LPSC Abstract 2564 (2010) Google Scholar
  106. S. Metzger, M. Balme, A. Pathare, N. Renno, M. Towner, A. Spiga, H. Elliott, High-resolution dust devil sampling for sediment loads, wind speeds, temperature and pressure excursions, in 42nd Lunar and Planetary Science Conference. Texas (2011). Abstr. #1608 Google Scholar
  107. G.J. Molina-Cuberos et al., A new approach for estimating Titan’s electrical conductivity based on data from relaxation probe sensors on the Huygens experiment. Planet. Space Sci. 58(14–15) (2010). doi:10.1016/j.pss.2010.09.014
  108. J.E. Moores et al., Observational evidence of a suppressed planetary boundary layer in northern Gale Crater, Mars as seen by the Navcam instrument onboard the Mars Science Laboratory rover. Icarus 249(15), 129–142 (2015). doi:10.1016/j.icarus.2014.09.02 ADSCrossRefGoogle Scholar
  109. J.R. Murphy, S. Nelli, Mars Pathfinder convective vortices: frequency of occurrence. Geophys. Res. Letters 29(23) (2002). doi:10.1029/2002GL015214
  110. J. Murphy, C.B. Leovy, J. Tillman, Observations of martian surface winds at the Viking Lander 1 site. J. Geophys. Res. 95, B9 (1990). doi:10.1029/JB095iB09o14555 Google Scholar
  111. L. Neakrase et al., Particle lifting processes in dust devils. Space Sci. Rev. (2016, this issue) Google Scholar
  112. L.D.V. Neakrase, R. Greeley, Dust devil sediment flux on Earth and Mars: laboratory simulations. Icarus 206, 306–318 (2010). doi:10.1016/j.icarus.2009.08.028 ADSCrossRefGoogle Scholar
  113. A.M.C. Oke, D. Dunkerley, N.J. Tapper, Willy-willies in the Australian landscape: sediment transport characteristics. J. Arid Environ. 71, 216–228 (2007) CrossRefGoogle Scholar
  114. A.V. Pathare, M.R. Balme, S.M. Metzger, A. Spiga, M.C. Towner, N.O. Renno, F. Saca, Assessing the power law hypothesis for the size-frequency distribution of terrestrial and martian dust devils. Icarus 209(2), 851–853 (2010) ADSCrossRefGoogle Scholar
  115. J.B. Pollack, D.S. Coburn, F.M. Flasar, R. Kahn, C.E. Carslton, D. Pidek, Properties and effects of dust particles suspended in the martian atmosphere. J. Geophys. Res. 84(B6), 2929–2945 (1979) ADSCrossRefGoogle Scholar
  116. A. Powell, Theory of vortex sound. J. Acoust. Soc. Am. 36(1), 177–195 (1964) ADSMathSciNetCrossRefGoogle Scholar
  117. J. Raack, D. Reiss, G.G. Ori, K. Taj-Eddine, Vertical grain size distributions in dust devils: analyses of in situ sampled from southern Morocco. EPSC Abstract, EPSC2012-427-1, 2014 Google Scholar
  118. S. Rafkin, D. Banfield, J. Silver, K. Nowicki, R. Dissly, A. Stanton, in An Instrument to Measure Turbulent Fluxes in the Atmosphere of Mars and Other Planets, European Planetary Science Congress 2013. EPSC Abstracts, vol. 8, London, UK (2013), EPSC2013-575, Poster presentation, http://meetingorganizer.copernicus.org/EPSC2013/EPSC2013-575.pdf Google Scholar
  119. D. Reiss, A. Spiga, G. Erkeling, The horizontal motion of dust devils on Mars derived from CRISM and CTX/HiRISE observations. Icarus 277, 8–20 (2014) ADSCrossRefGoogle Scholar
  120. N.O. Renno, M.L. Burkett, M.O. Larkin, A simple thermodynamical theory for dust devils. J. Atmos. Sci. 55, 3244–3252 (1998) ADSMathSciNetCrossRefGoogle Scholar
  121. N.O. Renno, A.A. Nash, J. Lunine, J. Murphy, Martian and terrestrial dust devils: test of a scaling theory using Pathfinder data. J. Geophys. Res. 105(E1), 1859–1865 (2000) ADSCrossRefGoogle Scholar
  122. N.O. Renno, V.J. Abreu, J. Koch, P.H. Smith, o.K. Hartogensis, H.A.R. De Bruin, D. Burose, G.T. Delory, W.M. Farrell, C.J. Watts, J. Garatuza, M. Parker, A. Carswell, MATADOR 2002: a pilot field experiment on convective plumes and dust devils. J. Geophys. Res. 109, E07001 (2004). doi:10.1029/2003JE002219 ADSCrossRefGoogle Scholar
  123. T.J. Ringrose, M.C. Towner, J.C. Zarnecki, Convective vortices on Mars: a reanalysis of Viking Lander 2 meteorological data, sols 1–60. Icarus 163(1), 78–87 (2003). doi:10.1016/S0019-1035(03)00073-3 ADSCrossRefGoogle Scholar
  124. T.J. Ringrose, M. Patel, M. Towner, M. Balme, S. Metzger, J. Zarnecki, The meteorological signatures of dust devils on Mars. Planet. Space Sci. 55, 14 (2007) CrossRefGoogle Scholar
  125. J.A. Rodriguez-Manfredi et al., MEDA: an environmental and meteorological package for Mars 2020, in 45th Lunar and Planetary Science Conference, The Woodlands, Texas, USA (2014). Poster presentation, http://ssed.gsfc.nasa.gov/IPM/PDF/1125.pdf Google Scholar
  126. J.A. Ryan, J.J. Carroll, Dust devil wind velocities: mature state. J. Geophys. Res. 75, 531–541 (1970) ADSCrossRefGoogle Scholar
  127. J.A. Ryan, R.D. Lucic, Possible dust devils, vortices on Mars. J. Geophys. Res. 88(C15), 11005–11011 (1983) ADSCrossRefGoogle Scholar
  128. D.S. Schmidt, R.A. Schmidt, J.D. Dent, Electrostatic force on saltating sand. J. Geophys. Res. 103(D8), 8997–9001 (1998) ADSCrossRefGoogle Scholar
  129. J.T. Schofield, J.R. Barnes, D. Crisp, R.M. Haberle, S. Larsen, J.A. Magalhaes, J.R. Murphy, A. Seiff, G. Wilson, The Mars Pathfinder atmospheric structure investigation meteorology (ASI/MET) experiment. Science 278(5344), 1752–1758 (1997). doi:10.1126/science.278.5344.1752 ADSCrossRefGoogle Scholar
  130. R.L. Schwiesow, R.E. Cupp, M.J. Post, P.C. Sinclair, R.F. Abbey, Velocity structures of waterspouts and dust devils as revealed by Doppler lidar measurements. Bull. Am. Meteorol. Soc. 58, 677 (1977) Google Scholar
  131. A. Seiff, J.E. Tillman, J.R. Murphy, J.T. Schofield, D. Crisp, J.R. Barnes, C. LaBaw, C. Mahoney, J.D. Mihalov, G.R. Wilson, R. Haberle, The atmosphere structure and meteorology instrument on the Mars Pathfinder lander. J. Geophys. Res. 103(E2), 4045–4056 (1997) ADSCrossRefGoogle Scholar
  132. Y.P. Shao, Physics and Modelling of Wind Erosion, 2nd edn. (Springer, Heidelberg, 2008) Google Scholar
  133. Y. Shao, M.R. Raupach, P.A. Findlater, Effect of saltation bombardment on the entrainment of dust by wind. J. Geophys. Res. 98, 12719–12726 (1993) ADSCrossRefGoogle Scholar
  134. P.C. Sinclair, On the rotation of dust devils. Bull. Am. Meteorol. Soc. 46, 388–391 (1965) Google Scholar
  135. P.C. Sinclair, A quantitative analysis of the dust devil. Ph.D. Dissertation, University of Arizona, 1966, p. 292 Google Scholar
  136. P. Sinclair, General characteristics of dust devils. J. Appl. Meteorol. 8, 32–45 (1969) ADSCrossRefGoogle Scholar
  137. P. Sinclair, The lower structure of dust devils. J. Atmos. Sci. 30, 1599–1619 (1973) ADSCrossRefGoogle Scholar
  138. P.H. Smith et al., Introduction to special section on the Phoenix Mission: landing site characterization experiments, mission overviews, and expected science. J. Geophys. Res. 113(E3) (2008) Google Scholar
  139. P.H. Smith, M.T. Lemmon, Opacity of the Mars atmosphere measured by the imager for Mars Pathfinder. J. Geophys. Res. 104, 8975–8985 (1999) ADSCrossRefGoogle Scholar
  140. P.H. Smith, M.G. Tomasko, D. Britt, D.G. Crowe, R. Reid, H.U. Keller, N. Thomas, F. Gliem, P. Rueffer, R. Sullivan, R. Greeley, J.M. Knudsen, M.B. Madsen, H.P. Gunnlaugsson, S.F. Hviid, W. Goetz, L.A. Soderblom, L. Gaddis, R. Kirk, The imager for Mars Pathfinder experiment. J. Geophys. Res. 102(E2), 4003–4025 (1997) ADSCrossRefGoogle Scholar
  141. M.D. Smith, M.J. Wolff, M.T. Lemmon, N. Spanovich, D. Banfield, C.J. Budney, R.T. Clancy, A. Ghosh, G.A. Landis, P. Smith, B. Whitney, P.R. Christensen, S.W. Squyres, First atmospheric sciences results from the Mars Exploration Rovers mini-TES. Science 306(5702), 1750–1753 (2004). doi:10.1126/science.1104527 ADSCrossRefGoogle Scholar
  142. P.H. Smith, L.K. Tamppari, R.E. Arvidson, D. Bass, D. Blaney, W.V. Boynton, A. Carswell, D.C. Catling, B.C. Clark, T. Duck, E. DeJong, D. Fisher, W. Goetz, H.P. Gunnlaugsson, M.H. Hecht, V. Hipkin, J. Hoffman, S.F. Hviid, H.U. Keller, S.P. Kounaves, C.F. Lange, M.T. Lemmon, M.B. Madsen, M. Malin, W.J. Markiewicz, J. Marshall, C.P. McKay, M.T. Mellon, D.W. Ming, R.V. Morris, N. Renno, W.T. Pike, U. Staufer, C. Stoker, P. Taylor, J. Whiteway, A.P. Zent, Water at the Phoenix landing site. Science 325, 58–61 (2009) ADSGoogle Scholar
  143. J.T. Snow, T.M. McClelland, Dust devils at white sands missile range, New Mexico: 1. Temporal and spatial distributions. J. Geophys. Res. 95, 13,707–13,721 (1990) ADSCrossRefGoogle Scholar
  144. G.G. Sorrells, A preliminary investigation into the relationship between long-period noise and local fluctuations in the atmospheric pressure field. Geophys. J. 26, 71–82 (1971) ADSCrossRefGoogle Scholar
  145. G.G. Sorrells, J.A. McDonald, Z.A. Der, E. Herrin, Earth motion caused by local atmospheric pressure changes. Geophys. J. 26, 83–98 (1971) ADSCrossRefGoogle Scholar
  146. S.W. Squyres et al., The Spirit rover’s Athena science investigation at Gusev Crater, Mars. Science 305, 794–799 (2004) ADSCrossRefGoogle Scholar
  147. K. Steakley, J. Murphy, A year of convective vortex activity at Gale Crater. Icarus 278, 180–193 (2016) ADSCrossRefGoogle Scholar
  148. R. Sullivan, R. Greeley, M. Kraft, G. Wilson, M. Golombek, K. Herkenhoff, J. Murphy, P. Smith, Results of the imager for Mars Pathfinder windsock experiment. J. Geophys. Res. 105(E10), 24547–24562 (2000). doi:10.1029/1999JE001234 ADSCrossRefGoogle Scholar
  149. P.A. Taylor, D.C. Catling, M. Daly, C.S. Dickinson, H.P. Gunnlaugsson, A.M. Harri, C.F. Lange, Temperature, pressure, and wind instrumentation in the Phoenix meteorological package. J. Geophys. Res. 113, E00A10 (2008). doi:10.1029/2007JE003015 ADSCrossRefGoogle Scholar
  150. P.A. Taylor et al., On pressure measurement and seasonal pressure variations during the Phoenix mission. J. Geophys. Res. 115, E00E15 (2010). doi:10.1029/2009JE003422 ADSCrossRefGoogle Scholar
  151. J.E. Tillman, N.C. Johnson, P. Guttorp, D.B. Percival, The martian annual atmospheric pressure cycle: years without great dust storms. J. Geophys. Res. 98(E6), 10963–10971 (1993). doi:10.1029/93JE01084 ADSCrossRefGoogle Scholar
  152. A.D. Toigo, M.I. Richardson, S.P. Ewals, P.J. Gierasch, Numerical simulation of martian dust devils. J. Geophys. Res., Planets 108(E6) (2003) Google Scholar
  153. M.C. Towner, Characteristics of large martian dust devils using Mars odyssey thermal emission imaging system visual and infrared images. J. Geophys. Res. 114, E02010 (2008) ADSGoogle Scholar
  154. D.M. Tratt, M.H. Hecht, D. Catling, E.C. Samulon, P.H. Smith, In situ measurement of dust devil dynamics: toward a strategy for Mars. J. Geophys. Res. 108(E11), 5116 (2003) CrossRefGoogle Scholar
  155. D.T. Tyler, J.R. Barnes, Mesoscale modeling of the circulation in the Gale Crater region: an investigation into the complex forcing of convective boundary layer depths. Mars 8, 58–77 (2013). doi:10.1555/mars.2013.0003 ADSGoogle Scholar
  156. D.T. Tyler, J.R. Barnes, Convergent crater circulations on Mars: influence on the surface pressure cycle and the depth of the convective boundary layer. Geophys. Res. Lett. 42, 7343–7350 (2015) ADSCrossRefGoogle Scholar
  157. J. Whiteway, M. Daly, A. Carswell, T. Duck, C. Dickinson, L. Komguem, C. Cook, Lidar on the Phoenix mission to Mars. J. Geophys. Res. 113, E00A08 (2008). doi:10.1029/2007JE003002 ADSCrossRefGoogle Scholar
  158. N.R. Williams, Development of dust whirls and similar small-scale vortices. Bull. Am. Meteorol. Soc. 29, 106–117 (1948) Google Scholar
  159. J.P. Williams, Acoustic environment of the martian atmosphere. J. Geophys. Res. 106(E3), 5033–5041 (2001) ADSCrossRefGoogle Scholar
  160. C.L. Wilson, A. Davis, D. Hutchins, M.C. Towner, An ultrasonic anemometer for Mars. J. Acoust. Soc. Am. 123(5), 3401 (2008). doi:10.1121/1.2934100 ADSCrossRefGoogle Scholar
  161. R.E. Wyett, Pressure drop in a dust devil. Mon. Weather Rev., 7–8 January 1954 Google Scholar
  162. L.M. Zelenyi, O.I. Korablev, D.S. Rodionov, B.S. Novikov, K.I. Marchenkov, O.N. Andreev, E.V. Larionov, Scientific objectives of the scientific equipment of the landing platform of the ExoMars-2018 mission. Sol. Syst. Res. 49(7), 509–517 (2015) ADSCrossRefGoogle Scholar
  163. M-P. Zorzano, F.J. Martín-Torres, H. Kahanpää, J. Moores, S. Navarro, A. Lepinette, E. Sebastian, J. Gómez-Elvira, REMS Team, The MSL Science Team), Radiation obscuration by dust devils at Gale as observed by the REMS UV sensor, in EGU General Assembly 2013. Geophysical Research Abstracts, vol. 15 (2013), EGU2013-11155, http://meetingorganizer.copernicus.org/EGU2013/EGU2013-11155.pdf Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Jim Murphy
    • 1
  • Kathryn Steakley
    • 1
  • Matt Balme
    • 2
  • Gregoire Deprez
    • 3
  • Francesca Esposito
    • 4
  • Henrik Kahanpää
    • 10
    • 5
  • Mark Lemmon
    • 6
  • Ralph Lorenz
    • 7
  • Naomi Murdoch
    • 8
  • Lynn Neakrase
    • 1
  • Manish Patel
    • 2
  • Patrick Whelley
    • 9
  1. 1.New Mexico State UniversityLas CrucesUSA
  2. 2.Open UniversityMilton KeynesUK
  3. 3.Laboratoire AtmosphèresGuyancourtFrance
  4. 4.INAFOsservatorio Astronomico di CapodimonteNaplesItaly
  5. 5.Finnish Meteorological InstituteHelsinkiFinland
  6. 6.Texas A&M UniversityCollege StationUSA
  7. 7.Johns Hopkins University Applied Physics LabLaurelUSA
  8. 8.ISAE-SUPAEROToulouse UniversityToulouseFrance
  9. 9.NASA Goddard Space Flight CenterGreenbeltUSA
  10. 10.Aalto University/School of Electrical EngineeringEspooFinland

Personalised recommendations