Advertisement

Space Science Reviews

, Volume 205, Issue 1–4, pp 153–211 | Cite as

Formation and Evolution of Protoatmospheres

  • H. Massol
  • K. Hamano
  • F. Tian
  • M. Ikoma
  • Y. Abe
  • E. Chassefière
  • A. Davaille
  • H. Genda
  • M. Güdel
  • Y. Hori
  • F. Leblanc
  • E. Marcq
  • P. Sarda
  • V. I. Shematovich
  • A. Stökl
  • H. Lammer
Article

Abstract

The origin and evolution of planetary protoatmospheres in relation to the protoplanetary disk is discussed. The initial atmospheres of planets can mainly be related via two formation scenarios. If a protoplanetary core accretes mass and grows inside the gas disk, it can capture H2, He and other gases from the disk. When the gas of the disk evaporates, the core that is surrounded by the H2/He gas envelope is exposed to the high X-ray and extreme ultraviolet flux and stellar wind of the young host star. This period can be considered as the onset of atmospheric escape. It is shown that lower mass bodies accrete less gas and depending on the host stars radiation environment can therefore lose the gaseous envelope after tens or hundreds of million years. Massive cores may never get rid of their captured hydrogen envelopes and remain as sub-Neptunes, Neptunes or gas giants for their whole life time. Terrestrial planets which may have lost the captured gas envelope by thermal atmospheric escape, or which accreted after the protoplanetary nebula vanished will produce catastrophically outgassed steam atmospheres during the magma ocean solidification process. These steam atmospheres consist mainly of water and CO2 that was incorporated into the protoplanet during its accretion. Planets, which are formed in the habitable zone, solidify within several million years. In such cases the outgassed steam atmospheres cool fast, which leads to the condensation of water and the formation of liquid oceans. On the other hand, magma oceans are sustained for longer if planets form inside a critical distance, even if they outgassed a larger initial amount of water. In such cases the steam atmosphere could remain 100 million years or for even longer. Hydrodynamic atmospheric escape will then desiccate these planets during the slow solidification process.

Notes

Acknowledgements

The authors greatly acknowledge both of the reviewers for their careful reading of our manuscript and valuable suggestions. H. Massol, P. Sarda, A. Davaille, E. Chassefière, E. Marcq and F. Leblanc are supported by the 2016 PNP program of INSU-CNRS. F. Tian is supported by the National Natural Science Foundation of China (41175039), the Startup Fund of the Ministry of Education of China, and the Tsinghua University Initiative Science Research Program (523001028). V. Shematovich acknowledges the support by the Russian Science Foundation Project No. 14-12-01048. H. Lammer acknowledges support by the FWF NFN project S11601-N16 ‘Pathways to Habitability: From Disks to Active Stars, Planets and Life’, and the related FWF NFN subproject, S11607-N16 ‘Particle/Radiative Interactions with Upper Atmospheres of Planetary Bodies Under Extreme Stellar Conditions’, as well as the FWF project P27256-N27 ‘Characterizing Stellar and Exoplanetary Environments via Modeling of Lyman-\(\alpha\) Transit Observations of Hot Jupiters’. K. Hamano and Y. Abe are supported by a Grant-in-Aid for Scientific Research on Innovative Areas from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) (No. 23103003) and K. Hamano by a Grant-in-Aid for Young Scientists (B) from Japan Society for the Promotion of Science (JSPS) (No. 26800242). Y. Hori is supported by Grant-in-Aid for Scientific Research on Innovative Areas (No. 26103711) from MEXT. M. Ikoma is supported by Grants-in-Aid for Scientific Research on Innovative Areas (No. 23103005) and Scientific Research (C) (No. 25400224) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan. Finally the authors thank the International Space Science Institute (ISSI) and ISSI-Beijing in Bern and Beijing.

References

  1. Y. Abe, Physical state of the very early Earth. Lithos 30(3), 223–235 (1993), the evolving Earth ADSCrossRefGoogle Scholar
  2. Y. Abe, Thermal and chemical evolution of the terrestrial magma ocean. Phys. Earth Planet. Inter. 100(1-4), 27–39 (1997) ADSCrossRefGoogle Scholar
  3. Y. Abe, Protoatmospheres and surface environment of protoplanets. Earth Moon Planets 108(1), 9–14 (2011) ADSCrossRefGoogle Scholar
  4. Y. Abe, T. Matsui, The formation of an impact-generated H2O atmosphere and its implications for the early thermal history of the Earth. J. Geophys. Res., Solid Earth 90(S02), C545–C559 (1985) ADSCrossRefGoogle Scholar
  5. Y. Abe, T. Matsui, Early evolution of the Earth: accretion, atmosphere formation, and thermal history. J. Geophys. Res., Solid Earth 91(B13), E291–E302 (1986) ADSCrossRefGoogle Scholar
  6. Y. Abe, T. Matsui, Evolution of an impact-generated H2O-CO2 atmosphere and formation of a hot proto-ocean on Earth. J. Atmos. Sci. 45(21), 3081–3101 (1988) ADSCrossRefGoogle Scholar
  7. Y. Abe, E. Ohtani, T. Okuchi, K. Righter, M. Drake, Water in the Early Earth (University of Arizona Press, Tucson, 2000), pp. 413–433 Google Scholar
  8. Y. Abe, A. Abe-Ouchi, N.H. Sleep, K.J. Zahnle, Habitable zone limits for dry planets. Astrobiology 11, 443–460 (2011) ADSCrossRefGoogle Scholar
  9. C.B. Agnor, R.M. Canup, H.F. Levison, On the character and consequences of large impacts in the late stage of terrestrial planet formation. Icarus 142, 219–237 (1999) ADSCrossRefGoogle Scholar
  10. Y. Alibert, F. Carron, A. Fortier, S. Pfyffer, W. Benz, C. Mordasini, D. Swoboda, Theoretical models of planetary system formation: mass vs. semi-major axis. Astron. Astrophys. 558, A109 (2013) ADSCrossRefGoogle Scholar
  11. C. Allègre, T. Staudacher, P. Sarda, Rare gas systematics: formation of the atmosphere, evolution and structure of the Earth’s mantle. Earth Planet. Sci. Lett. 81(2–3), 127–150 (1987) ADSCrossRefGoogle Scholar
  12. C.J. Allègre, G. Manhès, C. Göpel, The major differentiation of the Earth at 4.45 Ga. Earth Planet. Sci. Lett. 267, 386–398 (2008) ADSCrossRefGoogle Scholar
  13. D. Andrault, N. Bolfan-Casanova, G.L. Nigro, M.A. Bouhifd, G. Garbarino, M. Mezouar, Solidus and liquidus profiles of chondritic mantle: implication for melting of the Earth across its history. Earth Planet. Sci. Lett. 304(1–2), 251–259 (2011) ADSCrossRefGoogle Scholar
  14. G.E. Ballester, D.K. Sing, F. Herbert, The signature of hot hydrogen in the atmosphere of the extrasolar planet HD 209458b. Nature 445(7127), 511–514 (2007) ADSCrossRefGoogle Scholar
  15. I. Baraffe, F. Selsis, G. Chabrier, T.S. Barman, F. Allard, P.H. Hauschildt, H. Lammer, The effect of evaporation on the evolution of close-in giant planets. Astron. Astrophys. 419(2), L13–L16 (2004) ADSCrossRefGoogle Scholar
  16. N.M. Batalha, Exploring exoplanet populations with NASA’s Kepler mission. Proc. Natl. Acad. Sci. USA 111, 12647–12654 (2014) ADSCrossRefGoogle Scholar
  17. L. Ben-Jaffel, S. Hosseini, On the existence of energetic atoms in the upper atmosphere of exoplanet HD 209458b. Astrophys. J. 709(2), 1284 (2010) ADSCrossRefGoogle Scholar
  18. K. Berlo, J. Gardner, J. Blundy, Timescales of magma degassing, in Timescales of Magmatic Processes: From Core to Atmosphere (Wiley-Blackwell, Hoboken, 2011), Ch. 11 Google Scholar
  19. D.V. Bisikalo, P.V. Kaigorodov, D.E. Ionov, V.I. Shematovich, Types of gaseous envelopes of “hot Jupiter” exoplanets. Astron. Rep. 57(10), 715–725 (2013a) ADSCrossRefGoogle Scholar
  20. D. Bisikalo, P. Kaygorodov, D. Ionov, V. Shematovich, H. Lammer, L. Fossati, Three-dimensional gas dynamic simulation of the interaction between the exoplanet wasp-12b and its host star. Astrophys. J. 764(1), 19 (2013b) ADSCrossRefGoogle Scholar
  21. P. Bodenheimer, J.J. Lissauer, Accretion and evolution of \({\sim}2.5~\mbox{M}_{\oplus}\) planets with voluminous H/He envelopes. Astrophys. J. 791, 103 (2014) ADSCrossRefGoogle Scholar
  22. P. Bodenheimer, J.B. Pollack, Calculations of the accretion and evolution of giant planets. The effects of solid cores. Icarus 67, 391–408 (1986) ADSCrossRefGoogle Scholar
  23. V. Bourrier, A. Lecavelier des Etangs, 3d model of hydrogen atmospheric escape from HD 209458b and HD 189733b: radiative blow-out and stellar wind interactions. Astron. Astrophys. 557, A124 (2013) ADSCrossRefGoogle Scholar
  24. V. Bourrier, A. Lecavelier des Etangs, H. Dupuy, D. Ehrenreich, A. Vidal-Madjar, G. Hébrard, G.E. Ballester, J.-M. Désert, R. Ferlet, D.K. Sing, P.J. Wheatley, Atmospheric escape from HD 189733b observed in hi Lyman \(\alpha \): detailed analysis of HST/STIS September 2011 observations. Astron. Astrophys. 551, A63 (2013) ADSCrossRefGoogle Scholar
  25. V. Bourrier, A. Lecavelier des Etangs, A. Vidal-Madjar, Modeling magnesium escape from HD 209458b atmosphere. Astron. Astrophys. 565, A105 (2014) ADSCrossRefGoogle Scholar
  26. V. Bourrier, A. Lecavelier des Etangs, A. Vidal-Madjar, The Mg i line: a new probe of the atmospheres of evaporating exoplanets. Astron. Astrophys. 573, A11 (2015) ADSCrossRefGoogle Scholar
  27. R. Brasser, The formation of Mars: building blocks and accretion time scale. Space Sci. Rev. 174, 11–25 (2013) ADSCrossRefGoogle Scholar
  28. E.L. Brown, C.E. Lesher, North Atlantic magmatism controlled by temperature, mantle composition and buoyancy. Nat. Geosci. 7(11), 820–824 (2014) ADSCrossRefGoogle Scholar
  29. H.P. Brown, A.J. Panshin, C.C. Forsaith, Textbook of Wood Technology (1949) Google Scholar
  30. A. Burgisser, M. Alletti, B. Scaillet, Simulating the behavior of volatiles belonging to the C–O–H–S system in silicate melts under magmatic conditions with the software d-compress. Comput. Geosci. 79, 1–14 (2015) ADSCrossRefGoogle Scholar
  31. R.M. Canup, Dynamics of lunar formation. Annu. Rev. Astron. Astrophys. 42, 441–475 (2004a) ADSCrossRefGoogle Scholar
  32. R.M. Canup, Simulations of a late lunar-forming impact. Icarus 168(2), 433–456 (2004b) ADSCrossRefGoogle Scholar
  33. M.R. Carroll, J.R. Holloway, Volatiles in Magmas. Reviews in Mineralogy, vol. 30 (Mineralogical Society of America, Washington, 1994) Google Scholar
  34. C. Cecchi-Pestellini, A. Ciaravella, G. Micela, T. Penz, The relative role of EUV radiation and x-rays in the heating of hydrogen-rich exoplanet atmospheres. Astron. Astrophys. 496(3), 863–868 (2009) ADSCrossRefGoogle Scholar
  35. J. Chadney, M. Galand, Y. Unruh, T.T. Koskinen, J. Sanz-Forcada, XUV-driven mass loss from extrasolar giant planets orbiting active stars. Icarus 250, 357–367 (2015) ADSCrossRefGoogle Scholar
  36. J.W. Chamberlain, Planetary coronae and atmospheric evaporation. Planet. Space Sci. 11(8), 901–960 (1963) ADSCrossRefGoogle Scholar
  37. E. Chassefière, Hydrodynamic escape of hydrogen from a hot water-rich atmosphere: the case of Venus. J. Geophys. Res., Planets 101(E11), 26039–26056 (1996a) ADSCrossRefGoogle Scholar
  38. E. Chassefière, Hydrodynamic escape of oxygen from primitive atmospheres: applications to the cases of Venus and Mars. Icarus 124, 537–552 (1996b) ADSCrossRefGoogle Scholar
  39. E. Chassefière, F. Leblanc, B. Langlais, The combined effects of escape and magnetic field histories at Mars. Planet. Space Sci. 55(3), 343–357 (2007) ADSCrossRefGoogle Scholar
  40. J.Y. Chaufray, R. Modolo, F. Leblanc, G. Chanteur, R.E. Johnson, J.G. Luhmann, Mars solar wind interaction: formation of the martian corona and atmospheric loss to space. J. Geophys. Res., Planets 112(E9), E09009, e09009 (2007) ADSCrossRefGoogle Scholar
  41. D.R. Ciardi, D.C. Fabrycky, E.B. Ford, T.N. Gautier III., S.B. Howell, J.J. Lissauer, D. Ragozzine, J.F. Rowe, On the relative sizes of planets within Kepler multiple-candidate systems. Astrophys. J. 763(1), 41 (2013) ADSCrossRefGoogle Scholar
  42. W. Clarke, M. Beg, H. Craig, Excess 3He in the sea: evidence for terrestrial primodal helium. Earth Planet. Sci. Lett. 6(3), 213–220 (1969) ADSCrossRefGoogle Scholar
  43. O. Cohen, A. Glocer, Ambipolar electric field, photoelectrons, and their role in atmospheric escape from hot Jupiters. Astrophys. J. Lett. 753(1), L4 (2012) ADSCrossRefGoogle Scholar
  44. N.R. Council, The Limits of Organic Life in Planetary Systems (The National Academies Press, Washington, 2007) Google Scholar
  45. H. Craig, J. Lupton, Helium 3 and mantle volatiles in the ocean and the oceanic crust, in The Oceanic Lithosphere, vol. 7 (Wiley, New York, 1981) Google Scholar
  46. E. Crawford, Arrhenius’ 1896 model of the greenhouse effect in context, in Ambio, Stockholm, vol. 26 (1997), pp. 6–11 Google Scholar
  47. N. Dauphas, A. Pourmand, Hf-W-Th evidence for rapid growth of Mars and its status as a planetary embryo. Nature 473, 489–492 (2011) ADSCrossRefGoogle Scholar
  48. A. Davaille, A. Limare, Laboratory studies of mantle convection, in Treatise on Geophysics (Second Edition). Vol. “Mantle Dynamics”, ed. by G. Schubert, D. Bercovici (Elsevier, Amsterdam, 2015), pp. 73–144 CrossRefGoogle Scholar
  49. T.A. Davis, P.J. Wheatley, Evidence for a lost population of close-in exoplanets. Mon. Not. R. Astron. Soc. 396(2), 1012–1017 (2009) ADSCrossRefGoogle Scholar
  50. A. Lecavelier des Etangs, A diagram to determine the evaporation status of extrasolar planets. Astron. Astrophys. 461(3), 1185–1193 (2007) ADSCrossRefGoogle Scholar
  51. A. Lecavelier des Etangs, A. Vidal-Madjar, J.C. McConnell, G. Hébrard, Atmospheric escape from hot Jupiters. Astron. Astrophys. 418(1), L1–L4 (2004) ADSCrossRefGoogle Scholar
  52. K.-M. Dittkrist, C. Mordasini, H. Klahr, Y. Alibert, T. Henning, Impacts of planet migration models on planetary populations. Effects of saturation, cooling and stellar irradiation. Astron. Astrophys. 567, A121 (2014) ADSCrossRefGoogle Scholar
  53. A. Ekenback, M. Holmstrom, M. Wurz et al., Energetic neutral atoms around HD 209458b: estimations of magnetospheric properties. Astrophys. J. 709, 670–679 (2010) ADSCrossRefGoogle Scholar
  54. L.T. Elkins-Tanton, Linked magma ocean solidification and atmospheric growth for Earth and Mars. Earth Planet. Sci. Lett. 271(1), 181–191 (2008) ADSCrossRefGoogle Scholar
  55. L.T. Elkins-Tanton, Magma oceans in the inner solar system, in Annual Review of Earth and Planetary Sciences, ed. by R. Jeanloz. Annual Review of Earth and Planetary Sciences, vol. 40 (2012), pp. 113–139 Google Scholar
  56. L. Elkins-Tanton, E. Parmentier, P. Hess, Magma ocean fractional crystallization and cumulate overturn in terrestrial planets: implications for Mars. Meteorit. Planet. Sci. 38(12), 1753–1771 (2003) ADSCrossRefGoogle Scholar
  57. L. Elkins-Tanton, S. Zaranek, E. Parmentier, P. Hess, Early magnetic field and magmatic activity on Mars from magma ocean cumulate overturn. Earth Planet. Sci. Lett. 236(1-2), 1–12 (2005) ADSCrossRefGoogle Scholar
  58. N.V. Erkaev, Y.N. Kulikov, H. Lammer, F. Selsis, D. Langmayr, G.F. Jaritz, H.K. Biernat, Roche lobe effects on the atmospheric loss from “hot Jupiters”. Astron. Astrophys. 472(1), 329–334 (2007) ADSCrossRefGoogle Scholar
  59. N.V. Erkaev, H. Lammer, P. Odert, Y.N. Kulikov, K.G. Kislyakova et al., XUV-exposed, non-hydrostatic hydrogen-rich upper atmospheres of terrestrial planets. Part i: Atmospheric expansion and thermal escape. Astrobiology 13(11), 1011–1029 (2013) ADSCrossRefGoogle Scholar
  60. N.V. Erkaev, H. Lammer, L.T. Elkins-Tanton, A. Stökl, P. Odert, E. Marcq, E.A. Dorfi, K.G. Kislyakova, Y.N. Kulikov, M. Leitzinger, M. Güdel, Escape of the martian protoatmosphere and initial water inventory. Planet. Space Sci. 98, 106–119 (2014) ADSCrossRefGoogle Scholar
  61. N.V. Erkaev, H. Lammer, P. Odert, Y.N. Kulikov, K.G. Kislyakova, Extreme hydrodynamic atmospheric loss near the critical thermal escape regime. Mon. Not. R. Astron. Soc. 448(2), 1916–1921 (2015) ADSCrossRefGoogle Scholar
  62. F.P. Fanale, A case for catastrophic early degassing of the Earth. Chem. Geol. 8(2), 79–105 (1971) CrossRefGoogle Scholar
  63. G. Fiquet, A.L. Auzende, J. Siebert, A. Corgne, H. Bureau, H. Ozawa, G. Garbarino, Melting of peridotite to 140 gigapascals. Science 329(5998), 1516–1518 (2010) ADSCrossRefGoogle Scholar
  64. D. Fisher, Trapped helium and argon and the formation of the atmosphere by degassing. Nature 256(5513), 113–114 (1975) ADSCrossRefGoogle Scholar
  65. J.J. Fortney, N. Nettelmann, The interior structure, composition, and evolution of giant planets. Space Sci. Rev. 152, 423–447 (2010) ADSCrossRefGoogle Scholar
  66. J. Fortney, C. Mordasini, N. Nettelmann, E.M.-R. Kempton, T.P. Greene, K. Zahnle, A framework for characterizing the atmospheres of low-mass low-density transiting planets. Astrophys. J. 775(1), 80 (2013) ADSCrossRefGoogle Scholar
  67. J.L. Fox, A.B. Hać, Photochemical escape of oxygen from Mars: a comparison of the exobase approximation to a Monte Carlo method. Icarus 204(2), 527–544 (2009) ADSCrossRefGoogle Scholar
  68. J. Fox, M. Galand, R. Johnson, Energy deposition in planetary atmospheres by charged particles and solar photons. Space Sci. Rev. 139(1–4), 3–62 (2008) ADSCrossRefGoogle Scholar
  69. N. Fujii, S. Uyeda, Conditions for a once molten Earth to cool. J. Phys. Earth 14(1), 15–26 (1966) CrossRefGoogle Scholar
  70. A. García Muñoz, Physical and chemical aeronomy of HD 209458b. Planet. Space Sci. 55(10), 1426–1455 (2007) ADSCrossRefGoogle Scholar
  71. H. Genda, Y. Abe, Survival of a proto-atmosphere through the stage of giant impacts: the mechanical aspects. Icarus 164, 149–162 (2003) ADSCrossRefGoogle Scholar
  72. H. Genda, Y. Abe, Enhanced atmospheric loss on protoplanets at the giant impact phase in the presence of oceans. Nature 433, 842–844 (2005) ADSCrossRefGoogle Scholar
  73. G.J. Golabek, T. Keller, T.V. Gerya, G. Zhu, P.J. Tackley, J.A.D. Connolly, Origin of the martian dichotomy and Tharsis from a giant impact causing massive magmatism. Icarus 215(1), 346–357 (2011) ADSCrossRefGoogle Scholar
  74. C. Goldblatt, T.D. Robinson, K.J. Zahnle, D. Crisp, Low simulated radiation limit for runaway greenhouse climates. Nat. Geosci. 6, 661–667 (2013) ADSCrossRefGoogle Scholar
  75. D. Grinspoon, Implications of the high D/H ratio for the sources of water in Venus’ atmosphere. Nature 363, 428–431 (1993) ADSCrossRefGoogle Scholar
  76. H. Gröller, V.I. Shematovich, H.I.M. Lichtenegger, H. Lammer, M. Pfleger, Y.N. Kulikov, W. Macher, U.V. Amerstorfer, H.K. Biernat, Venus’ atomic hot oxygen environment. J. Geophys. Res., Planets 115(E12), e12017 (2010) ADSCrossRefGoogle Scholar
  77. H. Gröller, H. Lichtenegger, H. Lammer, V.I. Shematovich, Hot oxygen and carbon escape from the martian atmosphere. Planet. Space Sci. 98, 93–105 (2014) ADSCrossRefGoogle Scholar
  78. S. Grossmann, D. Lohse, Scaling in thermal convection: a unifying theory. J. Fluid Mech. 407, 27–56 (2000) ADSMathSciNetMATHCrossRefGoogle Scholar
  79. M. Güdel, R. Dvorak, N. Erkaev, J. Kasting, M. Khodachenko, H. Lammer, E. Pilat-Lohinger, H. Rauer, I. Ribas, B.E. Wood, Astrophysical conditions for planetary habitability, in Protostars and Planets VI (2014), pp. 883–906 Google Scholar
  80. B. Guillot, P. Sarda, The effect of compression on noble gas solubility in silicate melts and consequences for degassing at mid-ocean ridges. Geochim. Cosmochim. Acta 70(5), 1215–1230 (2006) ADSCrossRefGoogle Scholar
  81. J.H. Guo, Escaping particle fluxes in the atmospheres of close-in exoplanets. I. Model of hydrogen. Astrophys. J. 733(2), 98 (2011) ADSCrossRefGoogle Scholar
  82. J.H. Guo, Escaping particle fluxes in the atmospheres of close-in exoplanets. II. Reduced mass-loss rates and anisotropic winds. Astrophys. J. 766(2), 102 (2013) ADSCrossRefGoogle Scholar
  83. K.E. Haisch Jr., E.A. Lada, C.J. Lada, Disk frequencies and lifetimes in young clusters. Astrophys. J. 553, L153–L156 (2001) ADSCrossRefGoogle Scholar
  84. A.N. Halliday, Mixing, volatile loss and compositional change during impact-driven accretion of the Earth. Nature 427, 505–509 (2004) ADSCrossRefGoogle Scholar
  85. Y. Hamano, M. Ozima, Earth atmosphere evolution model based on Ar isotopic data, in Terrestrial Rare Gases (Japan Sci. Soc., Tokyo, 1978), pp. 155–171 CrossRefGoogle Scholar
  86. K. Hamano, Y. Abe, H. Genda, Emergence of two types of terrestrial planet on solidification of magma ocean. Nature 497(7451), 607–610 (2013) ADSCrossRefGoogle Scholar
  87. K. Hamano, H. Kawahara, Y. Abe, M. Onishi, G. Hashimoto, Lifetime and spectral evolution of a magma ocean with a steam atmosphere: its detectability by future direct imaging. Astrophys. J. 806(2), 216 (17 pp.) (2015) ADSCrossRefGoogle Scholar
  88. C. Hayashi, Structure of the solar nebula, growth and decay of magnetic fields and effects of magnetic and turbulent viscosities on the nebula. Prog. Theor. Phys. Suppl. 70, 35–53 (1981) ADSCrossRefGoogle Scholar
  89. C. Hayashi, K. Nakazawa, H. Mizuno, Earth’s melting due to the blanketing effect of the primordial dense atmosphere. Earth Planet. Sci. Lett. 43, 22–28 (1979) ADSCrossRefGoogle Scholar
  90. C. Hayashi, K. Nakazawa, Y. Nakagawa, Formation of the solar system, in Protostars and Planets II, ed. by D.C. Black, M.S. Matthews (1985), pp. 1100–1153 Google Scholar
  91. P. Hess, E. Parmentier, A model for the thermal and chemical evolution of the Moon’s interior: implications for the onset of mare volcanism. Earth Planet. Sci. Lett. 134(3-4), 501–514 (1995) ADSCrossRefGoogle Scholar
  92. L.A. Hillenbrand, Observational constraints on dust disk lifetimes: implications for planet formation (2005). ArXiv Astrophysics e-prints Google Scholar
  93. T. Höink, J. Schmalzl, U. Hansen, Formation of compositional structures by sedimentation in vigorous convection. Phys. Earth Planet. Inter. 153, 1–3 (2005) CrossRefGoogle Scholar
  94. M. Holmstrom, A. Ekenback, F. Selsis, T. Penz, H. Lammer, P. Wurz, Energetic neutral atoms as the explanation for the high-velocity hydrogen around HD 209458b. Nature 451(7181), 970–972 (2008) ADSCrossRefGoogle Scholar
  95. Y. Hori, M. Ikoma, Critical core masses for gas giant formation with grain-free envelopes. Astrophys. J. 714, 1343–1346 (2010) ADSCrossRefGoogle Scholar
  96. Y. Hori, S. Ida, D.N.C. Lin, Characterization of sub/super-Earths orbiting cool stars: water content and hydrogen-rich atmospheres. Astrophysical Journal (2016, submitted) Google Scholar
  97. O. Hubickyj, P. Bodenheimer, J.J. Lissauer, Accretion of the gaseous envelope of Jupiter around a 5–10 Earth-mass core. Icarus 179, 415–431 (2005) ADSCrossRefGoogle Scholar
  98. S. Ida, J. Makino, Scattering of planetesimals by a protoplanet—slowing down of runaway growth. Icarus 106, 210 (1993) ADSCrossRefGoogle Scholar
  99. M. Ikoma, H. Genda, Constraints on the mass of a habitable planet with water of nebular origin. Astrophys. J. 648, 696–706 (2006) ADSCrossRefGoogle Scholar
  100. M. Ikoma, H. Emori, K. Nakazawa, Formation of giant planets in dense nebulae: critical core mass revisited. Astrophys. J. 553, 999–1005 (2001) ADSCrossRefGoogle Scholar
  101. M. Ikoma, Y. Hori, In situ accretion of hydrogen-rich atmospheres on short-period super-Earths: implications for the Kepler-11 planets. Astrophys. J. 753, 66 (2012) ADSCrossRefGoogle Scholar
  102. M. Ikoma, K. Nakazawa, H. Emori, Formation of giant planets: dependences on core accretion rate and grain opacity. Astrophys. J. 537, 1013–1025 (2000) ADSCrossRefGoogle Scholar
  103. A.P. Ingersoll, The runaway greenhouse: a history of water on Venus. J. Atmos. Sci. 26, 1191–1198 (1969) ADSCrossRefGoogle Scholar
  104. D.E. Ionov, D.V. Bisikalo, V.I. Shematovich, B. Huber, Ionization fraction in the thermosphere of the exoplanet HD 209458b. Sol. Syst. Res. 48(2), 105–112 (2014) ADSCrossRefGoogle Scholar
  105. W.H. Ip, On a hot oxygen corona of Mars. Icarus 76(1), 135–145 (1988) ADSMathSciNetCrossRefGoogle Scholar
  106. B.M. Jakosky, R.O. Pepin, R.E. Johnson, J.L. Fox, Mars atmospheric loss and isotopic fractionation by solar-wind-induced sputtering and photochemical escape. Icarus 111(2), 271–288 (1994) ADSCrossRefGoogle Scholar
  107. N. Jendrzejewski, T. Trull, F. Pineau, M. Javoy, Carbon solubility in mid-ocean ridge basaltic melt at low pressures (250–1950 bar). Chem. Geol. 138(1-2), 81–92 (1997) CrossRefGoogle Scholar
  108. W.J. Jenkins, J.M. Edmond, J.B. Corliss, Excess 3He and 4He in Galapagos submarine hydrothermal waters. Nature 272(5649), 156–158 (1978) ADSCrossRefGoogle Scholar
  109. S. Jin, C. Mordasini, V. Parmentier, R. van Boekel, T. Henning, J. Ji, Planetary population synthesis coupled with atmospheric escape: a statistical view of evaporation. Astrophys. J. 795(1), 65 (2014) ADSCrossRefGoogle Scholar
  110. R.E. Johnson, M.R. Combi, J.L. Fox, W.H. Ip, F. Leblanc, M.A. McGrath, V.I. Shematovich, D.F. Strobel, J.H. Waite, Exospheres and atmospheric escape. Space Sci. Rev. 139(1–4), 355–397 (2008) ADSCrossRefGoogle Scholar
  111. L. Kamp, F. Taylor, S. Calcutt, Structure of Venus’s atmosphere from modelling of night-side infrared spectra. Nature 336, 360–362 (1988) ADSCrossRefGoogle Scholar
  112. J. Kasting, Runaway and moist greenhouse atmospheres and the evolution of Earth and Venus. Icarus 74, 472–494 (1988) ADSCrossRefGoogle Scholar
  113. J.F. Kasting, J.B. Pollack, Loss of water from Venus. I. Hydrodynamic escape of hydrogen. Icarus 53(3), 479–508 (1983) ADSCrossRefGoogle Scholar
  114. J.F. Kasting, J.B. Pollack, T.P. Ackerman, Response of Earth’s atmosphere to increases in solar flux and implications for loss of water from Venus. Icarus 57, 335–355 (1984). doi: 10.1016/0019-1035(84)90122-2 ADSCrossRefGoogle Scholar
  115. J.F. Kasting, D.P. Whitmire, R.T. Reynolds, Habitable zones around main sequence stars. Icarus 101, 108–128 (1993) ADSCrossRefGoogle Scholar
  116. H. Kawahara, T. Hirano, K. Kurosaki, Y. Ito, M. Ikoma, Starspots-transit depth relation of the evaporating planet candidate KIC 12557548b. Astrophys. J. Lett. 776(1), L6 (2013) ADSCrossRefGoogle Scholar
  117. M.L. Khodachenko, I. Alexeev, E. Belenkaya, H. Lammer, J.-M. Grießmeier, M. Leitzinger, P. Odert, T. Zaqarashvili, H.O. Rucker, Magnetospheres of “hot Jupiters”: the importance of magnetodisks in shaping a magnetospheric obstacle. Astrophys. J. 744(1), 70 (2012) ADSCrossRefGoogle Scholar
  118. R. Kippenhahn, A. Weigert, Stellar Structure and Evolution (Springer, Berlin, 1994) MATHGoogle Scholar
  119. K.G. Kislyakova, M. Holmström, H. Lammer, P. Odert, M.L. Khodachenko, Magnetic moment and plasma environment of HD 209458b as determined from \(\mbox{Ly}\alpha\) observations. Science 346(6212), 981–984 (2014a) ADSCrossRefGoogle Scholar
  120. K.G. Kislyakova, C.P. Johnstone, P. Odert, N.V. Erkaev, H. Lammer, T. Lüftinger, M. Holmström, M.L. Khodachenko, M. Güdel, Stellar wind interaction and pick-up ion escape of the Kepler-11 “super-Earths”. Astron. Astrophys. 562, A116 (2014b) ADSCrossRefGoogle Scholar
  121. T. Kleine, M. Touboul, B. Bourdon, F. Nimmo, K. Mezger, H. Palme, S.B. Jacobsen, Q.-Z. Yin, A.N. Halliday, Hf-W chronology of the accretion and early evolution of asteroids and terrestrial planets. Geochim. Cosmochim. Acta 73, 5150–5188 (2009) ADSCrossRefGoogle Scholar
  122. E. Kokubo, H. Genda, Formation of terrestrial planets from protoplanets under a realistic accretion condition. Astrophys. J. Lett. 714, L21–L25 (2010) ADSCrossRefGoogle Scholar
  123. E. Kokubo, S. Ida, On runaway growth of planetesimals. Icarus 123, 180–191 (1996) ADSCrossRefGoogle Scholar
  124. E. Kokubo, S. Ida, Oligarchic growth of protoplanets. Icarus 131, 171–178 (1998) ADSCrossRefGoogle Scholar
  125. R.K. Kopparapu, R. Ramirez, J.F. Kasting, V. Eymet, T.D. Robinson, S. Mahadevan, R.C. Terrien, S. Domagal-Goldman, V. Meadows, R. Deshpande, Habitable zones around main-sequence stars: new estimates. Astrophys. J. Lett. 765, 131 (2013) ADSCrossRefGoogle Scholar
  126. T.T. Koskinen, R.V. Yelle, P. Lavvas, N.K. Lewis, Characterizing the thermosphere of HD 209458b with UV transit observations. Astrophys. J. 723(1), 116 (2010) ADSCrossRefGoogle Scholar
  127. T. Koskinen, R. Yelle, M. Harris, P. Lavvas, The escape of heavy atoms from the ionosphere of HD 209458b. II. Interpretation of the observations. Icarus 226(2), 1695–1708 (2013a) ADSCrossRefGoogle Scholar
  128. T.T. Koskinen, M.J. Harris, R.V. Yelle, P. Lavvas, The escape of heavy atoms from the ionosphere of HD 209458b. I. A photochemical–dynamical model of the thermosphere. Icarus 226(2), 1678–1694 (2013b) ADSCrossRefGoogle Scholar
  129. M.A. Krestyanikova, V.I. Shematovich, Stochastic models of hot planetary and satellite coronas: a hot oxygen corona of Mars. Sol. Syst. Res. 40(5), 384–392 (2006) ADSCrossRefGoogle Scholar
  130. H. Kurokawa, T. Nakamoto, Mass-loss evolution of close-in exoplanets: evaporation of hot Jupiters and the effect on population. Astrophys. J. 783(1), 54 (2014) ADSCrossRefGoogle Scholar
  131. K. Kurosaki, M. Ikoma, Y. Hori, Impact of photo-evaporative mass loss on masses and radii of water-rich sub/super-Earths. Astron. Astrophys. 562, A80 (2014) ADSCrossRefGoogle Scholar
  132. M. Kurz, W. Jenkins, J. Schilling, S. Hart, Helium isotopic variations in the mantle beneath the central North Atlantic Ocean. Earth Planet. Sci. Lett. 58(1), 1–14 (1982) ADSCrossRefGoogle Scholar
  133. T. La Tourette, G.J. Wasserburg, Mg diffusion in anorthite: implications for the formation of early solar planetisimals. Earth Planet. Sci. Lett. 158, 91–108 (1998) ADSCrossRefGoogle Scholar
  134. S. Labrosse, C. Jaupart, Thermal evolution of the Earth: secular changes and fluctuations of plate characteristics. Earth Planet. Sci. Lett. 260(3–4), 465–481 (2007) ADSCrossRefGoogle Scholar
  135. S. Labrosse, J.W. Hernlund, N. Coltice, A crystallizing dense magma ocean at the base of the Earth’s mantle. Nature 450(7171), 866–869 (2007) ADSCrossRefGoogle Scholar
  136. H. Lammer, S.J. Bauer, Nonthermal atmospheric escape from Mars and Titan. J. Geophys. Res. Space Phys. 96(A2), 1819–1825 (1991) ADSCrossRefGoogle Scholar
  137. H. Lammer, F. Selsis, I. Ribas, E.F. Guinan, S.J. Bauer, W.W. Weiss, Atmospheric loss of exoplanets resulting from stellar X-ray and extreme-ultraviolet heating. Astrophys. J. Lett. 598(2), L121 (2003) ADSCrossRefGoogle Scholar
  138. H. Lammer, P. Odert, M. Leitzinger, M.L. Khodachenko, M. Panchenko, Y.N. Kulikov, T.L. Zhang, H.I.M. Lichtenegger, N.V. Erkaev, G. Wuchterl, G. Micela, T. Penz, H.K. Biernat, J. Weingrill, M. Steller, H. Ottacher, J. Hasiba, A. Hanslmeier, Determining the mass loss limit for close-in exoplanets: what can we learn from transit observations? Astron. Astrophys. 506(1), 399–410 (2009) ADSCrossRefGoogle Scholar
  139. H. Lammer, N.V. Erkaev, P. Odert, K.G. Kislyakova, M. Leitzinger, M.L. Khodachenko, Probing the blow-off criteria of hydrogen-rich ‘super-Earths’. Mon. Not. R. Astron. Soc. 430(2), 1247–1256 (2013) ADSCrossRefGoogle Scholar
  140. H. Lammer, A. Stökl, N.V. Erkaev, E.A. Dorfi, P. Odert, M. Güdel, Y.N. Kulikov, K.G. Kislyakova, M. Leitzinger, Origin and loss of nebula-captured hydrogen envelopes from ‘sub’- to ‘super-Earths’ in the habitable zone of sun-like stars. Mon. Not. R. Astron. Soc. 439(4), 3225–3238 (2014) ADSCrossRefGoogle Scholar
  141. M.A. Lange, T.J. Ahrens, The evolution of an impact-generated atmosphere. Icarus 51(1), 96–120 (1982) ADSCrossRefGoogle Scholar
  142. A.F. Lanza, Star-planet magnetic interaction and evaporation of planetary atmospheres. Astron. Astrophys. 557, A31 (2013) ADSCrossRefGoogle Scholar
  143. M. Le Bars, A. Davaille, Whole layer convection in a heterogeneous planetary mantle. J. Geophys. Res., Solid Earth 109, B03403 (2004) ADSGoogle Scholar
  144. T. Lebrun, H. Massol, E. Chassefiere, A. Davaille, E. Marcq, P. Sarda, F. Leblanc, G. Brandeis, Thermal evolution of an early magma ocean in interaction with the atmosphere. J. Geophys. Res., Planets 118(6), 1155–1176 (2013) ADSCrossRefGoogle Scholar
  145. J. Leconte, F. Forget, B. Charnay, R. Wordsworth, A. Pottier, Increased insolation threshold for runaway greenhouse processes on Earth-like planets. Nature 504, 268–271 (2013) ADSCrossRefGoogle Scholar
  146. E.J. Lee, E. Chiang, C.W. Ormel, Make super-Earths, not Jupiters: accreting nebular gas onto solid cores at 0.1 AU and beyond. Astrophys. J. 797, 95 (2014) ADSCrossRefGoogle Scholar
  147. A.M. Lejeune, P. Richet, Rheology of crystal-bearing silicate melts: an experimental study at high viscosities. J. Geophys. Res., Solid Earth 100, 4215–4229 (1995) CrossRefGoogle Scholar
  148. J.S. Lewis, R.G. Prinn, Planets and Their Atmospheres: Origin and Evolution, vol. 33 (Elsevier, Amsterdam, 1983) Google Scholar
  149. J. Li, C. Agee, Geochemistry of mantle-core differentiation at high pressure. Nature 381(6584), 686–689 (1996) ADSCrossRefGoogle Scholar
  150. H.I.M. Lichtenegger, H. Gröller, H. Lammer, Y.N. Kulikov, V.I. Shematovich, On the elusive hot oxygen corona of Venus. Geophys. Res. Lett. 36(10), L10204 (2009) ADSCrossRefGoogle Scholar
  151. J.L. Linsky, H. Yang, K. France, C.S. Froning, J.C. Green, J.T. Stocke, S.N. Osterman, Observations of mass loss from the transiting exoplanet HD 209458b. Astrophys. J. 717(2), 1291 (2010) ADSCrossRefGoogle Scholar
  152. J.J. Lissauer, Timescales for planetary accretion and the structure of the protoplanetary disk. Icarus 69, 249–265 (1987) ADSCrossRefGoogle Scholar
  153. Y. Liu, Y. Zhang, H. Behrens, Solubility of H2O in rhyolitic melts at low pressures and a new empirical model for mixed H2O-CO2 solubility in rhyolitic melts. J. Volcanol. Geotherm. Res. 143(1–3), 219–235 (2005) ADSCrossRefGoogle Scholar
  154. E.D. Lopez, J. Fortney, The role of core mass in controlling evaporation: the Kepler radius distribution and the Kepler-36 density dichotomy. Astrophys. J. 776(1), 2 (2013) ADSCrossRefGoogle Scholar
  155. E.D. Lopez, J.J. Fortney, Understanding the mass-radius relation for sub-Neptunes: radius as a proxy for composition. Astrophys. J. 792, 1 (2014) ADSCrossRefGoogle Scholar
  156. E.D. Lopez, J. Fortney, N. Miller, How thermal evolution and mass-loss sculpt populations of super-Earths and sub-Neptunes: application to the Kepler-11 system and beyond. Astrophys. J. 761(1), 59 (2012) ADSCrossRefGoogle Scholar
  157. R. Luger, R. Barnes, E. Lopez, J. Fortney, B. Jackson, V. Meadows, Habitable evaporated cores: transforming mini-Neptunes into super-Earths in the habitable zones of M dwarfs. Astrobiology 15(1), 57–88 (2015) ADSCrossRefGoogle Scholar
  158. J.G. Luhmann, R.E. Johnson, M.H.G. Zhang, Evolutionary impact of sputtering of the martian atmosphere by O+ pickup ions. Geophys. Res. Lett. 19(21), 2151–2154 (1992) ADSCrossRefGoogle Scholar
  159. R.E. Lupu, K. Zahnle, M.S. Marley, L. Schaefer, B. Fegley, C. Morley, K. Cahoy, R. Freedman, J.J. Fortney, The atmospheres of earthlike planets after giant impact events. Astrophys. J. 784, 27 (2014) ADSCrossRefGoogle Scholar
  160. G.J.F. MacDonald, Calculations on the thermal history of the Earth. J. Geophys. Res. 64(11), 1967–2000 (1959) ADSMathSciNetCrossRefGoogle Scholar
  161. W.V.R. Malkus, The heat transport and spectrum of thermal turbulence. Proc. R. Soc. A, Math. Phys. Eng. Sci. (1954). doi: 10.1098/rspa.1954.0197 MathSciNetMATHGoogle Scholar
  162. E. Marcq, A simple 1-D radiative-convective atmospheric model designed for integration into coupled models of magma ocean planets. J. Geophys. Res., Planets 117, 1001 (2012) ADSCrossRefGoogle Scholar
  163. G.W. Marcy, L. Weiss, E.A. Petigura, H. Isaacson, A.W. Howard, L.A. Buchhave, Occurrence and core-envelope structure of 1-4x Earth-size planets around sun-like stars. Proc. Natl. Acad. Sci. USA 111(35), 12655–12660 (2014) ADSCrossRefGoogle Scholar
  164. M. Marov, V. Shematovich, D. Bisikalo, Non equilibrium aeronomic processes. Space Sci. Rev. 76(1–2), 1–204 (1996) ADSGoogle Scholar
  165. D. Martin, R. Nokes, Crystal settling in a vigorously convecting magma chamber. Nature 332, 534–536 (1988) ADSCrossRefGoogle Scholar
  166. T. Matsui, Y. Abe, Impact-induced atmospheres and oceans on Earth and Venus. Nature 322(6079), 526–528 (1986) ADSCrossRefGoogle Scholar
  167. M. Maurice, N. Tosi, A.C. Plesa, D. Breuer, Evolution and consequences of magma ocean solidification, in Goldschmidt Abstracts. No. 2060 (2015) Google Scholar
  168. M.B. McElroy, Mars: an evolving atmosphere. Science 175(4020), 443–445 (1972) ADSCrossRefGoogle Scholar
  169. E. Miller-Ricci, M.R. Meyer, S. Seager, L. Elkins-Tanton, On the emergent spectra of hot protoplanet collision afterglows. Astrophys. J. 704, 770–780 (2009) ADSCrossRefGoogle Scholar
  170. H. Mizuno, K. Nakazawa, C. Hayashi, Instability of a gaseous envelope surrounding a planetary core and formation of giant planets. Prog. Theor. Phys. 60, 699–710 (1978) ADSCrossRefGoogle Scholar
  171. H. Mizuno, K. Nakazawa, C. Hayashi, Dissolution of the primordial rare gases into the molten Earth’s material. Earth Planet. Sci. Lett. 50, 202–210 (1980) ADSCrossRefGoogle Scholar
  172. J. Monteux, N. Coltice, F. Dubuffet, Y. Ricard, Thermo-mechanical adjustment after impacts during planetary growth. Geophys. Res. Lett. 34, L24201 (2007) ADSCrossRefGoogle Scholar
  173. T. Montmerle, J.-C. Augereau, M. Chaussidon, M. Gounelle, B. Marty, A. Morbidelli, Solar system formation and early evolution: the first 100 million years. Earth Moon Planets 98(1–4), 39–95 (2006) ADSCrossRefGoogle Scholar
  174. C. Mordasini, Grain opacity and the bulk composition of extrasolar planets. II. An analytical model for grain opacity in protoplanetary atmospheres. Astron. Astrophys. 572, A118 (2014) ADSCrossRefGoogle Scholar
  175. C. Mordasini, Y. Alibert, C. Georgy, K.-M. Dittkrist, H. Klahr, T. Henning, Characterization of exoplanets from their formation. II. The planetary mass-radius relationship. Astron. Astrophys. 547, A112 (2012a) ADSCrossRefGoogle Scholar
  176. C. Mordasini, Y. Alibert, H. Klahr, T. Henning, Characterization of exoplanets from their formation. I. Models of combined planet formation and evolution. Astron. Astrophys. 547, A111 (2012b) ADSCrossRefGoogle Scholar
  177. M. Moreira, Noble gas constraints on the origin and evolution of Earth’s volatiles. Geochem. Perspect. 2, 229–403 (2013) CrossRefGoogle Scholar
  178. R. Morishima, J. Stadel, B. Moore, From planetesimals to terrestrial planets: \(N\)-body simulations including the effects of nebular gas and giant planets. Icarus 207, 517–535 (2010) ADSCrossRefGoogle Scholar
  179. N. Movshovitz, M. Podolak, The opacity of grains in protoplanetary atmospheres. Icarus 194, 368–378 (2008) ADSCrossRefGoogle Scholar
  180. N. Movshovitz, P. Bodenheimer, M. Podolak, J.J. Lissauer, Formation of Jupiter using opacities based on detailed grain physics. Icarus 209, 616–624 (2010) ADSCrossRefGoogle Scholar
  181. R.A. Murray-Clay, E.I. Chiang, N. Murray, Atmospheric escape from hot Jupiters. Astrophys. J. 693(1), 23 (2009) ADSCrossRefGoogle Scholar
  182. A. Nagy, T. Cravens, Hot oxygen atoms in the upper atmosphere of Venus and Mars. Geophys. Res. Lett. 15(5), 433–435 (1988) ADSCrossRefGoogle Scholar
  183. S. Nakajima, Y.-Y. Hayashi, Y. Abe, A study on the ‘runaway greenhouse effect’ with a one-dimensional radiative-convective equilibrium model. J. Atmos. Sci. 49, 2256–2266 (1992) ADSCrossRefGoogle Scholar
  184. F. Nimmo, T. Kleine, How rapidly did Mars accrete? Uncertainties in the Hf W timing of core formation. Icarus 191, 497–504 (2007) ADSCrossRefGoogle Scholar
  185. R. Nomura, H. Ozawa, S. Tateno, K. Hirose, J. Hernlund, S. Muto, H. Ishii, N. Hiraoka, Spin crossover and iron-rich silicate melt in the Earth’s deep mantle. Nature 473(7346), 199–202 (2011) ADSCrossRefGoogle Scholar
  186. D.P. O’Brien, A. Morbidelli, H.F. Levison, Terrestrial planet formation with strong dynamical friction. Icarus 184, 39–58 (2006) ADSCrossRefGoogle Scholar
  187. D.P. O’Brien, K.J. Walsh, A. Morbidelli, S.N. Raymond, A.M. Mandell, Water delivery and giant impacts in the ‘Grand Tack’ scenario. Icarus 239, 74–84 (2014) ADSCrossRefGoogle Scholar
  188. S. Okuzumi, H. Tanaka, H. Kobayashi, K. Wada, Rapid coagulation of porous dust aggregates outside the snow line: a pathway to successful icy planetesimal formation. Astrophys. J. 752, 106 (2012) ADSCrossRefGoogle Scholar
  189. H.C. O’Neill, H. Palme, Composition of the silicate Earth: implications for accretion of and core formation, in The Earth’s Mantle; Composition, Structure, and Evolution (Cambridge University Press, Cambridge, 1988), pp. 3–126 Google Scholar
  190. E.J. Opik, S.F. Singer, Distribution of density in a planetary exosphere. II. Phys. Fluids 4, 221–233 (1961) ADSMathSciNetCrossRefGoogle Scholar
  191. C.W. Ormel, An atmospheric structure equation for grain growth. Astrophys. J. Lett. 789, L18 (2014) ADSCrossRefGoogle Scholar
  192. C.W. Ormel, R. Kuiper, J.-M. Shi, Hydrodynamics of embedded planets’ first atmospheres—I. A centrifugal growth barrier for 2D flows. Mon. Not. R. Astron. Soc. 446, 1026–1040 (2015a) ADSCrossRefGoogle Scholar
  193. C.W. Ormel, J.-M. Shi, R. Kuiper, Hydrodynamics of embedded planets’ first atmospheres—II. A rapid recycling of atmospheric gas. Mon. Not. R. Astron. Soc. 447, 3512–3525 (2015b) ADSCrossRefGoogle Scholar
  194. J.E. Owen, A. Jackson, Planetary evaporation by UV and X-ray radiation: basic hydrodynamics. Mon. Not. R. Astron. Soc. 425(4), 2931–2947 (2012) ADSCrossRefGoogle Scholar
  195. J.E. Owen, Y. Wu, Kepler planets: a tale of evaporation. Astrophys. J. 775(2), 105 (2013) ADSCrossRefGoogle Scholar
  196. J.E. Owen, B. Ercolano, C.J. Clarke, R.D. Alexander, Radiation-hydrodynamic models of X-ray and EUV photoevaporating protoplanetary discs. Mon. Not. R. Astron. Soc. 401(3), 1415–1428 (2010) ADSCrossRefGoogle Scholar
  197. M. Ozima, Ar isotopes and Earth-atmosphere evolution models. Geochim. Cosmochim. Acta 39(8), 1127–1134 (1975) ADSCrossRefGoogle Scholar
  198. M. Ozima, K. Kudo, Excess argon in submarine basalts and an Earth-atmosphere evolution model. Nature 239(89), 23–24 (1972) ADSGoogle Scholar
  199. V. Pan, J.R. Holloway, R. Hervig, The pressure and temperature-dependence of carbon-dioxide solubility in tholeiitic basalt melts. Geochim. Cosmochim. Acta 55(6), 1587–1595 (1991) ADSCrossRefGoogle Scholar
  200. P. Papale, Modeling of the solubility of a two-component H2O+CO2 fluid in silicate liquids. Am. Mineral. 84(4), 447–492 (1999) ADSCrossRefGoogle Scholar
  201. E.N. Parker, Interplanetary Dynamical Processes (Interscience, New York, 1963) MATHGoogle Scholar
  202. E.N. Parker, Dynamical properties of stellar coronas and stellar winds. I. Integration of the momentum equation. Astrophys. J. 139, 72–122 (1964) ADSMathSciNetCrossRefGoogle Scholar
  203. T. Penz, N.V. Erkaev, Y.N. Kulikov, D. Langmayr, H. Lammer, G. Micela, C. Cecchi-Pestellini, H.K. Biernat, F. Selsis, P. Barge, M. Deleuil, A. Léger, Mass loss from “hot Jupiters”—implications for CoRoT discoveries, part ii: Long time thermal atmospheric evaporation modeling. Planet. Space Sci. 56(9), 1260–1272 (2008) ADSCrossRefGoogle Scholar
  204. F. Perri, A.G.W. Cameron, Hydrodynamic instability of the solar nebula in the presence of a planetary core. Icarus 22, 416–425 (1974) ADSCrossRefGoogle Scholar
  205. S. Pfyffer, Y. Alibert, W. Benz, D. Swoboda, Theoretical models of planetary system formation. II. Post-formation evolution (2015). ArXiv e-prints Google Scholar
  206. A.C. Plesa, N. Tosi, D. Breuer, Can a fractionally crystallized magma ocean explain the thermo-chemical evolution of Mars? Earth Planet. Sci. Lett. 403, 225–235 (2014) ADSCrossRefGoogle Scholar
  207. M. Podolak, The contribution of small grains to the opacity of protoplanetary atmospheres. Icarus 165, 428–437 (2003) ADSCrossRefGoogle Scholar
  208. J.B. Pollack, Formation of giant planets and their satellite-ring systems, in Protostars and Planets II (University of Arizona Press, Tucson, 1985) Google Scholar
  209. J.B. Pollack, O. Hubickyj, P. Bodenheimer, J.J. Lissauer, M. Podolak, Y. Greenzweig, Formation of the giant planets by concurrent accretion of solids and gas. Icarus 124, 62–85 (1996) ADSCrossRefGoogle Scholar
  210. C. Priestley, Turbulent Transfer in the Lower Atmosphere (University of Chicago Press, Chicago, 1959) Google Scholar
  211. R. Rafikov, Microwave emission from spinning dust in circumstellar disks. Astrophys. J. 646, 288–296 (2006) ADSCrossRefGoogle Scholar
  212. R.M. Ramirez, L. Kaltenegger, The habitable zones of pre-main-sequence stars. Astrophys. J. Lett. 797(2), L25–L33 (2014) ADSCrossRefGoogle Scholar
  213. S.N. Raymond, T. Quinn, J.I. Lunine, High-resolution simulations of the final assembly of Earth-like planets I. Terrestrial accretion and dynamics. Icarus 183, 265–282 (2006) ADSCrossRefGoogle Scholar
  214. S.N. Raymond, E. Kokubo, A. Morbidelli, R. Morishima, K.J. Walsh, Terrestrial planet formation at home and abroad, in Protostars and Planets VI (2014), pp. 595–618 Google Scholar
  215. R.T. Reynolds, P.E. Fricker, A.L. Summers, Effects of melting upon thermal models of the Earth. J. Geophys. Res. 71(2), 573–582 (1966) ADSCrossRefGoogle Scholar
  216. K. Righter, M. Drake, Metal/silicate equilibrium in the early Earth—new constraints from the volatile moderately siderophile elements Ga, Cu, P, and Sn. Geochim. Cosmochim. Acta 64(20), 3581–3597 (2000) ADSCrossRefGoogle Scholar
  217. L. Rogers, Most 1.6 Earth-radius planets are not rocky. Astrophys. J. 801(1), 41 (2015) ADSCrossRefGoogle Scholar
  218. W.W. Rubey, Geologic history of sea water an attempt to state the problem. Geol. Soc. Am. Bull. 62(9), 1111–1148 (1951) ADSCrossRefGoogle Scholar
  219. V. Safronov, The heating of the Earth during its formation. Icarus 33, 3–12 (1978) ADSCrossRefGoogle Scholar
  220. J. Sanz-Forcada, I. Ribas, G. Micela, A.M.T. Pollock, D. García-Álvarez, E. Solano, C. Eiroa, A scenario of planet erosion by coronal radiation. Astron. Astrophys. 511, L8 (2010) ADSCrossRefGoogle Scholar
  221. P. Sarda, B. Guillot, Breaking of Henry’s law for noble gas and CO2 solubility in silicate melt under pressure. Nature 436(7047), 95–98 (2005) ADSCrossRefGoogle Scholar
  222. P. Sarda, T. Staudacher, C.J. Allègre, 40Ar/36Ar in MORB glasses: constraints on atmosphere and mantle evolution. Earth Planet. Sci. Lett. 72(4), 357–375 (1985) ADSCrossRefGoogle Scholar
  223. P. Sarda, T. Staudacher, C.J. Allègre, Neon isotopes in submarine basalts. Earth Planet. Sci. Lett. 91(1–2), 73–88 (1988) ADSCrossRefGoogle Scholar
  224. S. Sasaki, K. Nakazawa, Metal-silicate fractionation in the growing Earth: energy source for the terrestrial magma ocean. J. Geophys. Res., Solid Earth 91(B9), 9231–9238 (1986) CrossRefGoogle Scholar
  225. E.M. Schneiter, P. Velázquez, A. Esquivel, A.C. Raga, X. Blanco-Cano, Three-dimensional hydrodynamical simulation of the exoplanet HD 209458b. Astrophys. J. Lett. 671(1), L57 (2007) ADSCrossRefGoogle Scholar
  226. D. Semenov, T. Henning, C. Helling, M. Ilgner, E. Sedlmayr, Rosseland and Planck mean opacities for protoplanetary discs. Astron. Astrophys. 410, 611–621 (2003) ADSCrossRefGoogle Scholar
  227. I.F. Shaikhislamov, M.L. Khodachenko, Y.L. Sasunov, H. Lammer, K.G. Kislyakova, N.V. Erkaev, Atmosphere expansion and mass loss of close-orbit giant exoplanets heated by stellar XUV. I. Modeling of hydrodynamic escape of upper atmospheric material. Astrophys. J. 795(2), 132 (2014) ADSCrossRefGoogle Scholar
  228. H.R. Shaw, Viscosities of magmatic silicate liquids: an empirical method of prediction. Am. J. Sci. 272, 870–893 (1972) ADSCrossRefGoogle Scholar
  229. V.I. Shematovich, Stochastic models of hot planetary and satellite coronas. Sol. Syst. Res. 38(1), 28–38 (2004) ADSCrossRefGoogle Scholar
  230. V.I. Shematovich, Suprathermal hydrogen produced by the dissociation of molecular hydrogen in the extended atmosphere of exoplanet HD 209458b. Sol. Syst. Res. 44(2), 96–103 (2010) ADSCrossRefGoogle Scholar
  231. V.I. Shematovich, D.V. Bisikalo, J.C. Gérard, C. Cox, S.W. Bougher, F. Leblanc, Monte Carlo model of electron transport for the calculation of Mars dayglow emissions. J. Geophys. Res., Planets 113(E2), E02011 (2008) ADSCrossRefGoogle Scholar
  232. V.I. Shematovich, D.E. Ionov, H. Lammer, Heating efficiency in hydrogen-dominated upper atmospheres. Astron. Astrophys. 571, A94 (2014) ADSCrossRefGoogle Scholar
  233. E.D. Siggia, High Rayleigh number convection. Annu. Rev. Fluid Mech. 26(1), 137–168 (1994) ADSMathSciNetMATHCrossRefGoogle Scholar
  234. J. Smith, A.T. Anderson, R. Newton, E. Olsen et al., Petrologic history of the Moon inferred from petrography, mineralogy, and petrogenesis of Apollo 11 rocks, in Proc. Apollo 11 Lunar Sci. Conf., vol. 1, Houston, TX, Jan. 5–8 (Pergamon, New York, 1970), pp. 897–925 Google Scholar
  235. V.S. Solomatov, Fluid dynamics of a terrestrial magma ocean, in Origin of the Earth and Moon (2000), pp. 323–338 Google Scholar
  236. V. Solomatov, Magma oceans and primordial mantle differentiation, in Treatise on Geophysics, ed. by G. Schubert (Elsevier, Amsterdam, 2007), pp. 91–119 CrossRefGoogle Scholar
  237. V. Solomatov, Magma oceans and primordial mantle differentiation, in Treatise on Geophysics, ed. by G. Schubert (Elsevier, Amsterdam, 2009), pp. 91–119 Google Scholar
  238. V. Solomatov, Magma oceans and primordial mantle differentiation—magma oceans and primordial mantle differentiation, in Treatise on Geophysics, ed. by G. Schubert (Elsevier, Amsterdam, 2015), 81–100 CrossRefGoogle Scholar
  239. V.S. Solomatov, D.J. Stevenson, Suspension in convective layers and style of differentiation of a terrestrial magma ocean. J. Geophys. Res., Planets 98(E3), 5375–5390 (1993a) ADSCrossRefGoogle Scholar
  240. V.S. Solomatov, D.J. Stevenson, Kinetics of crystal growth in a terrestrial magma ocean. J. Geophys. Res., Planets 98(E3), 5407–5418 (1993b) ADSCrossRefGoogle Scholar
  241. T. Staudacher, C.J. Allègre, Terrestrial xenology. Earth Planet. Sci. Lett. 60(3), 389–406 (1982) ADSCrossRefGoogle Scholar
  242. D.J. Stevenson, Formation of the giant planets. Planet. Space Sci. 30, 755–764 (1982) ADSCrossRefGoogle Scholar
  243. A. Stökl, E. Dorfi, H. Lammer, Hydrodynamic simulations of captured protoatmospheres around Earth-like planets. Astron. Astrophys. 576, A87 (2015) ADSCrossRefGoogle Scholar
  244. J.M. Stone, D. Proga, Anisotropic winds from close-in extrasolar planets. Astrophys. J. 694(1), 205 (2009) ADSCrossRefGoogle Scholar
  245. J. Suckale, J.A. Sethian, J-d. Yu, L.T. Elkins-Tanton, Crystals stirred up: 1. Direct numerical simulations of crystal settling in nondilute magmatic suspensions. J. Geophys. Res., Planets 117, E08004 (2012) ADSGoogle Scholar
  246. H.E. Suess, Die häufigkeit der edelgase auf der erde und im kosmos. J. Geol. 57, 600–607 (1949) ADSCrossRefGoogle Scholar
  247. H. Tanaka, S. Ida, Growth of a migrating protoplanet. Icarus 139, 350–366 (1999) ADSCrossRefGoogle Scholar
  248. Y.A. Tanaka, T.K. Suzuki, S. Inutsuka, Atmospheric escape by magnetically driven wind from gaseous planets. Astrophys. J. 792(1), 18 (2014) ADSCrossRefGoogle Scholar
  249. G. Taylor, M. Norman, Evidence for Magma Oceans on Asteroids, the Moon, and Earth (Lunar Planet. Inst., Houston, 1992), pp. 58–65 Google Scholar
  250. E. Thommes, M. Nagasawa, D.N.C. Lin, Dynamical shake-up of planetary systems. II. \(N\)-Body simulations of solar system terrestrial planet formation induced by secular resonance sweeping. Astrophys. J. 676, 728–739 (2008) ADSCrossRefGoogle Scholar
  251. F. Tian, Conservation of total escape from hydrodynamic planetary atmospheres. Earth Planet. Sci. Lett. 379, 104–107 (2013) ADSCrossRefGoogle Scholar
  252. F. Tian, History of water loss and atmospheric O2 buildup on rocky exoplanets near M dwarfs. Earth Planet. Sci. Lett. 432, 126–132 (2015) ADSCrossRefGoogle Scholar
  253. F. Tian, S. Ida, Water contents of Earth-mass planets around M dwarfs. Nat. Geosci. 8(3), 177–180 (2015) ADSCrossRefGoogle Scholar
  254. F. Tian, O.B. Toon, A.A. Pavlov, H. De Sterck, A hydrogen-rich early Earth atmosphere. Science 308(5724), 1014–1017 (2005a) ADSCrossRefGoogle Scholar
  255. F. Tian, O.B. Toon, A.A. Pavlov, H. De Sterck, Transonic hydrodynamic escape of hydrogen from extrasolar planetary atmospheres. Astrophys. J. 621(2), 1049 (2005b) ADSCrossRefGoogle Scholar
  256. F. Tian, J.F. Kasting, H.-L. Liu, R.G. Roble, Hydrodynamic planetary thermosphere model: 1. Response of the Earth’s thermosphere to extreme solar EUV conditions and the significance of adiabatic cooling. J. Geophys. Res., Planets 113(E5), E05008 (2008) ADSGoogle Scholar
  257. G. Tinetti et al., EChO. Exoplanet characterisation observatory. Exp. Astron. 34(2), 311–353 (2012) ADSCrossRefGoogle Scholar
  258. W. Tonks, H. Melosh, The physics of crystal settling and suspension in a turbulent magma ocean, in Origin of the Earth (Oxford University Press, London, 1990), pp. 151–174 Google Scholar
  259. W.B. Tonks, H.J. Melosh, Magma ocean formation due to giant impacts. J. Geophys. Res., Planets 98(E3), 5319–5333 (1993) ADSCrossRefGoogle Scholar
  260. N. Tosi, A.C. Plesa, D. Breuer, Overturn and evolution of a crystallized magma ocean: a numerical parameter study for Mars. J. Geophys. Res., Planets 118(7), 1512–1528 (2013) ADSCrossRefGoogle Scholar
  261. M. Touboul, T. Kleine, B. Bourdon, H. Palme, R. Wieler, Late formation and prolonged differentiation of the Moon inferred from W isotopes in lunar metals. Nature 450, 1206–1209 (2007) ADSCrossRefGoogle Scholar
  262. G.B. Trammell, P. Arras, Z.-Y. Li, Hot Jupiter magnetospheres. Astrophys. J. 728(2), 152 (2011) ADSCrossRefGoogle Scholar
  263. K.K. Turekian, S.P. Clark Jr., The non-homogeneous accumulation model for terrestrial planet formation and the consequences for the atmosphere of Venus. J. Atmos. Sci. 32(6), 1257–1261 (1975) ADSCrossRefGoogle Scholar
  264. H. Urey, The cosmic abundances of potassium, uranium and thorium and the heat balances of the Earth, the Moon and Mars. Proc. Natl. Acad. Sci. USA 41, 127–144 (1955) ADSCrossRefGoogle Scholar
  265. F. Valsecchi, F.A. Rasio, J.H. Steffen, From hot Jupiters to super-Earths via Roche lobe overflow. Astrophys. J. Lett. 793(1), L3 (2014) ADSCrossRefGoogle Scholar
  266. A. Vidal-Madjar, A. Lecavelier des Etangs, J.M. Desert, G.E. Ballester, R. Ferlet, G. Hebrard, M. Mayor, An extended upper atmosphere around the extrasolar planet HD 209458b. Nature 422(6928), 143–146 (2003) ADSCrossRefGoogle Scholar
  267. A. Vidal-Madjar, J.M. Désert, A. Lecavelier des Etangs, G. Hébrard, G.E. Ballester, D. Ehrenreich, R. Ferlet, J.C. McConnell, M. Mayor, C.D. Parkinson, Detection of oxygen and carbon in the hydrodynamically escaping atmosphere of the extrasolar planet HD 209458b. Astrophys. J. Lett. 604(1), L69 (2004) ADSCrossRefGoogle Scholar
  268. A. Vidal-Madjar, C.M. Huitson, V. Bourrier, J.-M. Désert, G. Ballester, A. Lecavelier des Etangs, D.K. Sing, D. Ehrenreich, R. Ferlet, G. Hébrard, J.C. McConnell, Magnesium in the atmosphere of the planet HD 209458b: observations of the thermosphere-exosphere transition region. Astron. Astrophys. 560, A54 (2013) ADSCrossRefGoogle Scholar
  269. C. Villarreal D’Angelo, M. Schneiter, A. Costa, P. Velázquez, A. Raga, A. Esquivel, On the sensitivity of extrasolar mass-loss rate ranges: HD 209458b a case study. Mon. Not. R. Astron. Soc. 438(2), 1654–1662 (2014) ADSCrossRefGoogle Scholar
  270. A. Volkov, R.E. Johnson, Thermal escape in the hydrodynamic regime: reconsideration of Parker’s isentropic theory based on results of kinetic simulations. Astrophys. J. 765(2), 90 (2013) ADSCrossRefGoogle Scholar
  271. A. Volkov, R.E. Johnson, O.J. Tucker, J.T. Erwin, Thermally driven atmospheric escape: transition from hydrodynamic to jeans escape. Astrophys. J. Lett. 729(2), L24 (2011a) ADSCrossRefGoogle Scholar
  272. A.N. Volkov, O.J. Tucker, J.T. Erwin, R.E. Johnson, Kinetic simulations of thermal escape from a single component atmosphere. Phys. Fluids 23(6), 066601 (2011b) ADSCrossRefGoogle Scholar
  273. A.J. Watson, T.M. Donahue, J.C. Walker, The dynamics of a rapidly escaping atmosphere: applications to the evolution of Earth and Venus. Icarus 48(2), 150–166 (1981) ADSCrossRefGoogle Scholar
  274. R. Wayne, Chemistry of Atmospheres (Oxford University Press, London, 1991) 312 pp. Google Scholar
  275. G.W. Wetherill, Comparison of analytical and physical modeling of planetesimal accumulation. Icarus 88, 336–354 (1990) ADSCrossRefGoogle Scholar
  276. G.W. Wetherill, G.R. Stewart, Accumulation of a swarm of small planetesimals. Icarus 77, 330–357 (1989) ADSCrossRefGoogle Scholar
  277. F. Witham, J. Blundy, S.C. Kohn, P. Lesne, J. Dixon, S.V. Churakov, R. Botcharnikov, SolEx: a model for mixed COHSCl-volatile solubilities and exsolved gas compositions in basalt. Comput. Geosci. 45, 87–97 (2012) ADSCrossRefGoogle Scholar
  278. J. Wood, J.S. Dickey Jr., U.B. Marvin, B.N. Powell, Lunar anorthosites and a geophysical model of the Moon, in Proceedings of the Apollo 11 Lunar Science Conference (Pergamon, New York, 1970), pp. 965–988 Google Scholar
  279. B. Wood, M. Walter, J. Wade, Accretion of the Earth and segregation of its core. Nature 441(7095), 825–833 (2006) ADSCrossRefGoogle Scholar
  280. Y. Wu, Y. Lithwick, Density and eccentricity of Kepler planets. Astrophys. J. 772(1), 74 (2013) ADSCrossRefGoogle Scholar
  281. G. Wuchterl, The critical mass for protoplanets revisited—massive envelopes through convection. Icarus 106, 323 (1993) ADSCrossRefGoogle Scholar
  282. G. Wuchterl, Giant planet formation. Earth Moon Planets 67(1–3), 51–65 (1994) ADSCrossRefGoogle Scholar
  283. G. Wuchterl, Planet masses and radii from physical principles, in Proceedings of the International Astronomical Union 6 (Symposium S276) (2010), pp. 76–81 Google Scholar
  284. J. Yang, G. Boué, D.C. Fabrycky, D.S. Abbot, Strong dependence of the inner edge of the habitable zone on planetary rotation rate. Astrophys. J. Lett. 787, L2 (2014) ADSCrossRefGoogle Scholar
  285. R.V. Yelle, Aeronomy of extra-solar giant planets at small orbital distances. Icarus 170(1), 167–179 (2004) ADSCrossRefGoogle Scholar
  286. R. Yelle, H. Lammer, W.H. Ip, Aeronomy of extra-solar giant planets. Space Sci. Rev. 139, 437–451 (2008) ADSCrossRefGoogle Scholar
  287. T. Yoshino, M. Walter, T. Katsura, Core formation in planetesimals triggered by permeable flow. Nature 422(6928), 154–157 (2003) ADSCrossRefGoogle Scholar
  288. K. Zahnle, J. Kasting, J. Pollack, Evolution of a steam atmospheres during Earth’s accretion. Icarus 74(1), 62–97 (1988) ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • H. Massol
    • 1
  • K. Hamano
    • 2
    • 3
  • F. Tian
    • 4
  • M. Ikoma
    • 2
  • Y. Abe
    • 2
  • E. Chassefière
    • 1
  • A. Davaille
    • 5
  • H. Genda
    • 6
  • M. Güdel
    • 7
  • Y. Hori
    • 8
  • F. Leblanc
    • 9
  • E. Marcq
    • 9
  • P. Sarda
    • 1
  • V. I. Shematovich
    • 10
  • A. Stökl
    • 7
  • H. Lammer
    • 11
  1. 1.GEOPSUniv. Paris-Sud, CNRS, Université Paris-SaclayOrsayFrance
  2. 2.Department of Earth and Planetary Science, Graduate School of ScienceThe University of TokyoTokyoJapan
  3. 3.Earth-Life Science InstituteTokyo Institute of TechnologyTokyoJapan
  4. 4.National Astronomical ObservatoriesChinese Academy of SciencesBeijingChina
  5. 5.Lab. FASTUMR 7608 CNRS-Université de Paris-SudOrsayFrance
  6. 6.Earth-Life Science InstituteTokyo Institute of TechnologyTokyoJapan
  7. 7.Institute of AstronomyUniversity of ViennaViennaAustria
  8. 8.National Astronomical Observatory of Japan/Astrobiology CenterNational Institutes of Natural SciencesTokyoJapan
  9. 9.Lab. LATMOSUMR 9190 CNRSGuyancourtFrance
  10. 10.Department of Solar System ResearchInstitute of Astronomy of the Russian Academy of SciencesMoscowRussia
  11. 11.Austrian Academy of Sciences Space Research InstituteGrazAustria

Personalised recommendations