Space Science Reviews

, Volume 206, Issue 1–4, pp 5–25 | Cite as

Magnetic Signatures of Ionospheric and Magnetospheric Current Systems During Geomagnetic Quiet Conditions—An Overview

  • Nils Olsen
  • Claudia Stolle


High-precision magnetic measurements taken by LEO satellites (flying at altitudes between 300 and 800 km) allow for studying the ionospheric and magnetospheric processes and electric currents that causes only weak magnetic signature of a few nanotesla during geomagnetic quiet conditions. Of particular importance for this endeavour are multipoint observations in space, such as provided by the Swarm satellite constellation mission, in order to better characterize the space-time-structure of the current systems.

Focusing on geomagnetic quiet conditions, we provide an overview of ionospheric and magnetospheric sources and illustrate their magnetic signatures with Swarm satellite observations.


Low Earth-Orbiting satellites Geomagnetic quiet conditions Ionospheric and magnetospheric currents Magnetic field modeling Ørsted CHAMP Swarm 



We are very grateful to the International Space Science Institute Bern for giving us the possibility to take part in the Workshop on “Earth’s Magnetic Field” held in Bern in May 2015, and to Karl Magnus Laundal for providing us with data used to prepare Sect. 4.


  1. P. Alken, Observations and modeling of the ionospheric gravity and diamagnetic current systems from CHAMP and Swarm measurements. J. Geophys. Res. 121(1) (2016). doi: 10.1002/2015JA022163
  2. P. Alken, S. Maus, Spatio-temporal characterization of the equatorial electrojet from CHAMP, Ørsted, and SAC-C satellite magnetic measurements. J. Geophys. Res. 112(A9), 09305 (2007). doi: 10.1029/2007JA012524 CrossRefGoogle Scholar
  3. P. Alken, S. Maus, A. Chulliat, P. Vigneron, O. Sirol, G. Hulot, Swarm equatorial electric field chain: first results. Geophys. Res. Lett. 42(3) (2015). doi: 10.1002/2014GL062658
  4. P. Alken, A. Maute, A.D. Richmond, The F-region gravity and pressure gradient current systems: A review. Space Sci. Rev. (2016). doi: 10.1007/s11214-016-0266-z
  5. F. Christiansen, V.O. Papitashvili, T. Neubert, Seasonal variations of high-latitude field-aligned currents inferred from Ørsted and Magsat observations. J. Geophys. Res. 107(A2), 1029 (2002). doi: 10.1029/2001JA900104 CrossRefGoogle Scholar
  6. A. Chulliat, J. Matzka, A. Masson, S.E. Milan, Key ground-based and space-based assets to disentangle magnetic field sources in the Earth’s environment. Space Sci. Rev. (2016a). Under review Google Scholar
  7. A. Chulliat, P. Vigneron, G. Hulot, First results from the Swarm dedicated ionospheric field inversion chain. Earth Planets Space 68, 104 (2016b). doi: 10.1186/s40623-016-0481-6 ADSCrossRefGoogle Scholar
  8. U. Engels, N. Olsen, Computation of magnetic fields within source regions of ionospheric and magnetospheric currents. J. Atmos. Sol.-Terr. Phys. 60, 1585–1592 (1998) ADSCrossRefGoogle Scholar
  9. C.C. Finlay, N. Olsen, S. Kotsiaros, N. Gillet, L. Tøffner-Clausen, Recent geomagnetic secular variation from Swarm and ground observatories in the CHAOS-6 geomagnetic field model. Earth Planets Space 68, 112 (2016). doi: 10.1186/s40623-016-0486-1 ADSCrossRefGoogle Scholar
  10. J.M. Forbes, The equatorial electrojet. Rev. Geophys. Space Phys. 19, 469–504 (1981) ADSCrossRefGoogle Scholar
  11. N. Fukushima, Eastward ring-current at the bottom of the ionosphere detected by MAGSAT, unpublished manuscript, 1989 Google Scholar
  12. N. Fukushima, Some topics and historical episodes in geomagnetism and aeronomy. J. Geophys. Res. 99(A10), 19113 (1994). doi: 10.1029/94ja00102 ADSCrossRefGoogle Scholar
  13. M. He, J. Vogt, H. Lühr, E. Sorbalo, A. Blagau, G. Le, G. Lu, A high-resolution model of field-aligned currents through empirical orthogonal functions analysis (MFACE). Geophys. Res. Lett. 39(18), (2012). doi: 10.1029/2012gl053168
  14. G. Hulot, T.J. Sabaka, N. Olsen, A. Fournier, The present and future geomagnetic field, in Treatise on Geophysics, second edition, vol. 5, ed. by G. Schubert (Elsevier, Oxford, 2015), pp. 33–78. Chap. 02. 978-0-444-53803-1. doi: 10.1016/B978-0-444-53802-4.00096-8 CrossRefGoogle Scholar
  15. T.J. Immel, S.B. Mende, H.U. Frey, L.M. Peticolas, E. Sagawa, Determination of low latitude plasma drift speeds from FUV images. Geophys. Res. Lett. 30(18) (2003). doi: 10.1029/2003GL017573
  16. D. Ivers, R. Stening, J. Turner, D. Winch, Equatorial electrojet from Ørsted scalar magnetic field observations. J. Geophys. Res. 108, 1061 (2003) CrossRefGoogle Scholar
  17. K. Kauristie, A. Morschhauser, N. Olsen, C. Finlay, R.L. McPherron, J.W. Gjerloev, H.J. Opgenoorth, On the usage of geomagnetic indices for data selection in internal field modelling. Space Sci. Rev. (2016). Under review Google Scholar
  18. D.J. Knipp, T. Matsuo, L. Kilcommons, A. Richmond, B. Anderson, H. Korth, R. Redmon, B. Mero, N. Parrish, Comparison of magnetic perturbation data from LEO satellite constellations: statistics of DMSP and AMPERE. Space Weather 12(1) (2014). doi: 10.1002/2013SW000987
  19. R.A. Langel, R.H. Estes, Large-scale, near-Earth magnetic fields from external sources and the corresponding induced internal field. J. Geophys. Res. 90, 2487–2494 (1985a) ADSCrossRefGoogle Scholar
  20. R.A. Langel, R.H. Estes, The near-Earth magnetic field at 1980 determined from MAGSAT data. J. Geophys. Res. 90, 2495–2509 (1985b) ADSCrossRefGoogle Scholar
  21. K.M. Laundal, C.C. Finlay, N. Olsen, Sunlight effects on the 3D polar current system determined from low Earth orbit measurements. Earth Planets Space 68, 142 (2016). doi: 10.1186/s40623-016-0518-x ADSCrossRefGoogle Scholar
  22. G. Le, W.J. Burke, R.F. Pfaff, H. Freudenreich, S. Maus, H. Lühr, C/NOFS measurements of magnetic perturbations in the low-latitude ionosphere during magnetic storms. J. Geophys. Res. 116(A12), A12230 (2011). doi: 10.1029/2011JA017026 ADSCrossRefGoogle Scholar
  23. V. Lesur, S. Macmillan, A.W.P. Thomson, A magnetic field model with daily variations of the magnetospheric field and its induced counterpart in 2001. Geophys. J. Int. 160(1), 79–88 (2005). doi: 10.1111/j.1365-246X.2004.02479.x ADSCrossRefGoogle Scholar
  24. H. Liu, C. Stolle, M. Förster, S. Watanabe, Solar activity dependence of the electron density in the equatorial anomaly regions observed by CHAMP. J. Geophys. Res. 112(A11) (2007). doi: 10.1029/2007JA012616
  25. H. Lühr, S. Maus, M. Rother, First in-situ observation of night-time \(F\) region currents with the CHAMP satellite. Geophys. Res. Lett. 29(10), 127-1 (2002) CrossRefGoogle Scholar
  26. H. Lühr, S. Maus, M. Rother, Noon-time equatorial electrojet: its spatial features as determined by the CHAMP satellite. J. Geophys. Res. 109(A1) (2004). doi: 10.1029/2002JA009656
  27. H. Lühr, S. Maus, Solar cycle dependence of magnetospheric currents and a model of their near-earth magnetic field. Earth Planets Space 62, 843–848 (2010). doi: 10.5047/eps.2010.07.012 ADSCrossRefGoogle Scholar
  28. H. Lühr, J. Park, J.W. Gjerloev, J. Rauberg, I. Michaelis, J.M.G. Merayo, P. Brauer, Field-aligned currents scale analysis performed with the Swarm constellation. Geophys. Res. Lett. 42(1), 1–8 (2015). doi: 10.1002/2014gl062453 ADSCrossRefGoogle Scholar
  29. H. Lühr, G. Kervalishvili, I. Michaelis, J. Rauberg, P. Ritter, J. Park, J.M.G. Merayo, P. Brauer, The interhemispheric and F region dynamo currents revisited with the Swarm constellation. Geophys. Res. Lett. 42(9), 3069–3075 (2015). 2015GL063662. doi: 10.1002/2015GL063662 ADSCrossRefGoogle Scholar
  30. H. Lühr, C. Xiong, N. Olsen, G. Le, Near-Earth magnetic field effects of large-scale magnetospheric currents. Space Sci. Rev. (2016). doi: 10.1007/s11214-016-0267-y Google Scholar
  31. C. Manoj, A.V. Kuvshinov, S. Maus, H. Lühr, Ocean circulation generated magnetic signals. Earth Planets Space 58, 429–437 (2006) ADSCrossRefGoogle Scholar
  32. S. Maus, H. Lühr, Signature of the quiet-time magnetospheric magnetic field and its electromagnetic induction in the rotating Earth. Geophys. J. Int. 162, 755–763 (2005) ADSCrossRefGoogle Scholar
  33. P.T. Newell, J.W. Gjerloev, Supermag-based partial ring current indices. J. Geophys. Res. 117(A5), A05215 (2012). doi: 10.1029/2012JA017586 ADSCrossRefGoogle Scholar
  34. N. Olsen, K.H. Glassmeier, X. Jia, Separation of the magnetic field into external and internal parts. Space Sci. Rev. 152, 135–157 (2010). doi: 10.1007/s11214-009-9563-0 ADSCrossRefGoogle Scholar
  35. N. Olsen, Ionospheric \(F\) region currents at middle and low latitudes estimated from Magsat data. J. Geophys. Res. 102(A3), 4563–4576 (1997) ADSCrossRefGoogle Scholar
  36. N. Olsen, A model of the geomagnetic field and its secular variation for epoch 2000 estimated from Ørsted data. Geophys. J. Int. 149(2), 454–462 (2002) ADSCrossRefGoogle Scholar
  37. N. Olsen, C. Stolle, Satellite geomagnetism. Annu. Rev. Earth Planet. Sci. 40(1), 441–465 (2012). doi: 10.1146/annurev-earth-042711-105540 ADSCrossRefGoogle Scholar
  38. N. Olsen, H. Lühr, C.C. Finlay, T.J. Sabaka, I. Michaelis, J. Rauberg, L. Tøffner-Clausen, The CHAOS-4 geomagnetic field model. Geophys. J. Int. 197, 815–827 (2014) ADSCrossRefGoogle Scholar
  39. N. Olsen, C.C. Finlay, S. Kotsiaros, L. Tøffner-Clausen, A model of Earth’s magnetic field derived from two years of Swarm satellite constellation data. Earth Planets Space 68, 124 (2016). doi: 10.1186/s40623-016-0488-z ADSCrossRefGoogle Scholar
  40. C.A. Onwumechili, Geomagnetic variations in the equatorial zone, in Physics of Geomagnetic Phenomena, ed. by S. Matsushita, W.H. Campbell (Academic Press, San Diego, 1967), pp. 425–507 CrossRefGoogle Scholar
  41. J. Park, H. Lühr, C. Stolle, M. Rother, K.W. Min, J.K. Chung, Y.H. Kim, I. Michaelis, M. Noja, Magnetic signatures of medium-scale traveling ionospheric disturbances as observed by CHAMP. J. Geophys. Res. 114(A3), 03307 (2009) CrossRefGoogle Scholar
  42. J. Park, H. Lühr, G. Kervalishvili, J. Rauberg, I. Michaelis, C. Stolle, Y.-S. Kwak, Nighttime magnetic field fluctuations in the topside ionosphere at midlatitudes and their relation to medium-scale traveling ionospheric disturbances: the spatial structure and scale sizes. J. Geophys. Res. 120(8), 6818–6830 (2015). 2015JA021315. doi: 10.1002/2015JA021315 CrossRefGoogle Scholar
  43. N.M. Pedatella, J.M. Forbes, A. Maute, A.D. Richmond, T.-W. Fang, K.M. Larson, G. Millward, Longitudinal variations in the F region ionosphere and the topside ionosphere-plasmasphere: observations and model simulations. J. Geophys. Res. 116(A12), (2011). doi: 10.1029/2011ja016600
  44. A.D. Richmond, Ionospheric electrodynamics using magnetic Apex coordinates. J. Geomagn. Geoelectr. 47, 191–212 (1995) CrossRefGoogle Scholar
  45. P. Ritter, H. Lühr, Search for magnetically quiet CHAMP polar passes and the characteristics of ionospheric currents during the dark season. Ann. Geophys. 24(11), 2997–3009 (2006). doi:  10.5194/angeo-24-2997-2006 ADSCrossRefGoogle Scholar
  46. T.J. Sabaka, N. Olsen, R.H. Tyler, A. Kuvshinov, CM5, a pre-Swarm comprehensive magnetic field model derived from over 12 years of CHAMP, Ørsted, SAC-C and observatory data. Geophys. J. Int. 200, 1596–1626 (2015). doi: 10.1093/gji/ggu493 ADSCrossRefGoogle Scholar
  47. A. Saito, T. Iyemori, M. Sugiura, N.C. Maynard, T.L. Aggson, L.H. Brace, M. Takeda, M. Yamamoto, Conjugate occurrence of the electric field fluctuations in the nighttime midlatitude ionosphere. J. Geophys. Res. 100(A11), 21439–21451 (1995). doi: 10.1029/95ja01505 ADSCrossRefGoogle Scholar
  48. K. Shiokawa, Y. Otsuka, C. Ihara, T. Ogawa, F.J. Rich, Ground and satellite observations of nighttime medium-scale traveling ionospheric disturbance at midlatitude. J. Geophys. Res. 108(A4), 1145 (2003). doi: 10.1029/2002JA009639 CrossRefGoogle Scholar
  49. C. Stolle, H. Lühr, M. Rother, G. Balasis, Magnetic signatures of equatorial spread \(F\), as observed by the CHAMP satellite. J. Geophys. Res. 111, 02304 (2006). doi: 10.1029/2005JA011184 CrossRefGoogle Scholar
  50. C. Stolle, H. Liu, V. Truhlik, H. Lühr, P.G. Richards, Solar flux variation of the electron temperature morning overshoot in the equatorial F region. J. Geophys. Res. 116(A4) (2011). doi: 10.1029/2010JA016235
  51. C. Stolle, I. Michaelis, J. Rauberg, The role of high-resolution geomagnetic field models for investigating ionosphereic currents at low earth orbit satellites. Earth Planets Space 68, 110 (2016). doi: 10.1186/s40623-016-0494-1 ADSCrossRefGoogle Scholar
  52. M. Sugiura, Hourly values of equatorial Dst for IGY. Ann. Int. Geophys. Year 35, 49 (1964) Google Scholar
  53. M. Sugiura, Equatorial current sheet in the magnetosphere. J. Geophys. Res. 77(31), 6093–6103 (1972). doi: 10.1029/ja077i031p06093 ADSCrossRefGoogle Scholar
  54. M. Sugiura, D.J. Poros, A magnetospheric field model incorporating the OGO 3 and 5 magnetic field observations. Planet. Space Sci. 21(10), 1763–1773 (1973). doi: 10.1016/0032-0633(73)90167-0 ADSCrossRefGoogle Scholar
  55. M. Sugiura, B.G. Ledley, T.L. Skillman, J.P. Heppner, Magnetospheric-field distortions observed by OGO 3 and 5. J. Geophys. Res. 76(31), 7552–7565 (1971). doi: 10.1029/ja076i031p07552 ADSCrossRefGoogle Scholar
  56. D. van Sabben, Magnetospheric currents, associated with the N-S asymmetry of \(\mathit{Sq}\). J. Atmos. Terr. Phys. 28, 965–981 (1966) CrossRefGoogle Scholar
  57. S. Vennerstrom, F. Christiansen, N. Olsen, T. Moretto, On the cause of IMF by related mid- and low latitude magnetic disturbances. Geophys. Res. Lett. 34(16) (2007). doi: 10.1029/2007gl030175
  58. C.L. Waters, B.J. Anderson, K. Liou, Estimation of global field aligned currents using the iridium system magnetometer data. Geophys. Res. Lett. 28(11), 2165–2168 (2001). doi: 10.1029/2000gl012725 ADSCrossRefGoogle Scholar
  59. D.R. Weimer, Maps of ionospheric field-aligned currents as a function of the interplanetary magnetic field derived from Dynamics Explorer 2 data. J. Geophys. Res. 106(A7), 12889–12902 (2001). doi: 10.1029/2000ja000295 ADSCrossRefGoogle Scholar
  60. R.F. Woodman, Spread \(F\) – an old equatorial aeronomy problem finally resolved? Ann. Geophys. 27(5), 1915–1934 (2009). doi: 10.5194/angeo-27-1915-2009 ADSCrossRefGoogle Scholar
  61. Y. Yamazaki, K. Yumoto, M.G. Cardinal, B.J. Fraser, P. Hattori, Y. Kakinami, J.Y. Liu, K.J.W. Lynn, R. Marshall, D. McNamara, T. Nagatsuma, V.M. Nikiforov, R.E. Otadoy, M. Ruhimat, B.M. Shevtsov, K. Shiokawa, S. Abe, T. Uozumi, A. Yoshikawa, An empirical model of the quiet daily geomagnetic field variation. J. Geophys. Res. 116(A10) (2011). doi: 10.1029/2011JA016487
  62. Y. Yokoyama, C. Stolle, Low and midlatitude ionospheric plasma density irregularities and their effects on the geomagnetic field. Space Sci. Rev. (2016). Under review Google Scholar
  63. Q.-H. Zhang, M.W. Dunlop, M. Lockwood, R. Holme, Y. Kamide, W. Baumjohann, R.-Y. Liu, H.-G. Yang, E.E. Woodfield, H.-Q. Hu, B.-C. Zhang, S.-L. Liu, The distribution of the ring current: cluster observations. Ann. Geophys. 29(9), 1655–1662 (2011). doi: 10.5194/angeo-29-1655-2011 ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.DTU SpaceTechnical University DenmarkKongens LyngbyDenmark
  2. 2.GFZ PotsdamPotsdamGermany

Personalised recommendations