Space Science Reviews

, Volume 203, Issue 1–4, pp 277–297 | Cite as

Dust Devil Populations and Statistics

  • Ralph D. LorenzEmail author
  • Brian K. Jackson


The highly-skewed diameter and pressure drop distributions of dust devils on Earth and Mars are noted, and challenges of presenting and comparing different types of observations are discussed. The widely-held view that Martian dust devils are larger than Earth’s is critically assessed: the question is confounded somewhat by different observation techniques, but some indication of a \({\sim} 3\mathrm{x}\) larger population on Mars is determined. The largest and most intense (in a relative pressure sense) devils recorded are on Mars, although the largest reported number density is on Earth. The difficulties of concepts used in the literature of ‘average’ diameter, pressure cross section, and area fraction are noted in the context of estimating population-integral effects such as dust lifting.


Dust devils Statistics Power law 


  1. R.E. Arvidson, E.A. Guinness, H.J. Moore, J. Tillman, S.D. Wall, Three Mars years: Viking lander 1 imaging observations. Science 222, 463–468 (1983) ADSCrossRefGoogle Scholar
  2. M. Balme, R. Greeley, Dust devils on Earth and Mars. Rev. Geophys. 44(3) (2006). doi: 10.1029/2005RG000188
  3. M.R. Balme, P.L. Whelley, R. Greeley, Mars: Dust devil track survey in Argyre Planitia and Hellas Basin. J. Geophys. Res. 108, 5086 (2003). doi: 10.1029/2003JE002096 CrossRefGoogle Scholar
  4. M.R. Balme, A. Pathare, S.M. Metzger, M.C. Towner, S.R. Lewis, A. Spiga, L.K. Fenton, N.O. Renno, H.M. Elliott, F.A. Saca, T.I. Michaels, Field measurements of horizontal forward motion velocities of terrestrial dust devils: towards a proxy for ambient winds on Mars and Earth. Icarus 221(2), 632–645 (2012) ADSCrossRefGoogle Scholar
  5. T. Broersen, Quantification of soil erosion by dust devil in the Jordan Badia. MSc thesis, University of Utrecht, The Netherlands (2013) Google Scholar
  6. J.J. Carroll, J.A. Ryan, Atmospheric vorticity and dust devil rotation. J. Geophys. Res. 75(27), 5179–5184 (1970) ADSCrossRefGoogle Scholar
  7. M.D. Ellehoj, H.P. Gunnlaugsson, P.A. Taylor, H. Kahanpa, K.M. Bean, B.A. Cantor, B.T. Gheynani, L. Drube, D. Fisher, A.-M. Harri, C. Holstein-Rathlou, M.T. Lemmon, M.B. Madsen, M.C. Malin, J. Polkko, P.H. Smith, L.K. Tamppari, W. Weng, J. Whiteway, Convective vortices and dust devils at the Phoenix Mars mission landing site. J. Geophys. Res. 115, E00E16 (2010) ADSCrossRefGoogle Scholar
  8. L. Fenton, R. Lorenz, Dust devil height and spacing with relation to the Martian planetary boundary layer thickness. Icarus 260, 246–262 (2015) ADSCrossRefGoogle Scholar
  9. R. Greeley, P.L. Whelley, R.E. Arvidson, N.A. Cabrol, D.J. Foley, B.J. Franklin, P.G. Geissler, M.P. Golombek, R.O. Kuzmin, G.A. Landis, M.T. Lemmon, Active dust devils in Gusev crater, Mars: observations from the Mars Exploration Rover Spirit. J. Geophys. Res., Planets 111(E12) (2006). doi: 10.1029/2006JE002743
  10. B.K. Jackson, R.D. Lorenz, A multi-year dust devil vortex survey using an automated search of pressure time-series. J. Geophys. Res., Planets 120 (2015). doi: 10.1002/2014JE004712
  11. K.M. Kinch, J. Sohl-Dickstein, J.F. Bell III., J.R. Johnson, W. Goetz, G.A. Landis, Dust deposition on the Mars Exploration Rover Panoramic Camera (Pancam) calibration targets. J. Geophys. Res. 112, E06S03 (2007). doi: 10.1029/2006JE002807 ADSCrossRefGoogle Scholar
  12. M. Klose, B.C. Jemmett-Smith, H. Kahanpaa, M. Kahre, P. Knippertz, M.T. Lemmon, S.R. Lewis, R.D. Lorenz, L.D.V. Neakrase, C. Newman, M.R. Patel, D. Reiss, A. Spiga, P.L. Whelley, Dust devil sediment transport: from lab to field to global impact. Space Sci. Rev. (2016). doi: 10.1007/s11214-016-0261-4 Google Scholar
  13. J. Koch, N.O. Renno, The role of convective plumes and vortices on the global aerosol budget. Geophys. Res. Lett. 32(18), L18806 (2005) ADSCrossRefGoogle Scholar
  14. M.V. Kurgansky, Steady-state properties and statistical distribution of atmospheric dust devils. Geophys. Res. Lett. 33, L19S06 (2006) CrossRefGoogle Scholar
  15. M.V. Kurgansky, Statistical distribution of atmospheric dust devils. Icarus 219, 556–560 (2012) ADSCrossRefGoogle Scholar
  16. R.L. Lambeth, On the measurement of dust devil parameters. Bull. Am. Meteorol. Soc. 47, 522–526 (1966) Google Scholar
  17. G.A. Landis, P.J. Jenkins, Measurement of the settling rate of atmospheric dust on Mars by the MAE instrument on Mars Pathfinder. J. Geophys. Res. 105, 1855–1857 (2000) ADSCrossRefGoogle Scholar
  18. R.D. Lorenz, Power law of dust devils on Earth and Mars. Icarus 203, 683–684 (2009) ADSCrossRefGoogle Scholar
  19. R.D. Lorenz, Studies of desert dust devils with a sensor network, timelapse cameras and thermal imaging, in Aerospace Conference, 6 March 2010 (IEEE Press, New York, 2010), pp. 1–7 Google Scholar
  20. R.D. Lorenz, On the statistical distribution of dust devil diameters. Icarus 215, 381–390 (2011) ADSCrossRefGoogle Scholar
  21. R.D. Lorenz, Pressure drops in dust devils: Earth and Mars. Planet. Space Sci. 60, 370–375 (2012) ADSCrossRefGoogle Scholar
  22. R.D. Lorenz, The longevity and aspect ratio of dust devils: effects on detection efficiencies and comparison of landed and orbital imaging at Mars. Icarus 226, 964–970 (2013) ADSCrossRefGoogle Scholar
  23. R.D. Lorenz, Vortex encounter rates with fixed barometer stations: comparison with visual dust devil counts and large eddy simulations. J. Atmos. Sci. 71, 4461–4472 (2014) ADSCrossRefGoogle Scholar
  24. R.D. Lorenz, D. Christie, Dust devil signatures in infrasound records of the international monitoring system. Geophys. Res. Lett. 42, 2009–2014 (2015). doi: 10.1002/2015GL063237 ADSCrossRefGoogle Scholar
  25. R.D. Lorenz, B.K. Jackson, Dust devils and dustless vortices on a desert playa observed with surface pressure and solar flux logging. J. Geophys. Res. 5, 1 (2015) Google Scholar
  26. R.D. Lorenz, P.D. Lanagan, A barometric survey of dust devil vortices on a Desert Playa. Bound.-Layer Meteorol. 53, 555–568 (2014). doi: 10.1007/s10546-014-9954-y ADSCrossRefGoogle Scholar
  27. R. Lorenz, J. Radebaugh, Dust devils in thin air: vortex observations at a high elevation Mars analog site in the Argentinian Puna. Geophys. Res. Lett. (2016). doi: 10.1002/2015GL067412 Google Scholar
  28. R.D. Lorenz, D. Reiss, Solar panel clearing events, dust devil tracks, and in-situ vortex detections on Mars. Icarus 248, 162–164 (2015) ADSCrossRefGoogle Scholar
  29. R.D. Lorenz, J. Zimbelman, Dune Worlds: How Wind-Blown Sand Shapes Planetary Landscapes (Springer, Berlin, 2014) CrossRefGoogle Scholar
  30. R.D. Lorenz, M.R. Balme, Z. Gu, H. Kahanpää, M. Klose, M. Kurgansky, M.R. Patel, D. Reiss, A.P. Rossi, A. Spiga, T. Takemi, W. Wei, History and applications of dust devil studies. Space Sci. Rev. (2016). doi: 10.1007/s11214-016-0239-2 Google Scholar
  31. J.P. Mason, M.R. Patel, S.R. Lewis, Radiative transfer modelling of dust devils. Icarus 223(1), 1 (2013) ADSCrossRefGoogle Scholar
  32. J.O. Mattsson, T. Nihlén, W. Yue, Observations of dust devils in a semi-arid district of southern Tunisia. Weather 48(11), 359–363 (1993) ADSCrossRefGoogle Scholar
  33. H.J. Melosh, Impact Cratering: A Geologic Process (Oxford Univ. Press, London, 1990) Google Scholar
  34. S. Metzger, M. Balme, A. Pathare, Meteorologic conditions and the formation of terrestrial dust devils, in 40th Lunar and Planetary Science Conference, Houston, TX (2009) Google Scholar
  35. J.E. Moores, M.T. Lemmon, H. Kahanpää, S.C. Rafkin, R. Francis, J. Pla-Garcia, K. Bean, R. Haberle, C. Newman, M. Mischna, A.R. Vasavada, Observational evidence of a suppressed planetary boundary layer in northern Gale Crater, Mars as seen by the Navcam instrument onboard the Mars Science Laboratory rover. Icarus 249, 129–142 (2015) ADSCrossRefGoogle Scholar
  36. J.R. Murphy, S. Nelli, Mars pathfinder convective vortices: frequency of occurrence. Geophys. Res. Lett. 29(23) (2002). doi: 10.1029/2002GL015214
  37. L.D.V. Neakrase, R. Greeley, J.D. Iversen, M.R. Balme, E.E. Eddlemon, Dust flux within dust devils: preliminary laboratory simulations. Geophys. Res. Lett. 33, L19S09 (2006). doi: 10.1029/2006GL026810 CrossRefGoogle Scholar
  38. H. Ohno, T. Takemi, Mechanisms for intensification and maintenance of numerically simulated dust devils. Atmos. Sci. Lett. 11, 27–32 (2010). doi: 10.1002/asl.249 Google Scholar
  39. A.M.C. Oke, N.J. Tapper, D. Dunkerley, Willy-willies in the Australian landscape: the role of key meteorological variables and surface conditions in defining frequency and spatial characteristics. J. Arid Environ. 71, 201–215 (2007) CrossRefGoogle Scholar
  40. A.V. Pathare, M.R. Balme, S.M. Metzger, A. Spiga, M.C. Towner, N.O. Renno, F. Saca, Assessing the power law hypothesis for the size-frequency distribution of terrestrial and martian dust devils. Icarus 209, 851–852 (2010) ADSCrossRefGoogle Scholar
  41. S. Raasch, T. Franke, Structure and formation of dust devil-like vortices in the atmospheric boundary layer: a high-resolution numerical study. J. Geophys. Res., Atmos. 116(D16) (2011). doi: 10.1029/2011JD016010
  42. D. Reiss, First observations of terrestrial dust devils in orbital image data: comparison with dust devils in Amazonis Planitia, Mars, in Lunar and Planetary Science Conference, Houston, TX, 21–25 March (2016) Google Scholar
  43. D. Reiss, A. Spiga, G. Erkeling, The horizontal motion of dust devils on Mars derived from CRISM and CTX/HiRISE observations. Icarus 227, 8–20 (2014) ADSCrossRefGoogle Scholar
  44. D. Reiss, L. Fenton, L. Neakrase, M. Zimmerman, T. Statella, P. Whelley, A.P. Rossi, M. Balme, Dust devil tracks. Space Sci. Rev. (2016 this issue) Google Scholar
  45. T.J. Ringrose, M.C. Towner, J.C. Zarnecki, Convective vortices on Mars: a reanalysis of Viking Lander 2 meteorological data, sols 1–60. Icarus 163, 78–87 (2003) ADSCrossRefGoogle Scholar
  46. T.J. Ringrose, M.R. Patel, M.C. Towner, M. Balme, S.M. Metzger, J.C. Zarnecki, The meteorological signatures of dust devils on Mars. Planet. Space Sci. 55 (14), 2151–2163 (2007) ADSCrossRefGoogle Scholar
  47. J.A. Ryan, J.J. Carroll, Dust devil wind velocities: mature state. J. Geophys. Res. 75, 531–541 (1970) ADSCrossRefGoogle Scholar
  48. J.A. Ryan, R.D. Lucich, Possible dust devils, vortices on Mars. J. Geophys. Res. 88, 11005–11011 (1983) ADSCrossRefGoogle Scholar
  49. J. Scargle, J. Norris, B. Jackson, J. Chiang, Studies in astronomical time series analysis, VI: Bayesian block representations. Astrophys. J. 764(2), 167 (2013). doi: 10.1088/0004-637X/764/2/167 ADSCrossRefGoogle Scholar
  50. P.C. Sinclair, General characteristics of dust devils. J. Appl. Meteorol. 8(1), 32–45 (1969) ADSCrossRefGoogle Scholar
  51. P.C. Sinclair, The lower structure of dust devils. J. Atmos. Sci. 30(8), 1599–1619 (1973) ADSMathSciNetCrossRefGoogle Scholar
  52. J.T. Snow, T. McClelland, Dust devils at White Sands Missile Range, New Mexico, 1: temporal and spatial distributions. J. Geophys. Res. 95, 13,707–13,721 (1990) ADSCrossRefGoogle Scholar
  53. C. Stanzel, M. Pätzold, D.A. Williams, P.L. Whelley, R. Greeley, G. Neukum (HRSC Co-Investigator Team), Dust devil speeds, directions of motion and general characteristics observed by the Mars Express High Resolution Stereo Camera. Icarus 197(1), 39–51 (2008) ADSCrossRefGoogle Scholar
  54. D.M. Tratt, M.H. Hecht, D.C. Catling, E.C. Samulon, P.H. Smith, In situ measurements of dust devil dynamics: toward a strategy for Mars. J. Geophys. Res. 108(E11), 5116 (2003). doi: 10.1029/2003JE002161 CrossRefGoogle Scholar
  55. C.A. Verba, P. Geissler, T. Titus, D. Waller, Observations from the High Resolution Imaging Science Experiment (HiRISE): martian dust devils in Gusev and Russell craters. J. Geophys. Res. 115, E09002 (2012). doi: 10.1029/2009JE003498 ADSGoogle Scholar
  56. R.E. Wyett, Pressure drop in a dust devil. Mon. Weather Rev. 82, 7 (1954) ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Applied Physics LaboratoryJohns Hopkins UniversityLaurelUSA
  2. 2.Department of PhysicsBoise State UniversityBoiseUSA

Personalised recommendations