Space Science Reviews

, Volume 208, Issue 1–4, pp 413–431 | Cite as

The MASCOT Radiometer MARA for the Hayabusa 2 Mission

  • M. Grott
  • J. Knollenberg
  • B. Borgs
  • F. Hänschke
  • E. Kessler
  • J. Helbert
  • A. Maturilli
  • N. Müller


The MASCOT radiometer MARA is a multi-spectral instrument which measures net radiative flux in six wavelength bands. MARA uses thermopile sensors as sensing elements, and the net flux between the instrument and the surface in the \(18^{\circ }\) field of view is determined by evaluating the thermoelectric potential between the sensors’ absorbing surface and the thermopile’s cold-junction. MARA houses 4 bandpass channels in the spectral range of 5.5–7, 8–9.5, 9.5–11.5, and 13.5–15.5 μm, as well as one long-pass channel, which is sensitive in the \(>3~\upmu \mbox{m}\) range. In addition, one channel is similar to that used by the Hayabusa 2 orbiter thermal mapper, which uses a wavelength range of 8–12 μm. The primary science objective of the MARA instrument it the determination of the target asteroid’s surface brightness temperature, from which surface thermal inertia can be derived. In addition, the spectral bandpass channels will be used to estimate the spectral slope of the surface in the thermal infrared wavelength range. The instrument has been calibrated using a cavity blackbody, and the temperature uncertainty is 1 K in the long pass channel for target temperatures of \(>173~\mbox{K}\). Measurement uncertainty in the spectral bandpasses is 1 K for target temperatures above 273 K.


Hayabusa 2 MASCOT Radiometer Temperature measurement Thermal inertia 


  1. M. Abe, K. Kawakami, S. Hasegawa, D. Kuroda, M. Yoshikawa, T. Kasuga, K. Kitazato, Y. Sarugaku, D. Kinoshita, S. Miyasaka, S. Urakawa, S. Okumura, Y. Takagi, N. Takato, T. Fujiyoshi, H. Terada, T. Wada, Y. Ita, F. Vilas, P.R. Weissman, Y.-J. Choi, S. Larson, S.J. Bus, A. Tokunaga, T.G. Müller, Ground-based observational campaign for Asteroid 162173 1999 JU3, in 39th Lunar and Planetary Science Conference (2008). Abstract 1594 Google Scholar
  2. G.E. Arnold, J. Helbert, H. Hiesinger, H. Hirsch, E. Jessberger et al., Mercury radiometer and thermal infrared spectrometer—a novel thermal imaging spectrometer for the exploration of Mercury. J. Appl. Remote Sens. 2(1), 023528 (2008) CrossRefGoogle Scholar
  3. O.S. Barnouin-Jha, A.F. Cheng, T. Mukai, S. Abe, N. Hirata, R. Nakamura, R.W. Gaskell, J. Saito, B.E. Clark, Small-scale topography of 25143 Itokawa from the Hayabusa laser altimeter. Icarus 198(1), 108–124 (2008) ADSCrossRefGoogle Scholar
  4. J.P. Bibring et al., Space Sci. Rev. (2015, this issue) Google Scholar
  5. J. Biele, S. Ulamec, Capabilities of Philae, the Rosetta Lander, in Origin and Early Evolution of Comet Nuclei. Space Sciences Series of ISSI, vol. 28 (2008), pp. 275–289 CrossRefGoogle Scholar
  6. R.P. Binzel, A.W. Harris, S.J. Bus, T.H. Burbine, Spectral properties of near-Earth objects: Palomar and IRTF results for 48 objects including spacecraft targets (9969) Braille and (10302) 1989 ML. Icarus 151, 139–149 (2001) ADSCrossRefGoogle Scholar
  7. W.F. Bottke, D. Vokrouhlický, D.P. Rubincam, D. Nesvorný, The Yarkovsky and YORP effects: implications for asteroid dynamics. Annu. Rev. Earth Planet. Sci. 34, 157–191 (2006) ADSCrossRefGoogle Scholar
  8. S.J. Bus, R.P. Binzel, Phase II of the small main-belt asteroid spectroscopic survey. A feature-based taxonomy. Icarus 158(1), 146–177 (2002) ADSCrossRefGoogle Scholar
  9. H. Campins, J.P. Emery, M. Kelley, Y. Fernández, J. Licandro, M. Delbó, A. Barucci, E. Dotto, Spitzer observations of spacecraft target 162173 (1999 JU3). Astron. Astrophys. 503, L17–L20 (2009) ADSCrossRefGoogle Scholar
  10. S.R. Chesley, S.J. Ostro, D. Vokrouhlický, D. Čapek, J.D. Giorgini, M.C. Nolan, J.-L. Margot, A.A. Hine, L.A.M. Bennerd, A.B. Chamberlin, Direct detection of the Yarkovsky effect by radar ranging to asteroid 6489 Golevka. Science 302(5651), 1739–1742 (2003) ADSCrossRefGoogle Scholar
  11. B.J.R. Davidsson, H. Rickman, J.L. Bandfield, O. Groussin, P.J. Gutiérrez, M. Wilska, M.T. Capria, J.P. Emery, J. Helbert, L. Jorda, A. Maturilli, T.G. Müller, Interpretation of thermal emission. I. The effect of roughness for spatially resolved atmosphereless bodies. Icarus 252, 1–21 (2015) ADSCrossRefGoogle Scholar
  12. M. Delbo, Thermal inertia of near-Earth asteroids and implications for the magnitude of the Yarkovsky effect. Icarus 190, 236–249 (2007) ADSCrossRefGoogle Scholar
  13. P. Farinella, D. Vokrouhlický, W.K. Hartmann, Meteorite delivery via Yarkovsky orbital drift. Icarus 140, 369–378 (1998) Google Scholar
  14. J. Gómez-Elvira, C. Armiens, L. Castañer, M. Domínguez, M. Genzer, F. Gómez, R. Haberle, A.-M. Harri, V. Jiménez, H. Kahanpää, L. Kowalski, A. Lepinette, J. Martín, J. Martínez-Frías, I. McEwan, L. Mora, J. Moreno, S. Navarro, M.A. de Pablo, V. Peinado, A. Peña, J. Polkko, M. Ramos, N.O. Renno, J. Ricart, M. Richardson, J. Rodríguez-Manfredi, J. Romeral, F.E. Sebastián, J. Serrano, M. de la Torre Juárez, J. Torres, F. Torrero, R. Urquí, L. Vázquez, T. Velasco, J. Verdasca, M.-P. Zorzano, J. Martín-Torres, REMS: the environmental sensor suite for the Mars science laboratory rover. Space Sci. Rev. 170(1–4), 583–640 (2012) ADSCrossRefGoogle Scholar
  15. M. Grott, J. Knollenberg, A. Maturilli, J. Helbert, N. Müller, E. Kührt, Mineralogical surface characterization using the MASCOT radiometer MARA on the Hayabusa 2 mission, in 44th Lunar and Planetary Science Conference (2013). Abstract 1597 Google Scholar
  16. S. Hasegawa, T.G. Müller, K. Kawakami, T. Kasuga, T. Wada, Y. Ita, N. Takato, H. Terada, T. Fujiyoshi, M. Abe, Albedo, size, and surface characteristics of Hayabusa-2 sample-return target 162173 1999 JU3 from AKARI and Subaru observations. Publ. Astron. Soc. Pac. 60, 399–405 (2008) ADSCrossRefGoogle Scholar
  17. D. Hercik, H.-U. Auster, J. Blum, K.-H. Fornacon, M. Fujimoto, K. Gebauer, C. Guttler, O. Hillenmaier, A. Hördt, I. Richter, B. Stoll, B. Weiss, K.-H. Glaßmeier, MasMag: the MASCOT Magnetometer experiment. Space Sci. Rev. (2016). doi: 10.1007/s11214-016-0236-5 Google Scholar
  18. H. Hiesinger, J. Helbert (MERTIS Co-I Team), The Mercury Radiometer and Thermal Infrared Spectrometer (MERTIS) for the BepiColombo mission. Planet. Space Sci. 58(1–2), 144–165 (2010) ADSCrossRefGoogle Scholar
  19. T.-M. Ho, V. Baturkin, R. Findlay, C. Grimm, J.T. Grundmann, C. Hobbie, E. Ksenik, C. Lange, K. Sasaki, M. Schlotterer, M. Talapina, N. Termtanasombat, L. Witte, M. Wrasmann, G. Wübbels, J. Rößler, C. Ziach, J. Biele, C. Krause, S. Ulamec, M. Lange, O. Mierheim, R. Lichtenheldt, M. Meier, J. Reill, H.J. Sedlmayr, P. Bousquet, A. Bellion, O. Bompis, C. Cenac-Morthe, M. Deleuze, S. Fredon, E. Jurado, E. Canalias, R. Jaumann, J.-P. Bibring, M. Grott, H.U. Glassmeier, L. Celotti, F. Cordero, J. Hendrikse, MASCOT—the mobile asteroid surface scout onboard the Hayabusa2 mission. Space Sci. Rev. (2016). doi: 10.1007/s11214-016-0251-6 Google Scholar
  20. M. Ishiguro, D. Kuroda, S. Hasegawa, M.-J. Kim, Y.-J. Choi, N. Moskovitz, S. Abe, K.-S. Pan, J. Takahashi, Y. Takagi, A. Arai, N. Tokimasa, H.H. Hsieh, J.E. Thomas-Osip, D.J. Osip, M. Abe, M. Yoshikawa, S. Urakawa, H. Hanayama, T. Sekiguchi, K. Wada, T. Sumi, P.J. Tristram, K. Furusawa, F. Abe, A. Fukui, T. Nagayama, D.S. Warjurkar, A. Rau, J. Greiner, P. Schady, F. Knust, F. Usui, T.G. Müller, Optical properties of (162173) 1999 JU3: in preparation for the JAXA Hayabusa 2 sample return mission. Astrophys. J. 792(1), 74 (2014) ADSCrossRefGoogle Scholar
  21. B.M. Jakosky, On the thermal properties of Martian fines. Icarus 66, 117–124 (1986) ADSCrossRefGoogle Scholar
  22. R. Jaumann, N. Schmitz, A. Koncz, H. Michaelis, S. Schroeder, S. Mottola, F. Trauthan, H. Hoffmann, T. Roatsch, D. Jobs, J. Kachlicki, B. Pforte, R. Terzer, M. Tschentscher, S. Weisse, U. Mueller, T.-M. Ho, M. Grott, J.P. Bibring, J. Biele, S. Ulamec, B. Broll, A. Kruselburger, L. Perez-Prieto, The camera of the MASCOT asteroid lander on board Hayabusa 2. Space Sci. Rev. (2016). doi: 10.1007/s11214-016-0263-2 Google Scholar
  23. E. Kessler, in Proc. of Sensor 2005, 12th International Conference, vol. I, Nürnberg (2005), pp. 73–78 Google Scholar
  24. K. Kitazato, T. Iwata, Space Sci. Rev. (2015, this issue) Google Scholar
  25. C. Lange et al., in Europ. Conf. on Spacecraft Struct., Materials and Environmental Testing, 20–23 March, 2012, Noordwijk, Netherlands (2012) Google Scholar
  26. D. Lazzaro, M.A. Barucci, D. Perna, F.L. Jasmim, M. Yoshikawa, J.M.F. Carvano, Rotational spectra of (162173) 1999 JU3, the target of the Hayabusa2 mission. Astron. Astrophys. 549, L2 (2013) ADSCrossRefGoogle Scholar
  27. A. Maturilli et al., in EPSC Abstracts, vol. 7 (2012), EPSC2012-487 Google Scholar
  28. M.T. Mellon, B.M. Jakosky, H.H. Kieffer, P.R. Christensen, High-resolution thermal inertia mapping from the Mars global surveyor thermal emission spectrometer. Icarus 148, 437–455 (2000) ADSCrossRefGoogle Scholar
  29. P. Michel, M. Delbo, Orbital and thermal evolutions of four potential targets for a sample return space mission to a primitive near-Earth asteroid. Icarus 209(2), 520–534 (2010) ADSCrossRefGoogle Scholar
  30. T.G. Müller, J. Durech, S. Hasegawa, M. Abe, K. Kawakami, T. Kasuga, D. Kinoshita, D. Kuroda, S. Urakawa, S. Okumura, Y. Sarugaku, S. Miyasaka, Y. Takagi, P.R. Weissman, Y.-J. Choi, S. Larson, K. Yanagisawa, S. Nagayama, Thermo-physical properties of 162173 (1999 JU3), a potential flyby and rendezvous target for interplanetary missions. Astron. Astrophys. 525, A145 (2011) CrossRefGoogle Scholar
  31. T. Okada et al., in 43rd LPSC, The Woodlands (2012). Abstract 1498 Google Scholar
  32. T. Okada et al., Space Sci. Rev. (2015, this issue) Google Scholar
  33. S.J. Paddack, Rotational bursting of small celestial bodies: effects of radiation pressure. J. Geophys. Res. 74, 4379–4381 (1969) ADSCrossRefGoogle Scholar
  34. N.E. Putzig, M.T. Mellon, K.A. Kretke, R.E. Arvidson, Global thermal inertia and surface properties of Mars from the MGS mapping mission. Icarus 173, 325–341 (2005) ADSCrossRefGoogle Scholar
  35. D.P. Rubincam, Asteroid orbit evolution due to thermal drag. J. Geophys. Res. 100(E1), 1585–1594 (1995) ADSCrossRefGoogle Scholar
  36. V.I. Sapritsky et al., in Temperature: Its Measurement and Control in Science and Industry, vol. 7 (2003), pp. 619–624 Google Scholar
  37. J.R. Spencer, L.A. Lebofsky, M.V. Sykes, Systematic biases in radiometric diameter determinations. Icarus 78, 337–354 (1989) ADSCrossRefGoogle Scholar
  38. T. Spohn, K. Seiferlin, A. Hagermann, J. Knollenberg, A.J. Ball, M. Banaszkiewicz, J. Benkhoff, S. Gadomski, W. Gregorczyk, J. Grygorczuk, M. Hlond, G. Kargl, E. Kührt, N. Kömle, J. Krasowski, W. Marczewski, J.C. Zarnecki, Mupus—a thermal and mechanical properties probe for the Rosetta Lander Philae. Space Sci. Rev. 128(1–4), 339–362 (2007) ADSCrossRefGoogle Scholar
  39. T. Spohn, J. Knollenberg, A.J. Ball, M. Banaszkiewicz, J. Benkhoff, M. Grott, J. Grygorczuk, C. Hüttig, A. Hagermann, G. Kargl, E. Kaufmann, N. Kömle, E. Kührt, K.J. Kossacki, W. Marczewski, I. Pelivan, R. Schrödter, K. Seiferlin, Thermal and mechanical properties of the near-surface layers of comet 67P/Churyumov-Gerasimenko. Science 349(6247) (2015) Google Scholar
  40. J. Takita, H. Senshu, S. Tanaka, Space Sci. Rev. (2016, this issue) Google Scholar
  41. J.H. Taylor, Radiation exchange. Appl. Opt. 26(4), 619–626 (1987) ADSCrossRefGoogle Scholar
  42. J. Veverka, P. Thomas, A. Harch, B. Clark, J.F. Bell III., B. Carcich, J. Joseph, S. Murchie, N. Izenberg, C. Chapman, W. Merline, M. Malin, L. McFadden, M. Robinson, Encounter with asteroid 253 Mathilde: overview. Icarus 140, 3–16 (1999) ADSCrossRefGoogle Scholar
  43. F. Vilas, Spectral characteristics of Hayabusa 2 near-Earth asteroid targets 162173 1999 JU3 and 2001 QC34. Astron. J. 153, 1101–1105 (2008) ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • M. Grott
    • 1
  • J. Knollenberg
    • 1
  • B. Borgs
    • 1
  • F. Hänschke
    • 2
  • E. Kessler
    • 2
  • J. Helbert
    • 1
  • A. Maturilli
    • 1
  • N. Müller
    • 1
  1. 1.Institute of Planetary ResearchGerman Aerospace CenterBerlinGermany
  2. 2.Institute of Photonic TechnologyJenaGermany

Personalised recommendations