Space Science Reviews

, Volume 206, Issue 1–4, pp 521–545 | Cite as

Near-Earth Magnetic Field Effects of Large-Scale Magnetospheric Currents

Article

Abstract

Magnetospheric currents play an important role in the electrodynamics of near-Earth space. This has been the topic of many space science studies. Here we focus on the magnetic fields they cause close to Earth. Their contribution to the geomagnetic field is the second largest after the core field. Significant progress in interpreting the magnetic fields from the different sources has been achieved thanks to magnetic satellite missions like Ørsted, CHAMP and now Swarm. Of particular interest for this article is a proper representation of the magnetospheric ring current effect. Uncertainties in modelling its effect still produce the largest residuals between observations and present-day geomagnetic field models. A lot of progress has been achieved so far, but there are still open issues like the characteristics of the partial ring current. Other currents discussed are those flowing in the magnetospheric tail. Also their magnetic contribution at LEO orbits is non-negligible. Treating them as an independent source is a more recent development, which has cured some of the problems in geomagnetic field modelling. Unfortunately there is no index available for characterising the tail current intensity. Here we propose an approach that may help to properly quantify the magnetic contribution from the tail current for geomagnetic field modelling. Some open questions that require further investigation are mentioned at the end.

Keywords

Geomagnetic field Magnetospheric currents Magnetospheric ring current Magnetospheric tail currents Geomagnetic field modelling 

Notes

Acknowledgements

This article is based on results of the ISSI Workshop “Earth’s Magnetic Field: Understanding sources from the Earth’s interior and its environment”. The authors thank the International Space Science Institute in Bern, Switzerland, its staff and directors for their support.

References

  1. S.-I. Akasofu, S. Chapman, On the asymmetric development of magnetic storm fields in low and middle latitudes. Planet. Space Sci. 12, 607–626 (1964) ADSCrossRefGoogle Scholar
  2. P. Alken, S. Maus, A. Chulliat, C. Manoj, NOAA/NGDC candidate models for the 12th generation international geomagnetic reference field. Earth Planets Space 2015, 67–68 (2015) Google Scholar
  3. W.H. Campbell, An external current representation of the quiet nightside geomagnetic field level changes. J. Geomagn. Geoelectr. 36, 257–265 (1984) CrossRefGoogle Scholar
  4. P. C:son Brandt, S. Ohtani, D.G. Mitchell, M.-C. Fok, E.C. Roelof, R. Demajistre, Global ENA observations of the storm mainphase ring current: implications for skewed electric fields in the inner magnetosphere. Geophys. Res. Lett. 29(20), 1954 (2002). doi:10.1029/2002GL015160 ADSGoogle Scholar
  5. C.R. Clauer, R.L. McPherron, Mapping of local time, universal time development of magnetosphere substorms using midlatitude magnetic observations. J. Geophys. Res. 79, 2812–2820 (1974) ADSGoogle Scholar
  6. S.W.H. Cowley, Magnetospheric asymmetries associated with the y-component of the IMF. Planet. Space Sci. 29, 79–96 (1981) ADSCrossRefGoogle Scholar
  7. O. de La Beaujardière et al., C/NOFS: a mission to forecast scintillations. J. Atmos. Sol.-Terr. Phys. 66, 1573–1591 (2004). doi:10.1016/j.jastp.2004.07.030 ADSCrossRefGoogle Scholar
  8. A.J. Dessler, E.N. Parker, Hydromagnetic theory of geomagnetic storms. J. Geophys. Res. 64, 2239–2252 (1959) ADSCrossRefGoogle Scholar
  9. C.C. Finlay, N. Olsen, L. Toeffner-Claussen, DTU candidate field models for IGRF-12 and the CHAOS-5 geomagnetic field model. Earth Planets Space 67, 114 (2015). doi:10.1186/s40623-015-0274-3 ADSCrossRefGoogle Scholar
  10. S. Haaland, J. Gjerløv, On the relation between asymmetries in the ring current and magnetopause current. J. Geophys. Res. Space Phys. 118, 7593–7604 (2013). doi:10.1002/2013JA019345 ADSCrossRefGoogle Scholar
  11. D.C. Hamilton, G. Gloekler, F.M. Ipavich, W. Stüdemann, B. Wilken, G. Kremser, Ring current development during the great geomagnetic storm of February 1986. J. Geophys. Res. 93, 14 343–14 355 (1988) ADSCrossRefGoogle Scholar
  12. W.J. Hughes, The magnetopause, magnetotail, and magnetic reconnection, in Introduction to Space Physics, ed. by M.G. Kivelson, C.T. Russell (Cambridge Univ. Press, Cambridge, 1995), pp. 227–287 Google Scholar
  13. T. Iyemori, Storm-time magnetospheric currents inferred from mid-latitude geomagnetic field variation. J. Geomagn. Geoelectr. 42, 1249–1265 (1990) ADSCrossRefGoogle Scholar
  14. M.G. Kivelson, C. Russell (eds.), Introduction to Space Physics (Cambridge Univ. Press, Cambridge, 1995) Google Scholar
  15. R.A. Langel, R.H. Estes, Large-scale, near-Earth magnetic fields from external sources and the corresponding induced internal field. J. Geophys. Res. 90, 2487–2494 (1985a) ADSCrossRefGoogle Scholar
  16. R.A. Langel, R.H. Estes, The near-Earth magnetic field at 1980 determined from Magsat data. J. Geophys. Res. 90, 2495–2509 (1985b) ADSCrossRefGoogle Scholar
  17. R.A. Langel, R.H. Estes, G.D. Mead, E.B. Fabiano, E.R. Lancaster, Initial geomagnetic field model from MAGSAT vector data. Geophys. Res. Lett. 7, 793–796 (1980) ADSCrossRefGoogle Scholar
  18. G. Le, C.T. Russell, K. Takahashi, Morphology of the ring current derived from magnetic field observations. Ann. Geophys. 22, 1267–1295 (2004). doi:10.5194/angeo-22-1267-2004 ADSCrossRefGoogle Scholar
  19. G. Le, W.J. Burke, R.F. Pfaff, H. Freudenreich, S. Maus, H. Lühr, C/NOFS measurements of magnetic perturbations in the low-latitude ionosphere during magnetic storms. J. Geophys. Res. 116, A12230 (2011). doi:10.1029/2011JA017026 ADSGoogle Scholar
  20. V. Lesur, S. Macmillan, A. Thomson, A magnetic field model with daily variations of the magnetospheric field and its induced counterpart in 2001. Geophys. J. Int. 160, 79–88 (2005) ADSCrossRefGoogle Scholar
  21. H. Lühr, S. Maus, Solar cycle dependence of magnetospheric currents and a model of their near-Earth magnetic field. Earth Planets Space 62, 843–848 (2010). doi:10.5047/eps.2010.07.012 ADSCrossRefGoogle Scholar
  22. S. Maus, H. Lühr, Signature of the quiet-time magnetospheric magnetic field and its electromagnetic induction in the rotating Earth. Geophys. J. Int. 162, 755–763 (2005). doi:10.1111/j.1365-246X.2005.02691.x ADSCrossRefGoogle Scholar
  23. S. Maus, P. Weidelt, Separating the magnetospheric disturbance magnetic field into external and transient internal contributions using a 1D conductivity model of the Earth. Geophys. Res. Lett. 31, L12614 (2004). doi:10.1029/2004GL020232 ADSGoogle Scholar
  24. S. Maus, C. Manoj, J. Rauberg, I. Michaelis, H. Lühr, NOAA/NGDC candidate models for the 11th generation international geomagnetic reference field and the concurrent release of the 6th generation POMME magnetic model. Earth Planets Space 62, 729–735 (2010) ADSCrossRefGoogle Scholar
  25. P.T. Newell, J.W. Gjerloev, SuperMAG-based partial ring current indices. J. Geophys. Res. 117, A05215 (2012). doi:10.1029/2012JA017586 ADSGoogle Scholar
  26. P.T. Newell, T. Sotirelis, K. Liou, C.-I. Meng, F.J. Rich, A nearly universal solar wind-magnetosphere coupling function inferred from magnetospheric state variables. J. Geophys. Res. 112, A01206 (2007). doi:10.1029/2006JA012015 ADSGoogle Scholar
  27. P.W. Olsen, The geomagnetic field and its extension into space. Adv. Space Res. 2(1), 13–17 (1982) ADSCrossRefGoogle Scholar
  28. N. Olsen, T.J. Sabaka, F. Lowes, New parameterization of external and induced fields in geomagnetic field modeling, and a candidate model for IGRF 2005. Earth Planets Space 57, 1141–1149 (2005) ADSCrossRefGoogle Scholar
  29. N. Olsen, H. Lühr, C.C. Finlay, T.J. Sabaka, I. Michaelis, J. Rauberg, L. Tøffner-Clausen, The CHAOS-4 geomagnetic field model. Geophys. J. Int. 197, 815–827 (2014). doi:10.1093/gji/ggu033 ADSCrossRefGoogle Scholar
  30. P. Ritter, H. Lühr, Near-Earth magnetic signature of magnetospheric substorms and an improved substorm current model. Ann. Geophys. 26, 2781–2793 (2008) ADSCrossRefGoogle Scholar
  31. N. Sckopke, A general relation between the energy of trapped particles and the disturbance field near the Earth. J. Geophys. Res. 71, 3125–3130 (1966) ADSCrossRefGoogle Scholar
  32. J.-H. Shue, P. Song, C.T. Russell, J.T. Steinberg, J.K. Chao, G. Zastenker, O.L. Vaisberg, S. Kokubun, H.J. Singer, T.R. Detman, H. Kawano, Magnetopause location under extreme solar wind conditions. J. Geophys. Res. 103(A8), 17691–17700 (1998) ADSCrossRefGoogle Scholar
  33. D.G. Sibeck, R.E. Lopez, E.C. Roelof, Solar wind control of the magnetopause shape, location, and motion. J. Geophys. Res. 96(A4), 5489–5495 (1991). doi:10.1029/90JA02464 ADSCrossRefGoogle Scholar
  34. M. Sugiura, Hourly values of equatorial Dst for the IGY. Ann. Int. Geophys. Year 35, 9–45 (1964) Google Scholar
  35. A. Thomson, V. Lesur, An improved geomagnetic data selection algorithm for global geomagnetic field modelling. Geophys. J. Int. 169, 951–963 (2007). doi:10.1111/j.1365-246X.2007.03354.x ADSCrossRefGoogle Scholar
  36. N.A. Tsyganenko, D.H. Fairfield, Global shape of the magnetotail current sheet as derived from Geotail and Polar data. J. Geophys. Res. 109, A03218 (2004). doi:10.1029/2003JA010062 ADSCrossRefGoogle Scholar
  37. C. Xiong, H. Lühr, An empirical model of the auroral oval derived from CHAMP field-aligned current signatures—Part 2. Ann. Geophys. 32, 623–631 (2014). doi:10.5194/angeo-32-623-2014 ADSCrossRefGoogle Scholar
  38. C. Xiong, H. Lühr, H. Wang, M.G. Johnsen, Determining the boundaries of the auroral oval from CHAMP field-aligned currents signatures—Part 1. Ann. Geophys. 32, 609–622 (2014). doi:10.5194/angeo-32-609-2014 ADSCrossRefGoogle Scholar
  39. Y. Yamazaki, A. Maute, Sq and EEJ—A review on the daily variation of the geomagnetic field caused by ionospheric dynamo currents. Space Sci. Rev. (2016), this issue Google Scholar
  40. Q.-H. Zhang, M.W. Dunlop, M. Lockwood, R. Holme, Y. Kamide, W. Baumjohann, R.-Y. Liu, H.-G. Yang, E.E. Woodfield, H.-Q. Hu, B.-C. Zhang, S.-L. Liu, The distribution of the ring current: cluster observations. Ann. Geophys. 29, 1655–1662 (2011). doi:10.5194/angeo-29-1655-2011 ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Hermann Lühr
    • 1
  • Chao Xiong
    • 1
  • Nils Olsen
    • 2
  • Guan Le
    • 3
  1. 1.Section 2.3, Earth’s Magnetic FieldGFZ, German Research Centre for GeosciencesPotsdamGermany
  2. 2.DTU Space, National Space InstituteTechnical University of DenmarkLyngbyDenmark
  3. 3.Heliophysics Science DivisionNASA Goddard Space Flight CenterGreenbeltUSA

Personalised recommendations