Space Science Reviews

, Volume 206, Issue 1–4, pp 451–469 | Cite as

The \(F\)-Region Gravity and Pressure Gradient Current Systems: A Review



The ionospheric gravity and pressure-gradient current systems are most prominent in the low-latitude \(F\)-region due to the plasma density enhancement known as the equatorial ionization anomaly (EIA). This enhancement of plasma density which builds up during the day and lasts well into the evening supports a toroidal gravity current which flows eastward around the Earth in the \(F\)-region during the daytime and evening, and eventually returns westward through the \(E\)-region. The existence of pressure-gradients in the EIA region also gives rise to a poloidal diamagnetic current system, whose flow direction acts to reduce the ambient geomagnetic field inside the plasma. The gravity and pressure-gradient currents are among the weaker ionospheric sources, with current densities of a few \(\mbox{nA/m}^{2}\), however they produce clear signatures of about 5–7 nT in magnetic measurements made by low-Earth orbiting satellites. In this work, we review relevant observational and modeling studies of these two current systems and present new results from a 3D ionospheric electrodynamics model which allows us to visualize the entire flow pattern of these currents throughout the ionosphere as well as calculate their magnetic perturbations.


Ionosphere \(F\)-region Pressure-gradient current Gravity current CHAMP Swarm Magnetic perturbations 



The National Center for Atmospheric Research is sponsored by the National Science Foundation (NSF). A. M. and A.D. R. were supported by NSF award AGS-1135446. We gratefully acknowledge graphics support from the NCEI visual communications team and Deborah Misch of LMI Consulting.


  1. P. Alken, Observations and modeling of the ionospheric gravity and diamagnetic current systems from CHAMP and Swarm measurements. J. Geophys. Res. Space Phys. (2016). doi:10.1002/2015JA022163 Google Scholar
  2. P. Alken, S. Maus, A.D. Richmond, A. Maute, The ionospheric gravity and diamagnetic current systems. J. Geophys. Res. (2011). doi:10.1029/2011JA017126 Google Scholar
  3. D.N. Anderson, Modeling the ambient, low latitude F-region ionosphere – a review. J. Atmos. Terr. Phys. 43(8), 753–762 (1981) ADSCrossRefGoogle Scholar
  4. W. Baumjohann, R.A. Treumann, Basic Space Plasma Physics (Imperial College Press, London, 1997) MATHGoogle Scholar
  5. D. Bilitza, L.-A. McKinnell, B. Reinisch, T. Fuller-Rowell, The International Reference Ionosphere (IRI) today and in the future. J. Geod. 85, 909–920 (2011). doi:10.1007/s00190-010-0427-x ADSGoogle Scholar
  6. F.F. Chen, Introduction to Plasma Physics and Controlled Fusion, 2nd edn. Plasma Physics, vol. 1 (Springer, New York, 2006) Google Scholar
  7. A. Chulliat, S. Maus, Geomagnetic secular acceleration, jerks, and a localized standing wave at the core surface from 2000 to 2010. J. Geophys. Res., Solid Earth 119, 1531–1543 (2014). doi:10.1002/2013JB010604 ADSCrossRefGoogle Scholar
  8. V. Doumbia, A. Maute, A.D. Richmond, Simulation of equatorial electrojet magnetic effects with the thermosphere-ionosphere-electrodynamics general circulation model. J. Geophys. Res. 112(A9), A09309. (2007). doi:10.1029/2007JA012308 ADSCrossRefGoogle Scholar
  9. M.W. Dunlop, J.-Y. Yang, Y.-Y. Yang, C. Xiong, H. Lühr, Y.V. Bogdanova, C. Shen, N. Olsen, Q.-H. Zhang, J.-B. Cao, H.-S. Fu, W.-L. Liu, C.M. Carr, P. Ritter, A. Masson, R. Haagmans, Simultaneous field-aligned currents at Swarm and Cluster satellites. Geophys. Res. Lett. 42(10), 3683–3691 (2015). doi:10.1002/2015GL063738 ADSCrossRefGoogle Scholar
  10. J.V. Eccles, The effect of gravity and pressure in the electrodynamics of the low-latitude ionosphere. J. Geophys. Res. (2004). doi:10.1029/2003JA010023 Google Scholar
  11. J.M. Forbes, The equatorial electrojet. Rev. Geophys. Space Phys. 19(3), 469–504 (1981) ADSCrossRefGoogle Scholar
  12. E. Friis-Christensen, H. Lühr, G. Hulot, Swarm: a constellation to study the Earth’s magnetic field. Earth Planets Space 58, 351–358 (2006) ADSCrossRefGoogle Scholar
  13. M.C. Kelley, The Earth’s Ionosphere: Plasma Physics and Electrodynamics. International Geophysics Series (Academic Press Inc., San Diego, 1989). 9780124040137 Google Scholar
  14. K. Laundal, A.D. Richmond, Magnetic coordinate systems. Space Sci. Rev. (2016, submitted) Google Scholar
  15. F.J. Lowes, Measuring magnetic field in the ‘diamagnetic’ ionosphere. Geophys. J. Int. 171(1), 115–118 (2007). doi:10.1111/j.1365-246X.2007.03506.x ADSCrossRefGoogle Scholar
  16. G.M. Lucas, A.J.G. Baumgaertner, J.P. Thayer, A global electric circuit model within a community climate model. J. Geophys. Res., Atmos. 120(23), 12054–12066 (2015). doi:10.1002/2015JD023562 ADSCrossRefGoogle Scholar
  17. H. Lühr, S. Maus, Direction observation of the F region dynamo currents and the spatial structure of the EEJ by CHAMP. Geophys. Res. Lett. (2006). doi:10.1029/2006GL028374 Google Scholar
  18. H. Lühr, S. Maus, Solar cycle dependence of quiet-time magnetospheric currents and a model of their near-Earth magnetic fields. Earth Planets Space 62, 843–848 (2010) ADSCrossRefGoogle Scholar
  19. H. Lühr, M. Rother, S. Maus, W. Mai, D. Cooke, The diamagnetic effect of the equatorial Appleton anomaly: its characteristics and impact on geomagnetic field modeling. Geophys. Res. Lett. 30(17), 1906 (2003). doi:10.1029/2003GL017407 ADSCrossRefGoogle Scholar
  20. H. Lühr, S. Maus, M. Rother, Noon-time equatorial electrojet: Its spatial features as determined by the CHAMP satellite. J. Geophys. Res. (2004). doi:10.1029/2002JA009656 Google Scholar
  21. H. Lühr, J. Park, C. Xiong, J. Rauberg, Alfvén wave characteristics of equatorial plasma irregularities in the ionosphere derived from CHAMP observations. Front. Phys. (2014a). doi:10.3389/fphy.2014.00047 Google Scholar
  22. H. Lühr, C. Xiong, J. Park, J. Rauberg, Systematic study of intermediate-scale structures of equatorial plasma irregularities in the ionosphere based on CHAMP observations. Front. Phys. (2014b). doi:10.3389/fphy.2014.00015 Google Scholar
  23. H. Lühr, G. Kervalishvili, I. Michaelis, J. Rauberg, P. Ritter, J. Park, J.M.G. Merayo, P. Brauer, The interhemispheric and F region dynamo currents revisited with the Swarm constellation. Geophys. Res. Lett. 42(9), 3069–3075 (2015). doi:10.1002/2015GL063662 ADSCrossRefGoogle Scholar
  24. H. Lühr, G. Kervalishvili, J. Rauberg, C. Stolle, Zonal currents in the F region deduced from Swarm constellation measurements. J. Geophys. Res. 121, 638–648 (2016). doi:10.1002/2015JA022051 CrossRefGoogle Scholar
  25. C. Manoj, H. Lühr, S. Maus, N. Nagarajan, Evidence for short spatial correlation lengths of the noontime equatorial electrojet inferred from a comparison of satellite and ground magnetic data. J. Geophys. Res. (2006). doi:10.1029/2006JA011855 Google Scholar
  26. S. Marsal, A.D. Richmond, A. Maute, B.J. Anderson, Forcing the TIEGCM model with Birkeland currents from the Active Magnetosphere and Planetary Electrodynamics Response Experiment. J. Geophys. Res. 117(A6), A06308 (2012). doi:10.1029/2011JA017416 ADSCrossRefGoogle Scholar
  27. S. Maus, H. Lühr, Signature of the quiet-time magnetospheric magnetic field and its electromagnetic induction in the rotating Earth. Geophys. J. Int. 162, 755–763 (2005). doi:10.1111/j.1365-246X.2005.02691.x ADSCrossRefGoogle Scholar
  28. S. Maus, H. Lühr, A gravity-driven electric current in the Earth’s ionosphere identified in CHAMP satellite magnetic measurements. Geophys. Res. Lett. (2006). doi:10.1029/2005GL024436 Google Scholar
  29. S. Maus, M. Rother, C. Stolle, W. Mai, S. Choi, H. Lühr, D. Cooke, C. Roth, Third generation of the Potsdam Magnetic Model of the Earth (POMME). Geochem. Geophys. Geosyst. (2006). doi:10.1029/2006GC001269 Google Scholar
  30. S. Maus, H. Lühr, M. Rother, K. Hemant, G. Balasis, P. Ritter, C. Stolle, Fifth-generation lithospheric magnetic field model from CHAMP satellite measurements. Geochem. Geophys. Geosyst. 8(5), Q05013 (2007). doi:10.1029/2006GC001521 ADSCrossRefGoogle Scholar
  31. S. Maus, C. Manoj, J. Rauberg, I. Michaelis, H. Lühr, NOAA/NGDC candidate models for the 11th generation International Geomagnetic Reference Field and the concurrent release of the 6th generation Pomme magnetic model. Earth Planets Space 62, 729–735 (2010) ADSCrossRefGoogle Scholar
  32. A. Maute, A.D. Richmond, F-region dynamo simulations at low and mid-latitude. Space Sci. Rev. (2016, this issue). doi:10.1007/s11214-016-0262-3 Google Scholar
  33. J. Park, R. Ehrlich, H. Lühr, P. Ritter, Plasma irregularities in the high-latitude ionospheric F-region and their diamagnetic signatures as observed by CHAMP. J. Geophys. Res. 117(A10), A10322 (2012). doi:10.1029/2012JA018166 ADSCrossRefGoogle Scholar
  34. L. Qian, A.G. Burns, B.A. Emery, B. Foster, G. Lu, A. Maute, A.D. Richmond, R.G. Roble, S.C. Solomon, W. Wang, in The NCAR TIE-GCM, ed. by J. Huba, R. Schunk, G. Khazanov (Wiley, New York, 2014), pp. 73–83. doi:10.1002/9781118704417.ch7 Google Scholar
  35. C. Reigber, H. Lühr, P. Schwintzer, First CHAMP Mission Results for Gravity, Magnetic and Atmospheric Studies (Springer, Berlin, 2003). doi:10.1007/978-3-540-38366-6 CrossRefGoogle Scholar
  36. A.D. Richmond, The computation of magnetic effects of field-aligned magnetospheric currents. J. Atmos. Terr. Phys. 36(2), 245–252 (1974). doi:10.1016/0021-9169(74)90044-0 ADSCrossRefGoogle Scholar
  37. A.D. Richmond, Ionospheric wind dynamo theory: a review. J. Geomagn. Geoelectr. 31, 287–310 (1979) ADSCrossRefGoogle Scholar
  38. A.D. Richmond, Modeling the ionosphere wind dynamo: a review. Pure Appl. Geophys. 131(3), 413–435 (1989) ADSCrossRefGoogle Scholar
  39. A.D. Richmond, Ionospheric electrodynamics using magnetic apex coordinates. J. Geomagn. Geoelectr. 47, 191–212 (1995a) CrossRefGoogle Scholar
  40. A.D. Richmond, in The Ionospheric Wind Dynamo: Effects of Its Coupling With Different Atmospheric Regions, ed. by R.M. Johnson, T.L. Killeen (American Geophysical Union, Washington, 1995b), pp. 49–65. doi:10.1029/GM087p0049 Google Scholar
  41. A.D. Richmond, in Ionospheric Electrodynamics, ed. by G. Khazanov (CRC Press, Boca Raton, 2016), pp. 245–259. Chap. 14, in press Google Scholar
  42. A.D. Richmond, A. Maute, in Ionospheric Electrodynamics Modeling, ed. by J. Huba, R. Schunk, G. Khazanov (Wiley, New York, 2014), pp. 57–71. doi:10.1002/9781118704417.ch6 Google Scholar
  43. H. Rishbeth, The F-layer dynamo. Planet. Space Sci. 19, 263–267 (1971) ADSCrossRefGoogle Scholar
  44. H. Rishbeth, The F-region dynamo. J. Atmos. Terr. Phys. 43, 387–392 (1981) ADSCrossRefGoogle Scholar
  45. H. Rishbeth, The ionospheric E-layer and F-layer dynamos—a tutorial review. J. Atmos. Sol.-Terr. Phys. 59(15), 1873–1880 (1997). doi:10.1016/S1364-6826(97)00005-9 ADSCrossRefGoogle Scholar
  46. P. Ritter, H. Lühr, J. Rauberg, Determining field-aligned currents with the Swarm constellation mission. Earth Planets Space 65(11), 1285–1294 (2013). doi:10.5047/eps.2013.09.006 ADSCrossRefGoogle Scholar
  47. R. Schunk, A. Nagy, Ionospheres: Physics, Plasma Physics, and Chemistry, 2nd edn. Cambridge Atmospheric and Space Science Series (Cambridge University Press, New York, 2009) CrossRefGoogle Scholar
  48. R.J. Stening, Modelling the low latitude F region. J. Atmos. Terr. Phys. 54(11–12), 1387–1412 (1992). doi:10.1016/0021-9169(92)90147-D ADSCrossRefGoogle Scholar
  49. C. Stolle, H. Lühr, M. Rother, G. Balasis, Magnetic signatures of equatorial spread F as observed by the CHAMP satellite. J. Geophys. Res. 111(A2), A02304 (2006). doi:10.1029/2005JA011184 ADSCrossRefGoogle Scholar
  50. C. Stolle, C. Manoj, H. Lühr, S. Maus, P. Alken, Estimating the day time Equatorial Ionization Anomaly strength from electric field proxies. J. Geophys. Res. (2008). doi:10.1029/2007JA012781 Google Scholar
  51. R. Tozzi, M. Pezzopane, P. De Michelis, M. Piersanti, Applying a curl-B technique to Swarm vector data to estimate nighttime F region current intensities. Geophys. Res. Lett. 42(15), 6162–6169 (2015). doi:10.1002/2015GL064841 ADSCrossRefGoogle Scholar
  52. K.Z. Zaka, A.T. Kobea, V. Doumbia, A.D. Richmond, A. Maute, N.M. Mene, O.K. Obrou, P. Assamoi, K. Boka, J.-P. Adohi, C. Amory-Mazaudier, Simulation of electric field and current during the 11 June 1993 disturbance dynamo event: comparison with the observations. J. Geophys. Res. Space Phys. 115(A11), A11307 (2010). doi:10.1029/2010JA015417 ADSGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.University of ColoradoBoulderUSA
  2. 2.High Altitude ObservatoryNational Center for Atmospheric ResearchBoulderUSA

Personalised recommendations