Space Science Reviews

, Volume 203, Issue 1–4, pp 89–142 | Cite as

Orbital Observations of Dust Lofted by Daytime Convective Turbulence

  • Lori FentonEmail author
  • Dennis Reiss
  • Mark Lemmon
  • Béatrice Marticorena
  • Stephen Lewis
  • Bruce Cantor


Over the past several decades, orbital observations of lofted dust have revealed the importance of mineral aerosols as a climate forcing mechanism on both Earth and Mars. Increasingly detailed and diverse data sets have provided an ever-improving understanding of dust sources, transport pathways, and sinks on both planets, but the role of dust in modulating atmospheric processes is complex and not always well understood. We present a review of orbital observations of entrained dust on Earth and Mars, particularly that produced by the dust-laden structures produced by daytime convective turbulence called “dust devils”. On Earth, dust devils are thought to contribute only a small fraction of the atmospheric dust budget; accordingly, there are not yet any published accounts of their occurrence from orbit. In contrast, dust devils on Mars are thought to account for several tens of percent of the planet’s atmospheric dust budget; the literature regarding martian dust devils is quite rich. Because terrestrial dust devils may temporarily contribute significantly to local dust loading and lowered air quality, we suggest that martian dust devil studies may inform future studies of convectively-lofted dust on Earth.

As on Earth, martian dust devils form most commonly when the insolation reaches its daily and seasonal peak and where a source of loose dust is plentiful. However this pattern is modulated by variations in weather, albedo, or topography, which produce turbulence that can either enhance or suppress dust devil formation. For reasons not well understood, when measured from orbit, martian dust devil characteristics (dimensions, and translational and rotational speeds) are often much larger than those measured from the ground on both Earth and Mars. Studies connecting orbital observations to those from the surface are needed to bridge this gap in understanding. Martian dust devils have been used to remotely probe conditions in the PBL (e.g., CBL depth, wind velocity); the same could be done in remote locations on Earth. Finally, martian dust devils appear to play a major role in the dust cycle, waxing and waning in relative importance and spatial patterns of occurrence with the planet’s orbital state. Orbital studies of terrestrial dust devils would provide a basis for comparative planetology that would broaden the understanding of these dusty vortices on both planets.


Atmospheric dust Dust devil Mars Dust storm Boundary layer 



Advanced Earth Observing Satellite


aerosol optical thickness


Advanced Spaceborne Thermal Emission Spectrometer


Advanced Very High Resolution Radiometer


Cloud-Aerosol Lidar with Orthogonal Polarization


Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations


convective boundary layer


Context Camera


dust devil


dust optical depth


dust optical thickness


emission phase function


Earth year


field of view


global circulation model


Geoscience Laser Altimeter System


Global Imager


Goddard Chemistry Aerosol Radiation and Transport


High Resolution Imaging Science Experiment


High Resolution Stereo Camera


Ice, Cloud and land Elevation Satellite




Infrared Interferometric Spectrometer


Infrared Thermal Mapper


Lidar In-Space Technology Experiment


long wave


Mars Reconnaissance Orbiter Mars Color Imager


Mars Climate Sounder


Mars Express


Mars Global Surveyor


Mars Orbiter Camera Narrow Angle


Mars Orbiter Camera Wide Angle


Moderate-resolution Imaging Spectro-radiometer


Mars Orbiter Laser Altimeter


Mars Reconnaissance Orbiter


Meteosat Second Generation


Mars Science Laboratory Multi-angle Imaging Spectro-Radiometer


Mars Year


Meteosat Visible Infra-Red Imager


National Oceanic and Atmospheric Administration


Mars Odyssey


planetary boundary layer


Polarization and Directionality of the Earth’s Reflectances


particle size distribution


Sea-viewing Wide Field of view Sensor


Super-resolution Camera


Spinning Enhanced Visible Infra-Red Imager


Spectroscopy for Investigation of Characteristics of the Atmosphere of Mars


short wave


Thermal Emission Spectrometer


Thermal Emission Imaging System, Infrared camera


THEMIS Visible camera


Television and Infra-Red Observation Satellite




Vidicon Camera System—Medium Angle


Total Ozone Mapping Spectrometer Visual Imaging Subsystems


Viking Lander 1


Viking Lander 2


Viking Orbiter 1


Viking Orbiter 2



The authors would like to thank two anonymous reviewers and an editor for many suggestions that greatly improved the manuscript.


  1. A. Ansmann, M. Tesche, P. Knippertz, E. Bierwirth, D. Althausen, D. Müller, O. Schulz, Vertical profiling of convective dust plumes in southern Morocco during SAMUM. Tellus B 61, 340–353 (2009). doi: 10.1111/j.1600-0889.2008.00384.x ADSCrossRefGoogle Scholar
  2. M.R. Balme, P.L. Whelley, R. Greeley, Mars: dust devil track survey in Argyre Planitia and Hellas Basin. J. Geophys. Res. 108, 5086 (2003). doi: 10.1029/2003JE002096 CrossRefGoogle Scholar
  3. M. Balme, R. Greeley, Dust devils on Earth and Mars. Rev. Geophys. 44, RG3003 (2006). doi: 10.1029/2005RG000188 ADSCrossRefGoogle Scholar
  4. M.R. Balme, A. Pathare, S.M. Metzger, M.C. Towner, S.R. Lewis, A. Spiga, L. Fenton, N.O. Renno, H.M. Elliott, F.A. Saca, T. Michaels, P. Russell, J. Verdasca, Field measurements of horizontal forward motion velocities of terrestrial dust devils: towards a proxy for ambient winds on Mars and Earth. Icarus 221, 632–645 (2012). doi: 10.1016/j.Icarus2012.08.021 ADSCrossRefGoogle Scholar
  5. J.R. Banks, H.E. Brindley, Evaluation of MSG-SEVIRI mineral dust retrieval products over North Africa and the Middle East. Remote Sens. Environ. 128, 58–73 (2013). doi: 10.1016/j.rse.2012.07.017 CrossRefGoogle Scholar
  6. S. Basu, M.I. Richardson, R.J. Wilson, Simulation of the Martian dust cycle with the GFDL Mars GCM. J. Geophys. Res. 109, E11006 (2004). doi: 10.1029/2004JE002243 ADSCrossRefGoogle Scholar
  7. S. Basu, J. Wilson, M.I. Richardson, A. Ingersoll, Simulation of spontaneous and variable global dust storms with the GFDL Mars GCM. J. Geophys. Res.-Planets 111 (2006). doi: 10.1029/2005je002660
  8. F. Bell, Dust devils and aviation, Meteorol. Note 27, Commonwealth of Australia, Bureau of Meteorology (1967) p. 10 Google Scholar
  9. J.F. Bell, M.J. Wolff, M.C. Malin, W.M. Calvin, B.A. Cantor, M.A. Caplinger, R.T. Clancy, K.S. Edgett, L.J. Edwards, J. Fahle, F. Ghaemi, R.M. Haberle, A. Hale, P.B. James, S.W. Lee, T. McConnochie, E. Noe Dobrea, M.A. Ravine, D. Schaeffer, K.D. Supulver, P.C. Thomas, Mars Reconnaissance Orbiter Mars Color Imager (MARCI): Instrument description, calibration, and performance. J. Geophys. Res. 114 (2009). doi: 10.1029/2008JE003315
  10. N. Bellouin, A. Jones, J. Haywood, S.A. Christopher, Updated estimate of aerosol direct radiative forcing from satellite observations and comparison against the Hadley Centre climate model. J. Geophys. Res. 113, D10205 (2008). doi: 10.1029/2007JD009385 ADSCrossRefGoogle Scholar
  11. S. Berthier, P. Chazette, P. Couvert, J. Pelon, F. Dulac, F. Thieuleux, C. Moulin, T. Pain, Desert dust aerosol columnar properties over ocean and continental Africa from Lidar In-Space Technology Experiment (LITE) and meteosat synergy. J. Geophys. Res. 111, D21202 (2006). doi: 10.1029/2005JD006999 ADSCrossRefGoogle Scholar
  12. K.K. Biener, P.E. Geissler, A.S. McEwen, C. Leovy, Observations of martian dust devils in MOC wide angle camera images, in Lunar Planet. Sci. Conf. XXXIII, League City, TX (2002) Abst. #2004 Google Scholar
  13. O. Boucher, D. Randall, P. Artaxo, C. Bretherton, G. Feingold, P. Forster, V.-M. Kerminen, Y. Kondo, H. Liao, U. Lohmann, P. Rasch, S.K. Satheesh, S. Sherwood, B. Stevens, X.Y. Zhang, in Climate Change 2013: The Physical Science Basis, ed. by T.F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, P.M. Midgley (Cambridge University Press, New York, 2013), p. 571. doi: 10.1017/CBO9781107415324.016 Google Scholar
  14. G.A. Briggs, W.A. Baum, J. Barnes, Viking Orbiter imaging observations of dust in the Martian atmosphere. J. Geophys. Res. 84, 2795–2820 (1979). doi: 10.1029/JB084iB06p02795 ADSCrossRefGoogle Scholar
  15. B.A. Cantor, MOC observations of the 2001 Mars planet-encircling dust storm. Icarus 186(1), 60–96 (2007). doi: 10.1016/j.icarus.2006.08.019 ADSCrossRefGoogle Scholar
  16. B.A. Cantor, P.B. James, M. Caplinger, M.J. Wolff, Martian dust storms: 1999 Mars Orbiter Camera observations. J. Geophys. Res. 106, 23653 (2001). doi: 10.1029/2000JE001310 ADSCrossRefGoogle Scholar
  17. B. Cantor, M. Malin, K.S. Edgett, Multiyear Mars Orbiter Camera (MOC) observations of repeated Martian weather phenomena during the northern summer season. J. Geophys. Res. 107(E3), 5014 (2002). doi: 10.1029/2001JE001588 CrossRefGoogle Scholar
  18. B.A. Cantor, K.M. Kanak, K.S. Edgett, Mars Orbiter camera observations of Martian dust devils and their tracks (September 1997 to January 2006) and evaluation of theoretical vortex models. J. Geophys. Res. 111, E12002 (2006). doi: 10.1029/2006JE002700 ADSCrossRefGoogle Scholar
  19. B.A. Cantor, P.B. James, W.M. Calvin, MARCI and MOC observations of the atmosphere and surface cap in the north polar region of Mars. Icarus 208, 61–81 (2010). doi: 10.1016/j.icarus.2010.01.032 ADSCrossRefGoogle Scholar
  20. D. Carrer, X. Ceamanos, B. Six, J.-L. Roujean, AERUS-GEO: a newly available satellite-derived aerosol optical depth product over Europe and Africa. Geophys. Res. Lett. 41, 7731–7738 (2014). doi: 10.1002/2014GL061707 ADSCrossRefGoogle Scholar
  21. I. Chiapello, C. Moulin, J.M. Prospero, Understanding the long-term variability of African dust transport across the Atlantic as recorded in both Barbados surface concentrations and large-scale TOMS optical thickness. J. Geophys. Res. 110, D18S10 (2005). doi: 10.1029/2004JD005132 ADSCrossRefGoogle Scholar
  22. I. Chiapello, Dust observations and climatology, in Mineral Dust: A Key Player in the Earth System, ed. by P. Knippertz, J.-B.W. Stuut (Springer, Dordrecht, 2014), p. 149. doi: 10.1007/978-94-017-8978-3 Google Scholar
  23. M. Chin, T. Diehl, O. Dubovik, T.F. Eck, B.N. Holben, A. Sinyuk, D.G. Streets, Light absorption by pollution, dust, and biomass burning aerosols: a global model study and evaluation with AERONET measurements. Ann. Geophys. 27, 3439–3464 (2009). doi: 10.5194/angeo-27-3439-2009 ADSCrossRefGoogle Scholar
  24. M. Chin, T. Diehl, Q. Tan, J.M. Prospero, R.A. Kahn, L.A. Remer, H. Yu, A.M. Sayer, H. Bian, I.V. Geogdzhayev, B.N. Holben, S.G. Howell, B.J. Huebert, N.C. Hsu, D. Kim, T.L. Kucsera, R.C.L.M.I. Mishchenko, X. Pan, P.K. Quinn, G.L. Schuster, D.G. Streets, S.A. Strode, O. Torres, X.-P. Zhao, Multi-decadal aerosol variations from 1980 to 2009: a perspective from observations and a global model. Atmos. Chem. Phys. 14, 3657–3690 (2014). doi: 10.5194/acp-14-3657-2014 ADSCrossRefGoogle Scholar
  25. D.S. Choi, C.M. Dundas, Measurements of martian dust devil winds with HiRISE. Geophys. Res. Lett. 38 (2011). doi: 10.1029/2011GL049806
  26. P.R. Christensen, Regional dust deposits on Mars: physical properties, age, and history. J. Geophys. Res. 91(B3), 3533–3545 (1986). doi: 10.1029/JB091iB03p03533 ADSCrossRefGoogle Scholar
  27. P.R. Christensen, B.M. Jakosky, H.H. Kieffer, M.C. Malin, H.Y. McSween Jr., K. Nealson, G.L. Mehall, S.H. Silverman, S. Ferry, M. Caplinger, M. Ravine, The thermal emission imaging system (THEMIS) for the Mars 2001 Odyssey mission. Space Sci. Rev. 110, 85 (2004). doi: 10.1007/978-0-306-48600-5_3 ADSCrossRefGoogle Scholar
  28. R.T. Clancy, B.J. Sandor, M.J. Wolff, P.R. Christensen, M.D. Smith, J.C. Pearl, B.J. Conrath, R.J. Wilson, An intercomparison of ground-based millimeter, MGS TES, and Viking atmospheric temperature measurements: seasonal and interannual variability of temperatures and dust loading in the global Mars atmosphere. J. Geophys. Res. 105, 9553–9571 (2000). doi: 10.1029/1999JE001089 ADSCrossRefGoogle Scholar
  29. D.S. Colburn, J.B. Pollack, R.M. Haberle, Diurnal variations in optical depth at Mars. Icarus 79, 159–189 (1989). doi: 10.1016/0019-1035(89)90114-0 ADSCrossRefGoogle Scholar
  30. S.M. Cowie, P. Knippertz, J.H. Marsham, Are vegetation-related roughness changes the cause of the recent decrease in dust emission from the Sahel? Geophys. Res. Lett. 40, 1868–1872 (2013). doi: 10.1002/grl.50273 ADSCrossRefGoogle Scholar
  31. G.E. Cushing, T.N. Titus, P.R. Christensen, THEMIS VIS and IR observations of a high-altitude martian dust devil. Geophys. Res. Lett. 32, 23 (2005). doi: 10.1029/2005GL024478 CrossRefGoogle Scholar
  32. J.W. Deardorff, Observed characteristics of the outer layer, in Short Course on the Planetary Boundary Layer, ed. by A.K. Blackadar (Am. Meteorol. Soc., Boston, 1978), 101 pp. Google Scholar
  33. K.S. Edgett, M.C. Malin, Martian dust raising and surface albedo controls: thin, dark (and sometimes bright) streaks and dust devils in MGS MOC high resolution images, in Lunar Planet. Sci. Conf. XXXI, Houston, TX (2000) Abst. #1073 Google Scholar
  34. A.T. Evan, J. Dunion, J.A. Foley, A.K. Heidinger, C.S. Velden, New evidence for a relationship between Atlantic tropical cyclone activity and African dust outbreaks. Geophys. Res. Lett. 33, L19813 (2006). doi: 10.1029/2006GL026408 ADSCrossRefGoogle Scholar
  35. A.T. Evan, S. Mukhopadhyay, African dust over the northern tropical Atlantic: 1955–2008. J. Appl. Meteorol. Climatol. 49, 2213–2229 (2010). doi: 10.1175/2010JAMC2485.1 ADSCrossRefGoogle Scholar
  36. A.T. Evan, C. Flamant, S. Fiedler, O. Doherty, An analysis of aeolian dust in climate models. Geophys. Res. Lett. 41, 5996–6001 (2014). doi: 10.1002/2014GL060545 ADSCrossRefGoogle Scholar
  37. A.A. Fedorova, F. Montmessin, A. Rodin, O.I. Korablev, A. Määttänen, L. Maltagliati, J.-L. Bertaux, Evidence for a bimodal size distribution for the suspended aerosol particles on Mars. Icarus 231, 239–260 (2014). doi: 10.1016/j.icarus.2013.12.015 ADSCrossRefGoogle Scholar
  38. L.K. Fenton, J.C. Pearl, T.Z. Martin, Mapping Mariner 9 dust opacities. Icarus 130, 115–124 (1997). doi: 10.1006/icar.1997.5810 ADSCrossRefGoogle Scholar
  39. L.K. Fenton, R. Lorenz, Dust devil height and spacing with relation to the martian planetary boundary layer thickness. Icarus 260, 246–262 (2015). doi: 10.1016/j.icarus2015.07.028 ADSCrossRefGoogle Scholar
  40. F. Ferri, P.H. Smith, M. Lemmon, N.O. Rennó, Dust devils as observed by Mars Pathfinder. J. Geophys. Res. 108 (2003). doi: 10.1029/2000JE001421
  41. J.A. Fisher, M.I. Richardson, C.E. Newman, M.A. Szwast, C. Graf, S. Basu, S.P. Ewald, A.D. Toigo, R.J. Wilson, A survey of martian dust devil activity using Mars global surveyor Mars orbiter camera images. J. Geophys. Res. 110, E03004 (2005). doi: 10.1029/2003JE002165 ADSGoogle Scholar
  42. D.E. Fitzjarrald, A field investigation of dust devils. J. Appl. Meteorol. 12, 808–813 (1973). doi: 10.1175/1520-0450(1973)012<0808:AFIODD>2.0.CO;2 ADSCrossRefGoogle Scholar
  43. W.D. Flower, Sand devils. London Meteorol. Off. Prof. Notes. 5, No. 71 (1936) Google Scholar
  44. G.J. Flynn, The meteoritic contribution to dust and aerosols in the atmosphere of Mars, in Workshop on the Martian Surface and Atmosphere Through Time, Boulder, CO, USA, Report No. NASA-CR-190418, pp. 51–52 (1992) Google Scholar
  45. G.R. Foltz, M.J. McPhaden, Trends in Saharan dust and tropical Atlantic climate during 1980–2006. Geophys. Res. Lett. 35, L20706 (2008). doi: 10.1029/2008GL035042 ADSCrossRefGoogle Scholar
  46. F. Forget, F. Hourdin, R. Fournier, C. Hourdin, O. Talagrand, M. Collins, S.R. Lewis, P.L. Read, J.-P. Huot, Improved general circulation models of the martian atmosphere from the surface to above 80 km. J. Geophys. Res. 104(E10), 24155–24175 (1999). doi: 10.1029/1999JE001025 ADSCrossRefGoogle Scholar
  47. J.R. Garratt, The Atmospheric Boundary Layer (Cambridge Univ. Press, New York, 1994) Google Scholar
  48. S. Gassó, A.F. Stein, Does dust from Patagonia reach the sub-Antarctic Atlantic Ocean? Geophys. Res. Lett. 34, L01801 (2007). doi: 10.1029/2006GL027693 ADSCrossRefGoogle Scholar
  49. A. Gibbons, F. Yang, P. Mlsna, P. Geissler, Automated procedures for detecting martian dust devils, in Lunar Planet. Sci. Con. XXXVI, League City, TX (2005) Abst. #2005 Google Scholar
  50. P.J. Gierasch, R.M. Goody, A model of a Martian Great dust storm. J. Atmos. Sci. 30(2), 169–179 (1973). doi: 10.1175/1520-0469(1973)030<0169:AMOAMG>2.0.CO;2 ADSCrossRefGoogle Scholar
  51. D.A. Gillette, P.C. Sinclair, Estimation of suspension of alkaline material by dust in the United States. Atmos. Environ. 24A(5), 1135–1142 (1990). doi: 10.1016/0960-1686(90)90078-2 ADSCrossRefGoogle Scholar
  52. P. Ginoux, J.M. Prospero, T.E. Gill, N.C. Hsu, M. Zhao, global-scale attribution of anthropogenic and natural dust sources and their emission rates based on MODIS Deep Blue aerosol products. Rev. Geophys. 50, RG3005 (2012). doi: 10.1029/2012RG000388 ADSCrossRefGoogle Scholar
  53. A. Goudie, N. Middleton, Desert Dust in the Global System (Springer, Berlin, 2006) Google Scholar
  54. D. Grassi, V. Formisano, F. Forget, C. Fiorenza, N.I. Ignatiev, A. Maturilli, L.V. Zasova, The martian atmosphere in the region of Hellas basin as observed by the planetary Fourier spectrometer (PFS-MEX). Planet. Space Sci. 55, 1346–1357 (2007). doi: 10.1016/j.pss.2006.12.006 ADSCrossRefGoogle Scholar
  55. R. Greeley, J. Iversen, Wind as Geologic Process on Earth, Mars, Venus, and Titan (Cambridge Univ. Press, New York, 1985) CrossRefGoogle Scholar
  56. R. Greeley, M.R. Balme, J.D. Iversen, S.M. Metzger, R. Mickelson, J. Phoreman, B. White, Martian dust devils: laboratory simulations of particle threshold. J. Geophys. Res. 108 (2003). doi: 10.1029/2002JE001987
  57. R. Greeley, P.L. Whelley, R.E. Arvidson, N.A. Cabrol, D.J. Foley, B.J. Franklin, P.G. Geissler, M.P. Golombek, R.O. Kuzmin, G.A. Landis, M.T. Lemmon, L.D.V. Neakrase, S.W. Squyres, S.D. Thompson, Active dust devils in Gusev crater, Mars: observations from the Mars Exploration Rover Spirit. J. Geophys. Res. 111, E12S09 (2006). doi: 10.1029/2006JE002743 ADSGoogle Scholar
  58. R. Greeley, D.A. Waller, N.A. Cabrol, G.A. Landis, M.T. Lemmon, L.D.V. Neakrase, M. Pendeleton Hoffer, S.D. Thompson, P.L. Whelley, Gusev crater, Mars: observations of three dust devil seasons. J. Geophys. Res. 115, E00F02 (2010). doi: 10.1029/2010JE003608 ADSCrossRefGoogle Scholar
  59. S.D. Guzewich, A.D. Toigo, L. Kulowski, H. Wang, Mars Orbiter Camera climatology of textured dust storms. Icarus 258, 1–13 (2015). doi: 10.1016/j.icarus.2015.06.023 ADSCrossRefGoogle Scholar
  60. R.M. Haberle, M.A. Kahre, J.R. Murphy, Role of dust devils and orbital precession in closing the Martian dust cycle. Geophys. Res. Lett. 33, L19504 (2006). doi: 10.1029/2006GL026188 CrossRefGoogle Scholar
  61. R. Hanel, B. Conrath, W. Hovis, V. Kunde, P. Lowman, W. Maguire, J. Pearl, J. Pirraglia, C. Prabhakara, B. Schlachman, G. Levin, P. Straat, T. Burke, Investigation of the Martian environment by infrared spectroscopy on Mariner 9. Icarus 17, 423–442 (1972). doi: 10.1016/0019-1035(72)90009-7 ADSCrossRefGoogle Scholar
  62. N.G. Heavens, J.L. Benson, D.M. Kass, A. Kleinbohl, W.A. Abdou, D.J. McCleese, M.I. Richardson, J.T. Schofield, J.H. Shirley, P.M. Wolkenberg, Water ice clouds over the Martian tropics during northern summer. Geophys. Res. Lett. 37 (2010). doi: 10.1029/2010gl044610
  63. N.G. Heavens, D.J. McCleese, M.I. Richardson, D.M. Kass, A. Kleinböhl, J.T. Schofield, Structure and dynamics of the Martian lower and middle atmosphere as observed by the Mars Climate Sounder: 2. Implications of the thermal structure and aerosol distributions for the mean meridional circulation. J. Geophys. Res., Planets 116, E01010 (2011a). doi: 10.1029/2010JE003713 ADSGoogle Scholar
  64. N.G. Heavens, M.I. Richardson, A. Kleinbohl, D.M. Kass, D.J. McCleese, W. Abdou, J.L. Benson, J.T. Schofield, J.H. Shirley, P.M. Wolkenberg, Vertical distribution of dust in the Martian atmosphere during northern spring and summer: high-altitude tropical dust maximum at northern summer solstice. J. Geophys. Res., Planets 116 (2011b). doi: 10.1029/2010JE003692
  65. N.G. Heavens, B.A. Cantor, P.O. Hayne, D.M. Kass, A. Kleinböhl, D.J. McCleese, S. Piqueux, J.T. Schofield, J.H. Shirley, Extreme detached dust layers near Martian volcanoes: evidence for dust transport by mesoscale circulations forced by high topography. Geophys. Res. Lett. 42, 3730–3738 (2015). doi: 10.1002/2015GL064004 ADSCrossRefGoogle Scholar
  66. J.R. Herman, P.K. Bhartia, O. Torres, C. Hsu, C. Seftor, E. Celarier, Global distribution of UV-absorbing aerosols from Nimbus 7/TOMS data. J. Geophys. Res. 102, 16911 (1997). doi: 10.1029/96JD03680 ADSCrossRefGoogle Scholar
  67. M. Herman, J.-L. Deuzé, A. Marchand, B. Roger, P. Lallart, Aerosol remote sensing from POLDER/ADEOS over the ocean: improved retrieval using a nonspherical particle model. J. Geophys. Res. 110, D10S02 (2005). doi: 10.1029/2004JD004798 ADSCrossRefGoogle Scholar
  68. G.D. Hess, K.T. Spillane, Characteristics of dust devils in Australia. J. Appl. Meteorol. 29, 498–506 (1990). doi: 10.1175/1520-0450(1990)029<0498:CODDIA>2.0.CO;2 ADSCrossRefGoogle Scholar
  69. R. Hesse, Short-lived and long-lived dust devil tracks in the coastal desert of southern Peru. Aeolian Res. 5, 101–106 (2012). doi: 10.1016/j.aeolia.2011.10.003 ADSCrossRefGoogle Scholar
  70. D.P. Hinson, M. Pätzold, S. Tellmann, B. Häusler, G.L. Tyler, The depth of the convective boundary layer on Mars. Icarus 198, 57–66 (2008). doi: 10.1016/j.icarus.2008.07.003 ADSCrossRefGoogle Scholar
  71. D.P. Hinson, H. Wang, Further observations of regional dust storms and baroclinic eddies in the northern hemisphere of Mars. Icarus 206, 290–305 (2010). doi: 10.1016/j.icarus.2009.08.019 ADSCrossRefGoogle Scholar
  72. D.P. Hinson, H. Wang, M.D. Smith, A multi-year survey of dynamics near the surface in the northern hemisphere of Mars: short-period baroclinic waves and dust storms. Icarus 219, 307–320 (2012). doi: 10.1016/j.icarus.2012.03.001 ADSCrossRefGoogle Scholar
  73. D.P. Hinson, S.W. Asmar, D.S. Kahan, V. Akopian, R.M. Haberle, A. Spiga, J.T. Schofield, A. Kleinböhl, W.A. Abdou, S.R. Lewis, M. Paik, S.G. Maalouf, Initial results from radio occultation measurements with the Mars Reconnaissance Orbiter: a nocturnal mixed layer in the tropics and comparisons with polar profiles from the Mars Climate Sounder. Icarus 243, 91–103 (2014). doi: 10.1016/j.icarus.2014.09.019 ADSCrossRefGoogle Scholar
  74. N.C. Hsu, S.C. Tsay, M.D. King, J.R. Herman, Aerosol properties over bright-reflecting source regions. IEEE Trans. Geosci. Remote Sens. 42(3), 557–569 (2004). doi: 10.1109/TGRS.2004.824067 ADSCrossRefGoogle Scholar
  75. N.C. Hsu, R. Gautam, A.M. Sayer, C. Bettenhausen, C. Li, M.J. Jeong, S.-C. Tsay, B.N. Holben, Global and regional trends of aerosol optical depth over land and ocean using SeaWiFS measurements from 1997 to 2010. Atmos. Chem. Phys. 12, 8037–8053 (2012). doi: 10.5194/acp-12-8037-2012 ADSCrossRefGoogle Scholar
  76. N.C. Hsu, M.-J. Jeong, C. Bettenhausen, A.M. Sayer, R. Hansell, C.S. Seftor, J. Huang, S.-C. Tsay, Enhanced Deep Blue aerosol retrieval algorithm: the second generation. J. Geophys. Res., Atmos. 118, 9296–9315 (2013). doi: 10.1002/jgrd.50712 ADSCrossRefGoogle Scholar
  77. J. Huang, C. Zhang, J.M. Prospero, African dust outbreaks: a satellite perspective of temporal and spatial variability over the tropical Atlantic Ocean. J. Geophys. Res. 115, D05202 (2010). doi: 10.1029/2009JD012516 ADSGoogle Scholar
  78. N. Huneeus, M. Schulz, Y. Balkanski, J. Griesfeller, J.A. Prospero, S. Kinne, S. Bauer, O. Boucher, M. Chin, F. Dentener, T. Diehl, R. Easter, D. Fillmore, S. Ghan, P. Ginoux, A. Grini, L. Horowitz, D. Koch, M. Krol, W. Landing, X. Liu, N. Mahowald, R. Miller, J.-J. Morcrette, G. Myhre, J.E. Penner, J. Perlwitz, P. Stier, T. Takemura, C. Zender, Global dust model intercomparison in AeroCom phase I. Atmos. Chem. Phys. 11, 7781–7816 (2011). doi: 10.5194/acp-11-7781-2011 ADSCrossRefGoogle Scholar
  79. G.E. Hunt, P.B. James, Martian extratropical cyclones. Nature 278, 531–532 (1979). doi: 10.1038/278531a0 ADSCrossRefGoogle Scholar
  80. R.B. Husar, J.M. Prospero, L.L. Stowe, Characterization of tropospheric aerosols over the oceans with the NOAA AVHRR optical thickness product. J. Geophys. Res. 102, 16889–16909 (1997). doi: 10.1029/96JD04009 ADSCrossRefGoogle Scholar
  81. R.L. Ives, Behavior of dust devils. Bull. Am. Meteorol. Soc. 28, 168–174 (1947) Google Scholar
  82. I. Jankowiak, D. Tanré, Satellite climatology of Saharan dust outbreaks: method and preliminary results. J. Climate 5(6), 646–656 (1992). doi: 10.1175/1520-0442(1992)005<0646:SCOSDO>2.0.CO;2 ADSCrossRefGoogle Scholar
  83. R. Jaumann, G. Neukum, T. Behnke, T.C. Duxbury, K. Eichentopf, J. Flohrer, S. van Gasselt, B. Giese, K. Gwinner, E. Hauber, H. Hoffmann, A. Hoffmeister, U. Köhler, K.-D. Matz, T.B. McCord, V. Mertens, J. Oberst, R. Pischel, D. Reiss, E. Ress, T. Roatsch, P. Saiger, F. Scholten, G. Schwarz, K. Stephan, M. Wählisch, the HRSC Co-Investigator Team, The high-resolution stereo camera (HRSC) experiment on Mars Express: instrument aspects and experiment conduct from interplanetary cruise through the nominal mission. Planet. Space Sci. 55, 928–952 (2007). doi: 10.1016/j.pss.2006.12.003 ADSCrossRefGoogle Scholar
  84. B.C. Jemmett-Smith, J.H. Marsham, P. Knippertz, C.A. Gilkeson, Quantifying global dust devil occurrence from meteorological analyses. Geophys. Res. Lett. 42, 1275–1282 (2015). doi: 10.1002/2015GL063078 ADSCrossRefGoogle Scholar
  85. R.A. Kahn, T.Z. Martin, R.W. Zurek, S.W. Lee, The Martian dust cycle, in Mars, ed. by H.H. Kieffer, B.M. Jakosky, C.W. Snyder, M.S. Matthews (Univ. of Ariz. Press, Tucson, 1992), pp. 1017–1053 Google Scholar
  86. M.A. Kahre, J.R. Murphy, R.M. Haberle, Modeling the Martian dust cycle and surface dust reservoirs with the NASA Ames general circulation model. J. Geophys. Res. 111 (2006). doi: 10.1029/2005JE002588
  87. K.M. Kanak, D.K. Lilly, J.T. Snow, The formation of vertical vortices in the convective boundary layer. Q. J. R. Meteorol. Soc. 126, 2789–2810 (2000). doi: 10.1002/qj.49712656910 ADSCrossRefGoogle Scholar
  88. Y.J. Kaufman, I. Koren, L.A. Remer, D. Tanré, P. Ginoux, S. Fan, Dust transport and deposition observed from the Terra-Moderate Resolution Imaging Spectrometer (MODIS) spacecraft over the Atlantic Ocean. J. Geophys. Res. 110, D10S12 (2005). doi: 10.1029/2003JD004436 ADSCrossRefGoogle Scholar
  89. H.H. Kieffer, B.M. Jakosky, C.W. Snyder, The planet Mars: from antiquity to the present, in Mars, ed. by H.H. Kieffer, B.M. Jakosky, C.W. Snyder, M.S. Matthews (University of Arizona Press, Tucson, 1992), pp. 12–13 Google Scholar
  90. A. Kleinböhl, J.T. Schofield, D.M. Kass, W.A. Abdou, C.R. Backus, B. Sen, J.H. Shirley, W.G. Lawson, M.I. Richardson, F.W. Taylor, N.A. Teanby, D.J. McCleese, Mars Climate Sounder limb profile retrieval of atmospheric temperature, pressure, and dust and water ice opacity. J. Geophys. Res. 114, E10006 (2009). doi: 10.1029/2009JE003358 ADSCrossRefGoogle Scholar
  91. J. Koch, N.O. Renno, The role of convective plumes and vortices on the global aerosol budget. Geophys. Res. Lett. 32, L18806 (2005). doi: 10.1029/2005GL02342 ADSGoogle Scholar
  92. J.F. Kok, E.J.R. Parteli, T.I. Michaels, D.B. Karam, The physics of wind-blown sand and dust. Rep. Prog. Phys. 75, 10 (2012). doi: 10.1088/0034-4885/75/10/106901 CrossRefGoogle Scholar
  93. O. Korablev, V.A. Krasnopolsky, A.V. Rodin, E. Chassefière, Vertical structure of Martian dust measured by solar infrared occultations from the Phobos spacecraft. Icarus 102, 76–87 (1993). doi: 10.1006/icar.1993.1033 ADSCrossRefGoogle Scholar
  94. J. Laskar, A.C.M. Correia, M. Gastineau, F. Joutel, B. Levrard, P. Robutel, Long term evolution and chaotic diffusion of the insolation quantities of Mars. Icarus 170, 343–364 (2004). doi: 10.1016/j.icarus.2004.04.005 ADSCrossRefGoogle Scholar
  95. M. Legrand, C. N’doumé, I. Jankowiak, Satellite-derived climatology of the Saharan aerosol, in Proc. SPIE 2309, Passive Infrared Remote Sensing of Clouds and the Atmosphere II (1994), pp. 127–135. doi: 10.1117/12.196669 CrossRefGoogle Scholar
  96. M. Legrand, A. Plana-Fattori, C. N’doumé, Satellite detection of dust using the IR imagery of Meteosat: 1. Infrared difference dust index. J. Geophys. Res. 106, 18251–18274 (2001). doi: 10.1029/2000JD900749 ADSCrossRefGoogle Scholar
  97. M.T. Lemmon, M.J. Wolff, M.D. Smith, R.T. Clancy, D. Banfield, G.A. Landis, A. Ghosh, P.H. Smith, N. Spanovich, B. Whitney, P. Whelley, R. Greeley, S. Thompson, J.F. Bell, S.W. Squyres, Atmospheric imaging results from the Mars exploration rovers: Spirit and Opportunity. Science 306, 1753–1756 (2004). doi: 10.1126/science.1104474 ADSCrossRefGoogle Scholar
  98. M.T. Lemmon, M.J. Wolff, J.F. Bell, M.D. Smith, B.A. Cantor, P.H. Smith, Dust aerosol, clouds, and the atmospheric optical depth record over 5 Mars years of the Mars Exploration Rover mission. Icarus 251, 96–111 (2015). doi: 10.1016/j.icarus.2014.03.029 ADSCrossRefGoogle Scholar
  99. J. Lenoble, L. Remer, D. Tanré, Aerosol Remote Sensing (Springer, Heidelberg, 2013). doi: 10.1007/978-3-642-17725-5 CrossRefGoogle Scholar
  100. R.C. Levy, S. Mattoo, L.A. Munchak, L.A. Remer, A.M. Sayer, F. Patadia, N.C. Hsu, The Collection 6 MODIS aerosol products over land and ocean. Atmos. Meas. Tech. 6, 2989–3034 (2013). doi: 10.5194/amt-6-2989-2013 CrossRefGoogle Scholar
  101. S.R. Lewis, P.L. Read, B.J. Conrath, J.C. Pearl, M.D. Smith, Assimilation of thermal emission spectrometer atmospheric data during the Mars Global Surveyor aerobraking period. Icarus 192, 327–347 (2007). doi: 10.1016/j.icarus.2007.08.009 ADSCrossRefGoogle Scholar
  102. R. Lorenz, On the statistical distribution of dust devil diameters. Icarus 215, 381–390 (2011). doi: 10.1016/j.icarus.2011.06.005 ADSCrossRefGoogle Scholar
  103. R. Lorenz, The longevity and aspect ratio of dust devils: effects on detection efficiencies and comparison of landed and orbital imaging at Mars. Icarus 226, 964–970 (2013). doi: 10.1016/j.icarus.2013.06.031 ADSCrossRefGoogle Scholar
  104. R.D. Lorenz, M.J. Myers, Dust devil hazard to aviation: a review of United States air accident reports. J. Meteorol. 30(298), 179–184 (2005) Google Scholar
  105. A. Määttänen, T. Fouchet, O. Forni, F. Forget, H. Savijärvi, B. Gondet, R. Melchiorri, Y. Langevin, V. Formisano, M. Giuranna, J.-P. Bibring, A study of the properties of a local dust storm with Mars Express OMEGA and PFS data. Icarus 201, 504–516 (2009). doi: 10.1016/j.icarus.2009.01.024 ADSCrossRefGoogle Scholar
  106. A. Määttänen, C. Listowski, F. Montmessin, L. Maltagliati, A. Reberac, L. Joly, J.-L. Bertaux, A complete climatology of the aerosol vertical distribution on Mars from MEx/SPICAM UV solar occultations. Icarus 223, 892–941 (2013). doi: 10.1016/j.icarus.2012.12.001 ADSCrossRefGoogle Scholar
  107. J.-B. Madeleine, F. Forget, E. Millour, T. Navarro, A. Spiga, The influence of radiatively active water ice clouds on the Martian climate. Geophys. Res. Lett. 39, L23202 (2012a). doi: 10.1029/2012GL053564 ADSCrossRefGoogle Scholar
  108. J.-B. Madeleine, F. Forget, A. Spiga, M.J. Wolff, F. Montmessin, M. Vincendon, D. Jouglet, B. Gondet, J.-P. Bibring, Y. Langevin, B. Schmitt, Aphelion water-ice cloud mapping and property retrieval using the OMEGA imaging spectrometer onboard Mars Express. J. Geophys. Res., Planets 117, E00J07 (2012b). doi: 10.1029/2011JE003940 ADSCrossRefGoogle Scholar
  109. B.A. Maher, J.M. Prospero, D. Mackie, D. Gaiero, P.P. Hesse, Y. Balkanski, Global connections between aeolian dust, climate and ocean biogeochemistry at the present day and at the last glacial maximum. Earth-Sci. Rev. 99, 61–97 (2010). doi: 10.1016/j.earscirev.2009.12.001 ADSCrossRefGoogle Scholar
  110. M.C. Malin, K.S. Edgett, Mars Global Surveyor Mars Orbiter Camera: interplanetary cruise through primary mission. J. Geophys. Res. 106(E10), 23429–23570 (2001). doi: 10.1029/2000JE001455 ADSCrossRefGoogle Scholar
  111. M.C. Malin, K.S. Edgett, B.A. Cantor, M.A. Caplinger, G.E. Danielson, E.H. Jensen, M.A. Ravine, J.L. Sandoval, K.D. Supulver, An overview of the 1985–2006 Mars Orbiter Camera science investigation. Mars 5 (2010). doi: 10.1555/mars.2010.0001
  112. P. Markowski, C. Hannon, Multiple-Doppler radar observations of the evolution of vorticity extrema in a convective boundary layer. Mon. Weather Rev. 134, 355–374 (2006). doi: 10.1175/MWR3060.1 ADSCrossRefGoogle Scholar
  113. B. Marticorena, B. Chatenet, J.L. Rajot, Temporal variability of mineral dust concentrations over West Africa: analyses of a pluriannual monitoring from the AMMA Sahelian Dust Transect. Atmos. Chem. Phys. 10, 8899–8915 (2010). doi: 10.5194/acp-10-8899-2010 ADSCrossRefGoogle Scholar
  114. B. Marticorena, P. Formenti, Fundamentals of aeolian sediment transport: long-range transport of dust, in Treatise Geomorphol, vol. 11, ed. by J. Shroder, N. Lancaster, D.J. Sherman, A.C.W. Bass (Academic Press, San Diego, 2013), pp. 64–84 CrossRefGoogle Scholar
  115. L.J. Martin, R.W. Zurek, An analysis of the history of dust activity on Mars. J. Geophys. Res. 98, 3221 (1993). doi: 10.1029/92JE02937 ADSCrossRefGoogle Scholar
  116. T.Z. Martin, Thermal infrared opacity of the Mars atmosphere. Icarus 66, 2–21 (1986). doi: 10.1016/0019-1035(86)90003-5 ADSCrossRefGoogle Scholar
  117. T.Z. Martin, M.I. Richardson, New dust opacity mapping from Viking Infrared Thermal Mapper Data. J. Geophys. Res. 98, 10941–10949 (1993). doi: 10.1029/93JE01044 ADSCrossRefGoogle Scholar
  118. J.V. Martonchik, D.J. Diner, R. Kahn, B. Gaitley, B.N. Holben, Comparison of MISR and AERONET aerosol optical depths over desert sites. Geophys. Res. Lett. 31, L16102 (2004). doi: 10.1029/2004GL019807 ADSCrossRefGoogle Scholar
  119. H. Masursky, R.M. Batson, J.F. McCauley, L.A. Soderblom, R.L. Wildey, M.H. Carr, D.J. Milton, D.E. Wilhelms, B.A. Smith, T.B. Kirby, J.C. Robinson, C.B. Leovy, G.A. Briggs, T.C. Duxbury, C.H. Acton Jr., B.C. Murray, J.A. Cutts, R.P. Sharp, S. Smith, R.B. Leighton, C. Sagan, J. Veverka, M. Noland, J. Lederberg, E. Levinthal, J.B. Pollack, J.T. Moore Jr., W.K. Hartmann, E.N. Shipley, G. de Vaucouleurs, M.E. Davies, Mariner 9 television reconnaissance of Mars and its satellites: preliminary results. Science 175, 294–305 (1972). doi: 10.1126/science.175.4019.294 ADSCrossRefGoogle Scholar
  120. J.O. Mattsson, T. Nihlén, W. Yue, Observations of dust devils in a semi-arid district of southern Tunisia. Weather 48, 359–363 (1993). doi: 10.1002/j.1477-8696.1993.tb05814.x ADSCrossRefGoogle Scholar
  121. T. Maxworthy, A vorticity source for large-scale dust devils and other comments on naturally occurring columnar vortices. J. Atmos. Sci. 30, 1717–1722 (1973). doi: 10.1175/1520-0469(1973)030<1717:AVSFLS>2.0.CO;2 ADSCrossRefGoogle Scholar
  122. D.J. McCleese, N.G. Heavens, J.T. Schofield, W.A. Abdou, J.L. Bandfield, S.B. Calcutt, P.G.J. Irwin, D.M. Kass, A. Kleinböhl, S.R. Lewis, D.A. Paige, P.L. Read, M.I. Richardson, J.H. Shirley, F.W. Taylor, N. Teanby, R.W. Zurek, Structure and dynamics of the Martian lower and middle atmosphere as observed by the Mars Climate Sounder: seasonal variations in zonal mean temperature, dust, and water ice aerosols. J. Geophys. Res., Planets 115 (2010). doi: 10.1029/2010JE003677
  123. A.S. McEwen, M.E. Banks, N. Baugh, K. Becker, A. Boyd, J.W. Bergstrom, R.A. Beyer, E. Bortolini, N.T. Bridges, S. Byrne, B. Castalia, F.C. Chuang, L.S. Crumpler, I. Daubar, A.K. Davatzes, D.G. Deardorff, A. DeJong, W.A. Delamere, E. Noe Dobrea, C.M. Dundas, E.M. Eliason, Y. Espinoza, A. Fennema, K.E. Fishbaugh, T. Forrester, P.E. Geissler, J.A. Grant, J.L. Griffes, J.P. Grotzinger, V.C. Gulick, C.J. Hansen, K.E. Herkenhoff, R. Heyd, W.L. Jaeger, D. Jones, B. Kanefsky, L. Keszthelyi, R. King, R.L. Kirk, E.J. Kolb, J. Lasco, A. Lefort, R. Leis, K.W. Lewis, S. Martinez-Alonso, S. Mattson, G. McArthur, M.T. Mellon, J.M. Metz, M.P. Milazzo, R.E. Milliken, T. Motazedian, C.H. Okubo, A. Ortiz, A.J. Philippoff, J. Plassmann, A. Polit, P.S. Russell, C. Schaller, M.L. Searls, T. Spriggs, S.W. Squyres, S. Tarr, N. Thomas, B.J. Thomson, L.L. Tornabene, C. Van Houten, C. Verba, C. Weitz, J.J. Wray, The high resolution imaging science experiment (HiRISE) during MRO’s primary science phase (PSP). Icarus 205, 2–37 (2010). doi: 10.1016/j.icarus.2009.04.023 ADSCrossRefGoogle Scholar
  124. J.B. McGinnigle, Dust whirls in north-west Libya. Weather 21, 272–276 (1966). doi: 10.1002/j.1477-8696.1966.tb05204.x ADSCrossRefGoogle Scholar
  125. S.M. Metzger, Dust devils as aeolian transport mechanisms in southern Nevada and in the Mars Pathfinder landing site, PhD thesis, Univ. Nevada, Reno (1999), 208 pp. Google Scholar
  126. S.M. Metzger, M.R. Balme, M.C. Towner, B.J. Bos, T.J. Ringrose, M.R. Patel, In situ measurements of particle load and transport in dust devils. Icarus 214, 766–772 (2011). doi: 10.1016/j.icarus.2011.03.013 ADSCrossRefGoogle Scholar
  127. L. Montabone, F. Forget, E. Millour, R.J. Wilson, S.R. Lewis, B. Cantor, D. Kass, A. Kleinböhl, M.T. Lemmon, M.D. Smith, M.J. Wolff, Eight-year climatology of dust optical depth on Mars. Icarus 251, 65–95 (2015). doi: 10.1016/j.icarus.2014.12.034 ADSCrossRefGoogle Scholar
  128. L. Montabone, S.R. Lewis, P.L. Read, Interannual variability of Martian dust storms in assimilation of several years of Mars global surveyor observations. Adv. Space Res. 36, 2146–2155 (2005). doi: 10.1016/j.asr.2005.07.047 ADSCrossRefGoogle Scholar
  129. F. Montmessin, F. Forget, P. Rannou, M. Cabane, R.M. Haberle, Origin and role of water ice clouds in the Martian water cycle as inferred from a general circulation model. J. Geophys. Res., Planets 109, E10004 (2004). doi: 10.1029/2004JE002284 ADSCrossRefGoogle Scholar
  130. C. Moulin, I. Chiapello, Evidence of the control of summer atmospheric transport of African dust over the Atlantic by Sahel sources from TOMS satellites (1979–2000). Geophys. Res. Lett. 31, L02107 (2004). doi: 10.1029/2003GL018931 ADSCrossRefGoogle Scholar
  131. D.R. Muhs, S.R. Cattle, O. Crouvi, D.-D. Rousseau, J. Sun, M.A. Zárate, Loess records, in Mineral Dust: A Key Player in the Earth System, ed. by P. Knippertz, J.-B.W. Stuut (Springer, Dordrecht, 2014), p. 411. doi: 10.1007/978-94-017-8978-3D Google Scholar
  132. D.P. Mulholland, P.L. Read, S.R. Lewis, Simulating the interannual variability of major dust storms on Mars using variable lifting thresholds. Icarus 223, 344–358 (2013). doi: 10.1016/j.icarus.2012.12.003 ADSCrossRefGoogle Scholar
  133. D.P. Mulholland, A. Spiga, C. Listowski, P.L. Read, An assessment of the impact of local processes on dust lifting in martian climate models. Icarus 252, 212–227 (2015). doi: 10.1016/j.icarus.2015.01.017 ADSCrossRefGoogle Scholar
  134. S. Murchie et al., R. Arvidson, P. Bedini, K. Beisser, J.-P. Bibring, J. Bishop, J. Boldt, P. Cavender, T. Choo, R.T. Clancy, E.H. Darlington, D. Des Marais, R. Espiritu, D. Fort, R. Green, E. Guinness, J. Hayes, C. Hash, K. Heffernan, J. Hemmler, G. Heyler, D. Humm, J. Hutcheson, N. Izenberg, R. Lee, J. Lees, D. Lohr, E. Malaret, T. Martin, J.A. McGovern, P. McGuire, R. Morris, J. Mustard, S. Pelkey, E. Rhodes, M. Robinson, T. Roush, E. Schaefer, G. Seagrave, G. Seelos, P. Silverglate, S. Slavney, M. Smith, W.J. Shyong, K. Strohbehn, H. Taylor, P. Thompson, B. Tossman, M. Wirzburger, M. Wolff, Compact reconnaissance imaging spectrometer for Mars (CRISM) on Mars reconnaissance orbiter (MRO). J. Geophys. Res. 112 (2007). doi: 10.1029/2006JE002682
  135. J.R. Murphy, S. Nelli, Mars Pathfinder convective vortices: frequency of occurrence. Geophys. Res. Lett. 29, 11–14 (2002). doi: 10.1029/2002GL015214 Google Scholar
  136. T. Navarro, J.-B. Madeleine, F. Forget, A. Spiga, E. Millour, F. Montmessin, A. Määttänen, Global climate modeling of the Martian water cycle with improved microphysics and radiatively active water ice clouds. J. Geophys. Res., Planets 119, 1479–1495 (2014). doi: 10.1002/2013JE004550 ADSCrossRefGoogle Scholar
  137. L.D.V. Neakrase, J. McHone, P.L. Whelley, R. Greeley, Saharan dust devil tracks: Mars analog field study areas, in Abstracts with Programs (Geol. Soc. Am., Houston, 2008), p. 262, Abst. #40 Google Scholar
  138. L.D.V. Neakrase, J. McHone, P.L. Whelley, R. Greeley, Terrestrial analogs to Mars: east-central Saharan dust devil tracks, in Lunar Planet. Sci. Conf. XLIII, League City, TX (2012) Abst. #2009 Google Scholar
  139. F.M. Neubauer, Thermal convection in the martian atmosphere. J. Geophys. Res. 71(10), 2419–2426 (1966). doi: 10.1029/JZ071i010p02419 ADSCrossRefGoogle Scholar
  140. G.A. Neumann, D.E. Smith, M.T. Zuber, Two Mars years of clouds detected by the Mars Orbiter Laser Altimeter. J. Geophys. Res. 108, 5023 (2003). doi: 10.1029/2002JE001849 CrossRefGoogle Scholar
  141. C.E. Newman, S.R. Lewis, P.L. Read, F. Forget, Modeling the Martian dust cycle, 1. Representations of dust transport processes. J. Geophys. Res. 107(E12), 5123 (2002a). doi: 10.1029/2002JE001910 Google Scholar
  142. C.E. Newman, S.R. Lewis, P.L. Read, F. Forget, Modeling the Martian dust cycle 2. Multiannual radiatively active dust transport simulations. J. Geophys. Res. 107(E12), 5124 (2002b). doi: 10.1029/2002JE001920 Google Scholar
  143. C.E. Newman, S.R. Lewis, P.L. Read, The atmospheric circulation and dust activity in different orbital epochs on Mars. Icarus 174, 135–160 (2005). doi: 10.1016/j.icarus.2004.10.023 ADSCrossRefGoogle Scholar
  144. A.H. Omar, D.M. Winker, M.A. Vaughan, Y. Hu, C.R. Trepte, R.A. Ferrare, K.-P. Lee, C.A. Hostetler, C. Kittaka, R. Rogers, R.E. Kuehn, Z. Liu, The CALIPSO automated aerosol classification and lidar ratio selection algorithm. J. Atmos. Ocean. Technol. 26, 1994–2014 (2009). doi: 10.1175/2009JTECHA1231.1 ADSCrossRefGoogle Scholar
  145. A.V. Pathare, M.R. Balme, S.M. Metzger, A. Spiga, M.C. Towner, N.O. Renno, F. Saca, Assessing the power law hypothesis for the size–frequency distribution of terrestrial and martian dust devils. Icarus 209, 851–853 (2010). doi: 10.1016/j.icarus2010.06.027 ADSCrossRefGoogle Scholar
  146. S. Peyridieu, A. Chédin, D. Tanré, V. Capelle, C. Pierangelo, N. Lamquin, R. Armante, Saharan dust infrared optical depth and altitude retrieved from AIRS: a focus over North Atlantic—comparison to MODIS and CALIPSO. Atmos. Chem. Phys. 10(4), 1953–1967 (2010). doi: 10.5194/acp-10-1953-2010 ADSCrossRefGoogle Scholar
  147. A. Petrosyan, B. Galperin, S.E. Larsen, S.R. Lewis, A. Määttänen, P.L. Read, N. Renno, L.P.H.T. Rogberg, H. Savijrvi, T. Siili, A. Spiga, A. Toigo, L. Vázquez, The Martian atmospheric boundary layer. Rev. Geophys. 49 (2011). doi: 10.1029/2010RG000351
  148. J.M.C. Plane, Cosmic dust in the Earth’s atmosphere. Chem. Soc. Rev. 41(19), 6507–6518 (2012). doi: 10.1039/C2CS35132C ADSCrossRefGoogle Scholar
  149. J.B. Pollack, D.S. Colburn, F.M. Flasar, R. Kahn, C.E. Carlston, D. Pidek, Properties and effects of dust particles suspended in the Martian atmosphere. J. Geophys. Res. 84 (1979). doi: 10.1029/JB084iB06p02929
  150. J.M. Prospero, P.J. Lamb, African droughts and dust transport to the Caribbean: climate change implications. Science 302, 1024–1027 (2003). doi: 10.1126/science.1089915 ADSCrossRefGoogle Scholar
  151. J.M. Prospero, P. Ginoux, O. Torres, S.E. Nicholson, T.E. Gill, Environmental characterization of global sources of atmospheric soil dust identified with the Nimbus 7 total ozone mapping spectrometer (TOMS) absorbing aerosol product. Rev. Geophys. 40(1), 1002 (2002). doi: 10.1029/2000RG000095 ADSCrossRefGoogle Scholar
  152. J.M. Prospero, J.E. Bullard, R. Hodgkins, High-latitude dust over the North Atlantic: inputs from Icelandic proglacial dust storms. Science 335, 1078–1082 (2012). doi: 10.1126/science.1217447 ADSCrossRefGoogle Scholar
  153. N. Putzig, M. Mellon, K. Kretke, R. Arvidson, Global thermal inertia and surface properties of Mars from the MGS mapping mission. Icarus 173(2), 325–341 (2005). doi: 10.1016/j.icarus.2004.08.017 ADSCrossRefGoogle Scholar
  154. S.C.R. Rafkin, The potential importance of non-local, deep transport on the energetics, momentum, chemistry, and aerosol distributions in the atmospheres of Earth, Mars, and Titan. Planet. Space Sci. 60, 147–154 (2012). doi: 10.1016/j.pss.2011.07.015 ADSCrossRefGoogle Scholar
  155. S.C.R. Rafkin, M.R.V.S. Maria, T.I. Michaels, Simulation of the atmospheric thermal circulation of a martian volcano using a mesoscale numerical model. Nature 419, 697–699 (2002). doi: 10.1038/nature01206 ADSCrossRefGoogle Scholar
  156. P.L. Read, S.R. Lewis, The Martian Climate Revisited: Atmosphere and Environment of a Desert Planet (Springer/Praxis Books, Berlin/New York, 2004) Google Scholar
  157. H.E. Redmond, K.D. Dial, J.E. Thompson, Light scattering and absorption by wind blown dust: theory, measurement, and recent data. Aeolian Res. 2(1), 5–26 (2010). doi: 10.1016/j.aeolia.2009.09.002 ADSCrossRefGoogle Scholar
  158. D. Reiss, D. Lüsebrink, H. Hiesinger, T. Kelling, G. Wurm, J. Teiser, High altitude dust devils on Arsia Mons: testing the greenhouse and thermophoresis hypothesis of dust lifting, in Lunar and Planetary Science Conference XL, the Woodlands, TX (2009) Abst. #1961 Google Scholar
  159. D. Reiss, J. Raack, A.P. Rossi, G. Di Achille, H. Hiesinger, First in-situ analysis of dust devil tracks on Earth and their comparison with tracks on Mars. Geophys. Res. Lett. 37, L14203 (2010). doi: 10.1029/2010GL044016 ADSGoogle Scholar
  160. D. Reiss, J. Raack, H. Hiesinger, Bright dust devil tracks on Earth: implications for their formation on Mars. Icarus 211, 917–920 (2011a). doi: 10.1016/j.icarus.2010.09.009 ADSCrossRefGoogle Scholar
  161. D. Reiss, M. Zanetti, G. Neukum, Multitemporal observations of identical active dust devils on Mars with the High Resolution Stereo Camera (HRSC) and Mars Orbiter Camera (MOC). Icarus 215, 358–369 (2011b). doi: 10.1016/j.icarus.2011.06.011 ADSCrossRefGoogle Scholar
  162. D. Reiss, M.I. Zimmerman, D.C. Lewellen, Formation of cycloidal dust devil tracks by redeposition of coarse sands in southern Peru: implications for Mars. Earth Planet. Sci. Lett. 383, 7–15 (2013). doi: 10.1016/j.epsl.2013.09.033 ADSCrossRefGoogle Scholar
  163. D. Reiss, A. Spiga, G. Erkeling, The horizontal motion of dust devils on Mars derived from CRISM and CTX/HiRISE observations. Icarus 227, 8–20 (2014a). doi: 10.1016/j.icarus.2013.08.028 ADSCrossRefGoogle Scholar
  164. D. Reiss, N.M. Hoekzema, O.J. Stenzel, Dust deflation by dust devils on Mars derived from optical depth measurements using the shadow method in HiRISE images. Planet. Space Sci. 93–94, 54–64 (2014b). doi: 10.1016/j.pss.2014.01.016 CrossRefGoogle Scholar
  165. L.A. Remer, R.G. Kleidman, R.C. Levy, Y.J. Kaufman, D. Tanré, S. Mattoo, J.V. Martins, C. Ichoku, I. Koren, H. Yu, B.N. Holben, Global aerosol climatology from the MODIS satellite sensors. J. Geophys. Res. 113, D14S07 (2008). doi: 10.1029/2007JD009661 ADSCrossRefGoogle Scholar
  166. N.O. Rennó, M.L. Burkett, M.P. Larkin, A simple thermodynamical theory for dust devils. J. Atmos. Sci. 55, 3244–3252 (1998). doi: 10.1175/1520-0469(1998)055<3244:ASTTFD>2.0.CO;2 ADSMathSciNetCrossRefGoogle Scholar
  167. N.O. Rennó, A.A. Nash, J. Lunine, J. Murphy, Martian and terrestrial dust devils: test of a scaling theory using Pathfinder data. J. Geophys. Res. 105, 1859–1865 (2000). doi: 10.1029/1999JE001037 ADSCrossRefGoogle Scholar
  168. N.O. Rennó, V.J. Abreu, J. Koch, P.H. Smith, O.K. Hartogensis, H.A.R. De Bruin, D. Burose, G.T. Delory, W.M. Farrell, C.J. Watts, J. Garatuza, M. Parker, A. Carswell, MATADOR 2002: a pilot field experiment on convective plumes and dust devils. J. Geophys. Res. 109 (2004). doi: 10.1029/2003JE002219
  169. T.J. Ringrose, M.C. Towner, J.C. Zarnecki, Convective vortices on Mars: a reanalysis of Viking Lander 2 meteorological data, sols 1–60. Icarus 163, 78–87 (2003). doi: 10.1016/S0019-1035(03)00073-3 ADSCrossRefGoogle Scholar
  170. A.P. Rossi, L. Marinangeli, The first terrestrial analogue to Martian dust devil tracks found in Ténéré Desert, Niger. Geophys. Res. Lett. 31, L06702 (2004). doi: 10.1029/2004GL019428 ADSCrossRefGoogle Scholar
  171. J.A. Ryan, Notes on the martian yellow clouds. J. Geophys. Res. 69(18), 3759–3770 (1964). doi: 10.1029/JZ069i018p03759 ADSCrossRefGoogle Scholar
  172. J.A. Ryan, J.J. Carroll, Dust devil wind velocities: mature state. J. Geophys. Res. 75, 531–541 (1970). doi: 10.1029/JC075i003p00531 ADSCrossRefGoogle Scholar
  173. J.A. Ryan, R.D. Lucich, Possible dust devils, vortices on Mars. J. Geophys. Res. 88(C15), 11005–11011 (1983). doi: 10.1029/JC088iC15p11005 ADSCrossRefGoogle Scholar
  174. K. Schepanski, I. Tegen, M.C. Todd, B. Heinold, G. Bonisch, B. Laurent, A. Macke, Meteorological processes forcing Saharan dust emission inferred from MSG-SEVIRI observations of subdaily dust source activation and numerical models. J. Geophys. Res. 114, D10201 (2009). doi: 10.1029/2008JD010325 ADSCrossRefGoogle Scholar
  175. A. Schnapf, TIROS: A Story of Achievement, AED P-5167A (Radio Corporation of America, Princeton, 1964), p. 37 Google Scholar
  176. P.C. Sinclair, Some preliminary dust devil measurements. Mon. Weather Rev. 92, 363–367 (1964). doi: 10.1126/science.27.693.594 ADSCrossRefGoogle Scholar
  177. P.C. Sinclair, On the rotation of dust devils. Bull. Am. Meteorol. Soc. 46, 388–391 (1965) Google Scholar
  178. P.C. Sinclair, General characteristics of dust devils. J. Appl. Meteorol. 8, 32–45 (1969). doi: 10.1175/1520-0450(1969)008<0032:GCODD>2.0.CO;2 ADSCrossRefGoogle Scholar
  179. P.C. Sinclair, The lower structure of dust devils. J. Atmos. Sci. 30, 1599–1619 (1973). doi: 10.1175/1520-0469(1973)030<1599:TLSODD>2.0.CO;2 ADSCrossRefGoogle Scholar
  180. A. Slingo, T.P. Ackerman, R.P. Allan, E.I. Kassianov, S.A. McFarlane, G.J. Robinson, J.C. Barnard, M.A. Miller, J.E. Harries, J.E. Russell, S. Dewitte, Observations of the impact of a major Saharan dust storm on the atmospheric radiation balance. Geophys. Res. Lett. 33, L24817 (2006). doi: 10.1029/2006GL027869 ADSCrossRefGoogle Scholar
  181. M.D. Smith, Interannual variability in TES atmospheric observations of Mars during 1999–2003. Icarus 167(1), 148–165 (2004). doi: 10.1016/j.icarus.2003.09.010 ADSCrossRefGoogle Scholar
  182. M.D. Smith, THEMIS observations of Mars aerosol optical depth from 2002–2008. Icarus 202, 444–452 (2009). doi: 10.1016/j.icarus.2009.03.027 ADSCrossRefGoogle Scholar
  183. P.H. Smith, M. Lemmon, Opacity of the Martian atmosphere measured by the Imager for Mars Pathfinder. J. Geophys. Res. 104, 8975 (1999). doi: 10.1029/1998JE900017 ADSCrossRefGoogle Scholar
  184. M.D. Smith, J.C. Pearl, B.J. Conrath, P.R. Christensen, Mars global surveyor thermal emission spectrometer (TES) observations of dust opacity during aerobraking and science phasing. J. Geophys. Res. 105, 9539–9552 (2000). doi: 10.1029/1999JE0010 ADSCrossRefGoogle Scholar
  185. D.E. Smith, M.T. Zuber, H.V. Frey, J.B. Garvin, J.W. Head, D.O. Muhleman, G.H. Pettengill, R.J. Phillips, S.C. Solomon, H.J. Zwally, W.B. Bannerdt, T.C. Duxbury, M.P. Golombek, F.g. Lemoine, G.A. Neumann, D.D. Rowlands, O. Aharonson, P.G. Ford, A.B. Ivanov, C.L. Johnson, P.J. McGovern, J.B. Abshire, R.S. Afzal, X. Sun, Mars orbiter laser altimeter: experiment summary after the first year of global mapping of Mars. J. Geophys. Res. 106, 23689–23722 (2001a). doi: 10.1029/2000JE001364 ADSCrossRefGoogle Scholar
  186. M.D. Smith, J.C. Pearl, B.J. Conrath, P.R. Christensen, One Martian year of atmospheric observations by the thermal emission spectrometer. Geophys. Res. Lett. 28, 4263–4266 (2001b). doi: 10.1029/2001GL013608 ADSCrossRefGoogle Scholar
  187. M.D. Smith, M.J. Wolff, M.T. Lemmon, N. Spanovich, D. Banfield, C.J. Budney, R.T. Clancy, A. Ghosh, G.A. Landis, P. Smith, B. Whitney, P.R. Christensen, S.W. Squyres, First atmospheric science results from the Mars exploration rovers Mini-TES. Science 306, 1750–1753 (2004). doi: 10.1126/science.1104257 ADSCrossRefGoogle Scholar
  188. M.D. Smith, M.J. Wolff, R.T. Clancy, A. Kleinböhl, S.L. Murchie, Vertical distribution of dust and water ice aerosols from CRISM limb-geometry observations. J. Geophys. Res. 118, 321–334 (2013). doi: 10.1002/jgre.20047 CrossRefGoogle Scholar
  189. J.T. Snow, T.M. McClelland, Dust devils at White Sands Missile Range, New Mexico 1. Temporal and spatial distributions. J. Geophys. Res. 95, 13707–13721 (1990). doi: 10.1029/JD095iD09p13707 ADSCrossRefGoogle Scholar
  190. C.W. Snyder, V.I. Moroz, Spacecraft exploration of Mars, in Mars, ed. by H.H. Kieffer, B.M. Jakosky, C.W. Snyder, M.S. Matthews (University of Arizona Press, Tucson, 1992), pp. 71–119 Google Scholar
  191. A. Spiga, F. Forget, A new model to simulate the Martian mesoscale and microscale atmospheric circulation: validation and first results. J. Geophys. Res. 114 (2009). doi: 10.1029/2008je003242
  192. A. Spiga, F. Forget, S.R. Lewis, D.P. Hinson, Structure and dynamics of the convective boundary layer on mars as inferred from large-eddy simulations and remote-sensing measurements. Q. J. R. Meteorol. Soc. 136, 414–428 (2010). doi: 10.1002/qj.563 ADSCrossRefGoogle Scholar
  193. A. Spiga, S.R. Lewis, Martian mesoscale and microscale wind variability of relevance for dust lifting. Mars 5, 146–158 (2010). doi: 10.1555/mars.2010.0006 ADSCrossRefGoogle Scholar
  194. J.D. Spinhirne, S.P. Palm, W.D. Hart, D.L. Hlavka, E.J. Welton, Cloud and aerosol measurements from GLAS: overview an initial results. Geophys. Res. Lett. 32 (2005). doi: 10.1029/2005GL023507
  195. C. Stanzel, M. Pätzold, R. Greeley, E. Hauber, G. Neukum, Dust devils on Mars observed by the high resolution stereo camera. Geophys. Res. Lett. 33, L11202 (2006). doi: 10.1029/2006GL025816 ADSCrossRefGoogle Scholar
  196. C. Stanzel, Studying martian dust devils by applying pattern recognition algorithms to multi-mission camera images. PhD thesis, University of Cologne (2007). 158 pp. Google Scholar
  197. C. Stanzel, M. Pätzold, D.A. Williams, P.L. Whelley, R. Greeley, G. Neukum, The HRSC Co-Investigator Team, Dust devil speeds, directions of motion and general characteristics observed by the Mars express high resolution stereo camera. Icarus 197, 39–51 (2008). doi: 10.1016/j.icarus2008.04.017 ADSCrossRefGoogle Scholar
  198. L.J. Steele, S.R. Lewis, M.R. Patel, The radiative impact of water ice clouds from a reanalysis of Mars climate sounder data. Geophys. Res. Lett. 41, 4471–4478 (2014a). doi: 10.1002/2014GL060235 ADSCrossRefGoogle Scholar
  199. L.J. Steele, S.R. Lewis, M.R. Patel, F. Montmessin, F. Forget, M.D. Smith, The seasonal cycle of water vapour on Mars from assimilation of thermal emission spectrometer data. Icarus 237, 97–115 (2014b). doi: 10.1016/j.icarus.2014.04.017 ADSCrossRefGoogle Scholar
  200. M.J. Strausberg, H. Wang, M.I. Richardson, S.P. Ewald, A.D. Toigo, Observations of the initiation and evolution of the 2001 Mars global dust storm. J. Geophys. Res. 110, E02006 (2005). doi: 10.1029/2004JE002361 ADSCrossRefGoogle Scholar
  201. R. Swap, S. Ulanski, M. Cobbett, M. Garstang, Temporal and spatial characteristics of Saharan dust outbreaks. J. Geophys. Res. 101(D2), 4205–4220 (1996). doi: 10.1029/95JD03236 ADSCrossRefGoogle Scholar
  202. D. Tanré, F.M. Bréon, J.L. Deuzé, O. Dubovik, F. Ducos, P. François, P. Goloub, M. Herman, A. Lifermann, F. Waquet, Remote sensing of aerosols by using polarized, directional and spectral measurements within the A-Train: the PARASOL mission. Atmos. Meas. Tech. 4, 1383–1395 (2011). doi: 10.5194/amt-4-1383-2011 CrossRefGoogle Scholar
  203. P. Thomas, P.J. Gierasch, Dust devils on Mars. Science 230, 175–177 (1985). doi: 10.1126/science.230.4722.175 ADSCrossRefGoogle Scholar
  204. O. Torres, P.K. Bhartia, J.R. Herman, Z. Ahmad, Derivation of aerosol properties from satellite measurements of backscattered ultraviolet radiation: theoretical basis. J. Geophys. Res. 103, 17099–17110 (1998). doi: 10.1029/98JD00900 ADSCrossRefGoogle Scholar
  205. M.C. Towner, Characteristics of large Martian dust devils using Mars Odyssey Thermal Emission Imaging System visual and infrared images. J. Geophys. Res. 114, E02010 (2009). doi: 10.1029/2008JE003220 ADSCrossRefGoogle Scholar
  206. D.M. Tratt, M.H. Hecht, D.C. Catling, E.C. Samulon, P.H. Smith, In situ measurement of dust devil dynamics: toward a strategy for Mars. J. Geophys. Res. 108 (2003). doi: 10.1029/2003JE002161
  207. United States, Catalogue of meteorological satellite data – TIROS VI television cloud photography. Key to Meteorological Records Documentation No. 5(36), (1964) 400 pp. Google Scholar
  208. P. Vallelonga, A. Svensson, Ice core archives of mineral dust, in Mineral Dust: A Key Player in the Earth System, ed. by P. Knippertz, J.-B.W. Stuut (Springer, Dordrecht, 2014), p. 463. doi: 10.1007/978-94-017-8978-3 Google Scholar
  209. H. Wang, M.I. Richardson, R.J. Wilson, A.P. Ingersoll, A.D. Toigo, R.W. Zurek, Cyclones, tides, and the origin of a cross-equatorial dust storm on Mars. Geophys. Res. Lett. 30 (2003). doi: 10.1029/2002GL016828
  210. H. Wang, Dust storms originating in the northern hemisphere during the third mapping year of Mars Global Surveyor. Icarus 189, 325–343 (2007). doi: 10.1016/j.icarus.2007.01.014 ADSCrossRefGoogle Scholar
  211. H. Wang, J.A. Fisher, North polar frontal clouds and dust storms on Mars during spring and summer. Icarus 204, 103–113 (2009). doi: 10.1016/j.icarus.2009.05.028 ADSCrossRefGoogle Scholar
  212. H. Wang, M.I. Richardson, The origin, evolution, and trajectory of large dust storms on Mars during Mars years 24–30 (1999–2011). Icarus 251, 112–127 (2015). doi: 10.1016/j.icarus.2013.10.033 ADSCrossRefGoogle Scholar
  213. A. Wennmacher, F.M. Neubauer, M. Pätzold, J. Schmitt, K. Schulte, A search for dust devils on Mars, in Lunar Planet. Sci. Conf. XXVII, League City, TX (1996). Abst. #1417 Google Scholar
  214. P.L. Whelley, R. Greeley, The distribution of dust devil activity on Mars. J. Geophys. Res. 113, E7 (2008). doi: 10.1029/2007JE002966 CrossRefGoogle Scholar
  215. N.R. Williams, Development of dust whirls and similar small-scale vortices. Bull. Am. Meteorol. Soc. 29, 106–117 (1948) Google Scholar
  216. G.E. Willis, J.W. Deardorff, Laboratory observations of turbulent penetrative convection planforms. J. Geophys. Res. 84, 295–302 (1979). doi: 10.1029/JC084iC01p00295 ADSCrossRefGoogle Scholar
  217. R.J. Wilson, S.R. Lewis, L. Montabone, M.D. Smith, Influence of water ice clouds on Martian tropical atmospheric temperatures. Geophys. Res. Lett. 35 (2008). doi: 10.1029/2007GL032405
  218. G. Winckler, R.F. Anderson, D. McGee, M.Q. Fleisher, N. Mahowald, Half a million years of coherent dust flux variations in the tropical Pacific and Antarctica, in 8th Annual V.M. Goldschmidt Conference (Pergamon–Elsevier, Vancouver, 2008) pp. A1026 Google Scholar
  219. D.M. Winker, J. Pelon, J.A. Coakley Jr., S.A. Ackerman, R.J. Charlson, P.R. Colarco, P. Flamant, Q. Fu, R.M. Hoff, C. Kittaka, T.L. Kubar, H. Le Treut, M.P. McCormick, G. Mégie, L. Poole, K. Powell, C. Trepte, M.A. Vaughan, B.A. Wielicki, The CALIPSO mission: a global 3D view of aerosols and clouds. Bull. Am. Meteorol. Soc. 91, 1211–1229 (2010). doi: 10.1175/2010BAMS3009.1 ADSCrossRefGoogle Scholar
  220. M.J. Wolff, M.D. Smith, R.T. Clancy, R. Arvidson, M. Kahre, F. Seelos, S. Murchie, H. Savijärvi, Wavelength dependence of dust aerosol single scattering albedo as observed by the Compact Reconnaissance Imaging Spectrometer. J. Geophys. Res. 114, E00D04 (2009). doi: 10.1029/2009JE003350 ADSCrossRefGoogle Scholar
  221. S. Wong, A.E. Dessler, N.M. Mahowald, P. Yang, Q. Feng, Maintenance of lower tropospheric temperature inversion in the Saharan Air Layer by dust and dry anomaly. J. Climate 22(19), 5149–5162 (2009). doi: 10.1175/2009JCLI2847.1 ADSCrossRefGoogle Scholar
  222. F. Yang, P.A. Mlsna, P. Geissler, Gaussian-based filters for detecting martian dust devils, in 2006 IEEE Southwest Symp. Image Anal. Interpret., pp. 46–50 (2006). doi: 10.1109/SSIAI.2006.1633719 CrossRefGoogle Scholar
  223. H. Yu, M. Chin, T. Yuan, H. Bian, L.A. Remer, J.M. Prospero, A. Omar, D. Winker, Y. Yang, Y. Zhang, Z. Zhang, C. Zhao, The fertilizing role of African dust in the Amazon rainforest: a first multiyear assessment based on data from Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations. Geophys. Res. Lett. 42 (2015). doi: 10.1002/2015GL063040
  224. M.T. Zuber, D.E. Smith, S.C. Solomon, D.O. Muhleman, J.W. Head, J.B. Garvin, J.B. Abshire, J.L. Bufton, The Mars observer laser altimeter investigation. J. Geophys. Res. 97(E5), 7781–7797 (1992). doi: 10.1029/92JE00341 ADSCrossRefGoogle Scholar
  225. L. Zasova, V. Formisano, N. Moroz, D. Grassi, N. Ignatiev, M. Giuranna, G. Hansen, M. Blecka, A. Ekonomov, E. Lellouch, S. Fonti, A. Grigoriev, H. Hirsch, I. Khatuntsev, A. Mattana, A. Maturilli, A. Moshkin, D. Patsaev, G. Piccioni, M. Rataj, B. Saggin, Water clouds and dust aerosols observations with PFS MEX at Mars. Planet. Space Sci. 53, 1065–1077 (2005). doi: 10.1016/j.pss.2004.12.010 ADSCrossRefGoogle Scholar
  226. A. Zhu, V. Ramanathan, F. Li, D. Kim, Dust plumes over the Pacific, Indian, and Atlantic oceans: climatology and radiative impact. J. Geophys. Res. 112, D16208 (2007). doi: 10.1029/2007JD008427 ADSCrossRefGoogle Scholar
  227. R.W. Zurek, J.R. Barnes, R.M. Haberle, J.B. Pollack, J.E. Tillman, C.B. Leovy, Dynamics of the atmosphere of Mars, in Mars, ed. by H.H. Kieffer, B.M. Jakosky, C.W. Snyder, M.S. Matthews (University of Arizona Press, Tucson, 1992), pp. 835–933 Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Lori Fenton
    • 1
    Email author
  • Dennis Reiss
    • 2
  • Mark Lemmon
    • 3
  • Béatrice Marticorena
    • 4
  • Stephen Lewis
    • 5
  • Bruce Cantor
    • 6
  1. 1.SETI InstituteMountain ViewUSA
  2. 2.Institut für PlanetologieWWU MünsterMünsterGermany
  3. 3.Texas A&M UniversityCollege StationUSA
  4. 4.Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA)CréteilFrance
  5. 5.The Open UniversityMilton KeynesUK
  6. 6.Malin Space Science SystemsSan DiegoUSA

Personalised recommendations