Space Science Reviews

, Volume 200, Issue 1–4, pp 75–203 | Cite as

Magnetohydrodynamic Oscillations in the Solar Corona and Earth’s Magnetosphere: Towards Consolidated Understanding

  • V. M. Nakariakov
  • V. Pilipenko
  • B. Heilig
  • P. Jelínek
  • M. Karlický
  • D. Y. Klimushkin
  • D. Y. Kolotkov
  • D.-H. Lee
  • G. Nisticò
  • T. Van Doorsselaere
  • G. Verth
  • I. V. Zimovets


Magnetohydrodynamic (MHD) oscillatory processes in different plasma systems, such as the corona of the Sun and the Earth’s magnetosphere, show interesting similarities and differences, which so far received little attention and remain under-exploited. The successful commissioning within the past ten years of THEMIS, Hinode, STEREO and SDO spacecraft, in combination with matured analysis of data from earlier spacecraft (Wind, SOHO, ACE, Cluster, TRACE and RHESSI) makes it very timely to survey the breadth of observations giving evidence for MHD oscillatory processes in solar and space plasmas, and state-of-the-art theoretical modelling. The paper reviews several important topics, such as Alfvénic resonances and mode conversion; MHD waveguides, such as the magnetotail, coronal loops, coronal streamers; mechanisms for periodicities produced in energy releases during substorms and solar flares, possibility of Alfvénic resonators along open field lines; possible drivers of MHD waves; diagnostics of plasmas with MHD waves; interaction of MHD waves with partly-ionised boundaries (ionosphere and chromosphere). The review is mainly oriented to specialists in magnetospheric physics and solar physics, but not familiar with specifics of the adjacent research fields.


Magnetohydrodynamic waves (e.g., Alfvén waves) MHD waves, plasma waves, and instabilities Magnetic pulsations Corona Solar activity Flares 



This review is based upon the activities of the international science team “MHD oscillations in the solar corona and Earth’s magnetosphere: towards consolidated understanding” supported by the International Space Science Institute, Bern, Switzerland. The authors would like to thank Dr N. Nishitani and Dr A. Yoshikawa for the valuable discussions. The authors acknowledge the support by the STFC Warwick Astrophysics Consolidated Grant ST/L000733/1 (VMN, GN); the European Research Council under the SeismoSun Research Project No. 321141 (VMN), BK21 plus program through the National Research Foundation funded by the Ministry of Education of Korea (DHL, VMN); the Leverhulme Trust (GV); the János Bolyai Research Scholarship of the Hungarian Academy of Sciences (BH); grant P209/12/0103 and 16-13277S (GA CR) (MK, PJ); an Odysseus grant of the FWO Vlaanderen, the IAP P7/08 CHARM (Belspo) and the GOA-2015-014 (KU Leuven) (TVD); Program No 9 of the Presidium of the Russian Academy of Sciences (DYK).


  1. V.E. Abramov-Maximov, V.I. Efremov, L.D. Parfinenko, A.A. Solov’ev, K. Shibasaki, Long-term oscillations of sunspots from simultaneous observations with the Nobeyama radioheliograph and solar dynamics observatory. Publ. Astron. Soc. Jpn. 65, 12 (2013). doi: 10.1093/pasj/65.sp1.S12 ADSCrossRefGoogle Scholar
  2. A.N. Afanasyev, V.M. Nakariakov, Nonlinear slow magnetoacoustic waves in coronal plasma structures. Astron. Astrophys. 573, 32 (2015). doi: 10.1051/0004-6361/201424516 ADSCrossRefGoogle Scholar
  3. A.N. Afanasyev, A.M. Uralov, Coronal shock waves, EUV waves, and their relation to CMEs. II. Modeling MHD shock wave propagation along the solar surface, using nonlinear geometrical acoustics. Sol. Phys. 273, 479–491 (2011). doi: 10.1007/s11207-011-9730-9 ADSCrossRefGoogle Scholar
  4. H. Alfvén, Existence of electromagnetic-hydrodynamic waves. Nature 150, 405–406 (1942). doi: 10.1038/150405d0 ADSCrossRefGoogle Scholar
  5. L.S. Alperovich, E.N. Fedorov (eds.), in Hydromagnetic Waves in the Magnetosphere and the Ionosphere. Astrophysics and Space Science Library, vol. 353 (2007) CrossRefGoogle Scholar
  6. J. Andries, T. van Doorsselaere, B. Roberts, G. Verth, E. Verwichte, R. Erdélyi, Coronal seismology by means of kink oscillation overtones. Space Sci. Rev. 149, 3–29 (2009). doi: 10.1007/s11214-009-9561-2 ADSCrossRefGoogle Scholar
  7. S. Anfinogentov, G. Nisticò, V.M. Nakariakov, Decay-less kink oscillations in coronal loops. Astron. Astrophys. 560, 107 (2013). doi: 10.1051/0004-6361/201322094 ADSCrossRefGoogle Scholar
  8. P. Antolin, T. Van Doorsselaere, Line-of-sight geometrical and instrumental resolution effects on intensity perturbations by sausage modes. Astron. Astrophys. 555, 74 (2013). doi: 10.1051/0004-6361/201220784 ADSCrossRefGoogle Scholar
  9. P. Antolin, T. Yokoyama, T. Van Doorsselaere, Fine strand-like structure in the solar corona from magnetohydrodynamic transverse oscillations. Astrophys. J. Lett. 787, 22 (2014). doi: 10.1088/2041-8205/787/2/L22 ADSCrossRefGoogle Scholar
  10. I. Arregui, Wave heating of the solar atmosphere. Philos. Trans. R. Soc. Lond. Ser. A 373, 40261 (2015). doi: 10.1098/rsta.2014.0261 ADSCrossRefGoogle Scholar
  11. I. Arregui, J. Andries, T. Van Doorsselaere, M. Goossens, S. Poedts, MHD seismology of coronal loops using the period and damping of quasi-mode kink oscillations. Astron. Astrophys. 463, 333–338 (2007). doi: 10.1051/0004-6361:20065863 ADSCrossRefGoogle Scholar
  12. A. Artemyev, I. Zimovets, Stability of current sheets in the solar corona. Sol. Phys. 277, 283–298 (2012). doi: 10.1007/s11207-011-9908-1 ADSCrossRefGoogle Scholar
  13. A. Asai, T.T. Ishii, H. Isobe, R. Kitai, K. Ichimoto, S. UeNo, S. Nagata, S. Morita, K. Nishida, D. Shiota, A. Oi, M. Akioka, K. Shibata, First simultaneous observation of an \(\mbox{H}{\alpha}\) Moreton wave, EUV wave, and filament/prominence oscillations. Astrophys. J. Lett. 745, 18 (2012). doi: 10.1088/2041-8205/745/2/L18 ADSCrossRefGoogle Scholar
  14. M.J. Aschwanden, Theory of radio pulsations in coronal loops. Sol. Phys. 111, 113–136 (1987). doi: 10.1007/BF00145445 ADSCrossRefGoogle Scholar
  15. M.J. Aschwanden, L. Fletcher, C.J. Schrijver, D. Alexander, Coronal loop oscillations observed with the transition region and coronal explorer. Astrophys. J. 520, 880–894 (1999). doi: 10.1086/307502 ADSCrossRefGoogle Scholar
  16. G.D.R. Attrill, L.K. Harra, L. van Driel-Gesztelyi, P. Démoulin, Coronal “Wave”: magnetic footprint of a coronal mass ejection? Astrophys. J. Lett. 656, 101–104 (2007). doi: 10.1086/512854 ADSCrossRefGoogle Scholar
  17. G. Aulanier, M. Janvier, B. Schmieder, The standard flare model in three dimensions. I. Strong-to-weak shear transition in post-flare loops. Astron. Astrophys. 543, 110 (2012). doi: 10.1051/0004-6361/201219311 ADSCrossRefGoogle Scholar
  18. L.J. Baddeley, T.K. Yeoman, D.M. Wright, J.A. Davies, K.J. Trattner, J.L. Roeder, Morning sector drift-bounce resonance driven ULF waves observed in artificially-induced HF radar backscatter. Ann. Geophys. 20, 1487–1498 (2002). doi: 10.5194/angeo-20-1487-2002 ADSCrossRefGoogle Scholar
  19. D. Banerjee, E. O’Shea, J.G. Doyle, M. Goossens, Long period oscillations in the inter-plume regions of the Sun. Astron. Astrophys. 377, 691–700 (2001). doi: 10.1051/0004-6361:20011153 ADSCrossRefGoogle Scholar
  20. D. Banerjee, G.R. Gupta, L. Teriaca, Propagating MHD waves in coronal holes. Space Sci. Rev. 158, 267–288 (2011). doi: 10.1007/s11214-010-9698-z ADSCrossRefGoogle Scholar
  21. M. Bárta, J. Büchner, M. Karlický, J. Skála, Spontaneous current-layer fragmentation and cascading reconnection in solar flares. I. Model and analysis. Astrophys. J. 737, 24 (2011). doi: 10.1088/0004-637X/737/1/24 ADSCrossRefGoogle Scholar
  22. T.M. Bauer, W. Baumjohann, R.A. Treumann, N. Sckopke, H. Lühr, Low-frequency waves in the near-Earth plasma sheet. J. Geophys. Res. 100, 9605–9618 (1995). doi: 10.1029/95JA00136 ADSCrossRefGoogle Scholar
  23. A.J.C. Beliën, P.C.H. Martens, R. Keppens, Coronal heating by resonant absorption: the effects of chromospheric coupling. Astrophys. J. 526, 478–493 (1999). doi: 10.1086/307980 ADSCrossRefGoogle Scholar
  24. A.O. Benz, Flare observations. Living Rev. Sol. Phys. 5, 1 (2008). doi: 10.12942/lrsp-2008-1 ADSCrossRefGoogle Scholar
  25. D. Berghmans, F. Clette, Active region EUV transient brightenings—first results by EIT of SOHO JOP80. Sol. Phys. 186, 207–229 (1999). doi: 10.1023/A:1005189508371 ADSCrossRefGoogle Scholar
  26. D. Berghmans, P. de Bruyne, Coronal loop oscillations driven by footpoint motions: analytical results for a model problem. Astrophys. J. 453, 495 (1995). doi: 10.1086/176410 ADSCrossRefGoogle Scholar
  27. D.A. Biesecker, D.C. Myers, B.J. Thompson, D.M. Hammer, A. Vourlidas, Solar phenomena associated with “EIT Waves”. Astrophys. J. 569, 1009–1015 (2002). doi: 10.1086/339402 ADSCrossRefGoogle Scholar
  28. D.L. Book, NRL Plasma Formulary (Naval Research Lab., Washington, 1983) Google Scholar
  29. J.E. Borovsky, Auroral arc thicknesses as predicted by various theories. J. Geophys. Res. 98, 6101–6138 (1993). doi: 10.1029/92JA02242 ADSCrossRefGoogle Scholar
  30. G.J.J. Botha, T.D. Arber, V.M. Nakariakov, Y.D. Zhugzhda, Chromospheric resonances above sunspot umbrae. Astrophys. J. 728, 84 (2011). doi: 10.1088/0004-637X/728/2/84 ADSCrossRefGoogle Scholar
  31. C.S. Brady, E. Verwichte, T.D. Arber, Leakage of waves from coronal loops by wave tunneling. Astron. Astrophys. 449, 389–399 (2006). doi: 10.1051/0004-6361:20054097 ADSCrossRefGoogle Scholar
  32. R. Bruno, V. Carbone, The solar wind as a turbulence laboratory. Living Rev. Sol. Phys. 10, 2 (2013). doi: 10.12942/lrsp-2013-2 ADSCrossRefGoogle Scholar
  33. P.S. Cally, Leaky and non-leaky oscillations in magnetic flux tubes. Sol. Phys. 103, 277–298 (1986). doi: 10.1007/BF00147830 ADSCrossRefGoogle Scholar
  34. K. Chandrashekhar, R.J. Morton, D. Banerjee, G.R. Gupta, The dynamical behaviour of a jet in an on-disk coronal hole observed with AIA/SDO. Astron. Astrophys. 562, 98 (2014). doi: 10.1051/0004-6361/201322408 ADSCrossRefGoogle Scholar
  35. C.C. Chaston, J.W. Bonnell, L.M. Peticolas, C.W. Carlson, J.P. McFadden, R.E. Ergun, Driven Alfvén waves and electron acceleration: a FAST case study. Geophys. Res. Lett. 29, 1535 (2002a). doi: 10.1029/2001GL013842 ADSCrossRefGoogle Scholar
  36. C.C. Chaston, J.W. Bonnell, C.W. Carlson, M. Berthomier, L.M. Peticolas, I. Roth, J.P. McFadden, R.E. Ergun, R.J. Strangeway, Electron acceleration in the ionospheric Alfvén resonator. J. Geophys. Res. Space Phys. 107, 1413 (2002b). doi: 10.1029/2002JA009272 ADSCrossRefGoogle Scholar
  37. P.F. Chen, The relation between EIT waves and solar flares. Astrophys. J. Lett. 641, 153–156 (2006). doi: 10.1086/503868 ADSCrossRefGoogle Scholar
  38. P.F. Chen, Coronal mass ejections: models and their observational basis. Living Rev. Sol. Phys. 8, 1 (2011). doi: 10.12942/lrsp-2011-1 ADSCrossRefGoogle Scholar
  39. L. Chen, A. Hasegawa, A theory of long-period magnetic pulsations: 1. Steady state excitation of field line resonance. J. Geophys. Res. 79, 1024–1032 (1974). doi: 10.1029/JA079i007p01024 ADSCrossRefGoogle Scholar
  40. P.F. Chen, E.R. Priest, Transition-region explosive events: reconnection modulated by p-mode waves. Sol. Phys. 238, 313–327 (2006). doi: 10.1007/s11207-006-0215-1 ADSCrossRefGoogle Scholar
  41. P.F. Chen, Y. Wu, First evidence of coexisting EIT wave and coronal Moreton wave from SDO/AIA observations. Astrophys. J. Lett. 732, 20 (2011). doi: 10.1088/2041-8205/732/2/L20 ADSCrossRefGoogle Scholar
  42. P.F. Chen, S.T. Wu, K. Shibata, C. Fang, Evidence of EIT and Moreton waves in numerical simulations. Astrophys. J. Lett. 572, 99–102 (2002). doi: 10.1086/341486 ADSCrossRefGoogle Scholar
  43. P.F. Chen, C. Fang, K. Shibata, A full view of EIT waves. Astrophys. J. 622, 1202–1210 (2005). doi: 10.1086/428084 ADSCrossRefGoogle Scholar
  44. Y. Chen, H.Q. Song, B. Li, L.D. Xia, Z. Wu, H. Fu, X. Li, Streamer waves driven by coronal mass ejections. Astrophys. J. 714, 644–651 (2010). doi: 10.1088/0004-637X/714/1/644 ADSCrossRefGoogle Scholar
  45. C.Z. Cheng, C.S. Lin, Eigenmode analysis of compressional waves in the magnetosphere. Geophys. Res. Lett. 14, 884–887 (1987). doi: 10.1029/GL014i008p00884 ADSCrossRefGoogle Scholar
  46. C.Z. Cheng, Q. Qian, Theory of ballooning-mirror instabilities for anisotropic pressure plasmas in the magnetosphere. J. Geophys. Res. 99, 11193–11210 (1994). doi: 10.1029/94JA00657 ADSCrossRefGoogle Scholar
  47. J.W. Cirtain, L. Golub, L. Lundquist, A. van Ballegooijen, A. Savcheva, M. Shimojo, E. DeLuca, S. Tsuneta, T. Sakao, K. Reeves, M. Weber, R. Kano, N. Narukage, K. Shibasaki, Evidence for Alfvén waves in solar X-ray jets. Science 318, 1580 (2007). doi: 10.1126/science.1147050 ADSCrossRefGoogle Scholar
  48. S.G. Claudepierre, S.R. Elkington, M. Wiltberger, Solar wind driving of magnetospheric ULF waves: pulsations driven by velocity shear at the magnetopause. J. Geophys. Res. Space Phys. 113, 5218 (2008). doi: 10.1029/2007JA012890 ADSCrossRefGoogle Scholar
  49. F.C. Cooper, V.M. Nakariakov, D. Tsiklauri, Line-of-sight effects on observability of kink and sausage modes in coronal structures with imaging telescopes. Astron. Astrophys. 397, 765–770 (2003a). doi: 10.1051/0004-6361:20021556 ADSCrossRefGoogle Scholar
  50. F.C. Cooper, V.M. Nakariakov, D.R. Williams, Short period fast waves in solar coronal loops. Astron. Astrophys. 409, 325–330 (2003b). doi: 10.1051/0004-6361:20031071 ADSCrossRefGoogle Scholar
  51. S.W.H. Cowley, M. Ashour-Abdalla, Adiabatic plasma convection in a dipole field: proton forbidden-zone effects for a simple electric field model. Planet. Space Sci. 24, 821–833 (1976). doi: 10.1016/0032-0633(76)90072-6 ADSCrossRefGoogle Scholar
  52. C. Crabtree, L. Chen, Finite gyroradius theory of drift compressional modes. Geophys. Res. Lett. 31, 17804 (2004). doi: 10.1029/2004GL020660 ADSCrossRefGoogle Scholar
  53. R. Cramm, K.-H. Glassmeier, M. Stellmacher, C. Othmer, Evidence for resonant mode coupling in Saturn’s magnetosphere. J. Geophys. Res. 103, 11951–11960 (1998). doi: 10.1029/98JA00629 ADSCrossRefGoogle Scholar
  54. S.R. Cranmer, Coronal holes and the high-speed solar wind. Space Sci. Rev. 101, 229–294 (2002) ADSCrossRefGoogle Scholar
  55. S.R. Cranmer, A.A. van Ballegooijen, On the generation, propagation, and reflection of Alfvén waves from the solar photosphere to the distant heliosphere. Astrophys. J. Suppl. 156, 265–293 (2005). doi: 10.1086/426507 ADSCrossRefGoogle Scholar
  56. J.M. Davila, Heating of the solar corona by the resonant absorption of Alfvén waves. Astrophys. J. 317, 514–521 (1987). doi: 10.1086/165295 ADSCrossRefGoogle Scholar
  57. I. De Moortel, Longitudinal waves in coronal loops. Space Sci. Rev. 149, 65–81 (2009). doi: 10.1007/s11214-009-9526-5 ADSCrossRefGoogle Scholar
  58. I. De Moortel, A.W. Hood, The damping of slow MHD waves in solar coronal magnetic fields. Astron. Astrophys. 408, 755–765 (2003). doi: 10.1051/0004-6361:20030984 ADSCrossRefGoogle Scholar
  59. I. De Moortel, A.W. Hood, The damping of slow MHD waves in solar coronal magnetic fields. II. The effect of gravitational stratification and field line divergence. Astron. Astrophys. 415, 705–715 (2004). doi: 10.1051/0004-6361:20034233 ADSCrossRefGoogle Scholar
  60. I. De Moortel, V.M. Nakariakov, Magnetohydrodynamic waves and coronal seismology: an overview of recent results. Philos. Trans. R. Soc. Lond. Ser. A 370, 3193–3216 (2012). doi: 10.1098/rsta.2011.0640 ADSCrossRefGoogle Scholar
  61. I. De Moortel, D.J. Pascoe, The effects of line-of-sight integration on multistrand coronal loop oscillations. Astrophys. J. 746, 31 (2012). doi: 10.1088/0004-637X/746/1/31 ADSCrossRefGoogle Scholar
  62. I. De Moortel, J. Ireland, R.W. Walsh, A.W. Hood, Longitudinal intensity oscillations in coronal loops observed with TRACE I. Overview of measured parameters. Sol. Phys. 209, 61–88 (2002). doi: 10.1023/A:1020956421063 ADSCrossRefGoogle Scholar
  63. B. de Pontieu, G. Haerendel, Weakly damped Alfvén waves as drivers for spicules. Astron. Astrophys. 338, 729–736 (1998) ADSGoogle Scholar
  64. B. De Pontieu, P.C.H. Martens, H.S. Hudson, Chromospheric damping of Alfvén waves. Astrophys. J. 558, 859–871 (2001). doi: 10.1086/322408 ADSCrossRefGoogle Scholar
  65. B. De Pontieu, R. Erdélyi, I. De Moortel, How to channel photospheric oscillations into the corona. Astrophys. J. Lett. 624, 61–64 (2005). doi: 10.1086/430345 ADSCrossRefGoogle Scholar
  66. C.E. DeForest, J.B. Gurman, Observation of quasi-periodic compressive waves in solar polar plumes. Astrophys. J. Lett. 501, 217–220 (1998). doi: 10.1086/311460 ADSCrossRefGoogle Scholar
  67. C. Delannée, G. Aulanier, CME associated with transequatorial loops and a bald patch flare. Sol. Phys. 190, 107–129 (1999). doi: 10.1023/A:1005249416605 ADSCrossRefGoogle Scholar
  68. A.G. Demekhov, V.Y. Trakhtengerts, T. Bösinger, Pc 1 waves and ionospheric Alfvén resonator: generation or filtration? Geophys. Res. Lett. 27, 3805–3808 (2000). doi: 10.1029/2000GL000126 ADSCrossRefGoogle Scholar
  69. R.E. Denton, Compressibility of the poloidal mode. J. Geophys. Res. 103, 4755–4760 (1998). doi: 10.1029/97JA02652 ADSCrossRefGoogle Scholar
  70. J. Du, T.L. Zhang, R. Nakamura, C. Wang, W. Baumjohann, A.M. Du, M. Volwerk, K.-H. Glassmeier, J.P. McFadden, Mode conversion between Alfvén and slow waves observed in the magnetotail by THEMIS. Geophys. Res. Lett. 38, 7101 (2011). doi: 10.1029/2011GL046989 ADSCrossRefGoogle Scholar
  71. J.W. Dungey, D.J. Southwood, Ultra low frequency waves in the magnetosphere. Space Sci. Rev. 10, 672–688 (1970). doi: 10.1007/BF00171551 ADSCrossRefGoogle Scholar
  72. M.M. Echim, J.F. Lemaire, Laboratory and numerical simulations of the impulsive penetration mechanism. Space Sci. Rev. 92, 565–601 (2000) ADSCrossRefGoogle Scholar
  73. P.M. Edwin, B. Roberts, Wave propagation in a magnetically structured atmosphere. III. The slab in a magnetic environment. Sol. Phys. 76, 239–259 (1982). doi: 10.1007/BF00170986 ADSCrossRefGoogle Scholar
  74. P.M. Edwin, B. Roberts, Wave propagation in a magnetic cylinder. Sol. Phys. 88, 179–191 (1983). doi: 10.1007/BF00196186 ADSCrossRefGoogle Scholar
  75. R. Erdélyi, Y. Taroyan, Hinode EUV spectroscopic observations of coronal oscillations. Astron. Astrophys. 489, 49–52 (2008). doi: 10.1051/0004-6361:200810263 CrossRefGoogle Scholar
  76. R.E. Ergun, Y.-J. Su, L. Andersson, F. Bagenal, P.A. Delamere, R.L. Lysak, R.J. Strangway, S-bursts and the Jupiter ionospheric Alfvén resonator. J. Geophys. Res. 111, 06212 (2006). doi: 10.1029/2005JA011253 CrossRefGoogle Scholar
  77. N.V. Erkaev, V.S. Semenov, H.K. Biernat, Magnetic double-gradient instability and flapping waves in a current sheet. Phys. Rev. Lett. 99(23), 235003 (2007). doi: 10.1103/PhysRevLett.99.235003 ADSCrossRefGoogle Scholar
  78. N.V. Erkaev, V.S. Semenov, I.V. Kubyshkin, M.V. Kubyshkina, H.K. Biernat, MHD model of the flapping motions in the magnetotail current sheet. J. Geophys. Res. 114, 3206 (2009). doi: 10.1029/2008JA013728 CrossRefGoogle Scholar
  79. N.V. Erkaev, V.S. Semenov, H.K. Biernat, Hall magnetohydrodynamic effects for current sheet flapping oscillations related to the magnetic double gradient mechanism. Phys. Plasmas 17(6), 060703 (2010). doi: 10.1063/1.3439687 ADSCrossRefGoogle Scholar
  80. E.N. Fedorov, V.A. Pilipenko, V.V. Vovchenko, Interaction between the Alfvén wave and turbulent sheet. Geomagn. Aeron. 47, 570–579 (2007). doi: 10.1134/S0016793207050052 ADSCrossRefGoogle Scholar
  81. F.R. Fenrich, J.C. Samson, Growth and decay of field line resonances. J. Geophys. Res. 102, 20031–20040 (1997). doi: 10.1029/97JA01376 ADSCrossRefGoogle Scholar
  82. C.A. Ferraro, C. Plumpton, Hydromagnetic waves in a horizontally stratified atmosphere. V. Astrophys. J. 127, 459 (1958). doi: 10.1086/146474 ADSMathSciNetCrossRefGoogle Scholar
  83. L. Fletcher, H.S. Hudson, Impulsive phase flare energy transport by large-scale Alfvén waves and the electron acceleration problem. Astrophys. J. 675, 1645–1655 (2008). doi: 10.1086/527044 ADSCrossRefGoogle Scholar
  84. C. Foullon, E. Verwichte, V.M. Nakariakov, K. Nykyri, C.J. Farrugia, Magnetic Kelvin-Helmholtz instability at the Sun. Astrophys. J. Lett. 729, 8 (2011). doi: 10.1088/2041-8205/729/1/L8 ADSCrossRefGoogle Scholar
  85. S. Fujita, T. Tanaka, Magnetospheric plasma processes during a sudden commencement revealed from a global MHD simulation, in Magnetospheric ULF Waves: Synthesis and New Directions, ed. by K. Takahashi, P.J. Chi, R.E. Denton, R.L. Lysak. Washington DC American Geophysical Union Geophysical Monograph Series, vol. 169 (2006), p. 31 CrossRefGoogle Scholar
  86. S. Fujita, M. Itonaga, H. Nakata, Relationship between the Pi2 pulsations and the localized impulsive current associated with the current disruption in the magnetosphere. Earth Planets Space 52, 267–281 (2000) ADSCrossRefGoogle Scholar
  87. H. Fukunishi, L.J. Lanzerotti, Hydromagnetic waves in the dayside cusp region and ground signatures of flux transfer events, in Plasma Waves and Instabilities at Comets and in Magnetospheres. Washington DC American Geophysical Union Geophysical Monograph Series, vol. 53 (1989), pp. 179–195 CrossRefGoogle Scholar
  88. P.T. Gallagher, D.M. Long, Large-scale bright fronts in the solar corona: a review of “EIT waves”. Space Sci. Rev. 158, 365–396 (2011). doi: 10.1007/s11214-010-9710-7 ADSCrossRefGoogle Scholar
  89. K.-H. Glassmeier, C. Othmer, R. Cramm, et al., Magnetospheric field line resonances: a comparative planetology approach. Surv. Geophys. 20, 61–109 (1999). doi: 10.1023/A:1006659717963 ADSCrossRefGoogle Scholar
  90. C.K. Goertz, R.W. Boswell, Magnetosphere-ionosphere coupling. J. Geophys. Res. 84, 7239–7246 (1979). doi: 10.1029/JA084iA12p07239 ADSCrossRefGoogle Scholar
  91. I.V. Golovchanskaya, Y.P. Maltsev, On the identification of plasma sheet flapping waves observed by Cluster. Geophys. Res. Lett. 32, 2102 (2005). doi: 10.1029/2004GL021552 ADSCrossRefGoogle Scholar
  92. M. Goossens, S. Poedts, D. Hermans, On the existence of the continuous spectrum of ideal MHD in a 2D magnetostatic equilibrium. Sol. Phys. 102, 51–66 (1985). doi: 10.1007/BF00154037 ADSCrossRefGoogle Scholar
  93. M. Goossens, J.V. Hollweg, T. Sakurai, Resonant behaviour of MHD waves on magnetic flux tubes. III. Effect of equilibrium flow. Sol. Phys. 138, 233–255 (1992) ADSCrossRefGoogle Scholar
  94. M. Goossens, I. Arregui, J.L. Ballester, T.J. Wang, Analytic approximate seismology of transversely oscillating coronal loops. Astron. Astrophys. 484, 851–857 (2008). doi: 10.1051/0004-6361:200809728 ADSCrossRefGoogle Scholar
  95. M. Goossens, R. Erdélyi, M.S. Ruderman, Resonant MHD waves in the solar atmosphere. Space Sci. Rev. 158, 289–338 (2011). doi: 10.1007/s11214-010-9702-7 ADSCrossRefGoogle Scholar
  96. M. Goossens, J. Andries, R. Soler, T. Van Doorsselaere, I. Arregui, J. Terradas, Surface Alfvén waves in solar flux tubes. Astrophys. J. 753, 111 (2012). doi: 10.1088/0004-637X/753/2/111 ADSCrossRefGoogle Scholar
  97. M. Goossens, R. Soler, J. Terradas, T. Van Doorsselaere, G. Verth, The transverse and rotational motions of magnetohydrodynamic kink waves in the solar atmosphere. Astrophys. J. 788, 9 (2014). doi: 10.1088/0004-637X/788/1/9 ADSCrossRefGoogle Scholar
  98. N. Gopalswamy, S. Yashiro, M. Temmer, J. Davila, W.T. Thompson, S. Jones, R.T.J. McAteer, J.-P. Wuelser, S. Freeland, R.A. Howard, EUV wave reflection from a coronal hole. Astrophys. J. Lett. 691, 123–127 (2009). doi: 10.1088/0004-637X/691/2/L123 ADSCrossRefGoogle Scholar
  99. P.C. Grigis, A.O. Benz, The evolution of reconnection along an arcade of magnetic loops. Astrophys. J. Lett. 625, 143–146 (2005). doi: 10.1086/431147 ADSCrossRefGoogle Scholar
  100. M. Gruszecki, V.M. Nakariakov, T. van Doorsselaere, T.D. Arber, Phenomenon of Alfvénic vortex shedding. Phys. Rev. Lett. 105(5), 055004 (2010). doi: 10.1103/PhysRevLett.105.055004 ADSCrossRefGoogle Scholar
  101. M. Gruszecki, V.M. Nakariakov, T. Van Doorsselaere, Intensity variations associated with fast sausage modes. Astron. Astrophys. 543, 12 (2012). doi: 10.1051/0004-6361/201118168 ADSCrossRefGoogle Scholar
  102. A.V. Guglielmi, O.A. Pokhotelov, Geoelectromagnetic Waves (1996) Google Scholar
  103. A.V. Gul’elmi, Annular trap for low-frequency wave in the earth’s magnetosphere. Sov. Phys. JETP 12, 25–28 (1970) Google Scholar
  104. X.C. Guo, C. Wang, Y.Q. Hu, Global MHD simulation of the Kelvin-Helmholtz instability at the magnetopause for northward interplanetary magnetic field. J. Geophys. Res. Space Phys. 115, 10218 (2010). doi: 10.1029/2009JA015193 ADSCrossRefGoogle Scholar
  105. A. Hasegawa, Drift mirror instability of the magnetosphere. Phys. Fluids 12, 2642–2650 (1969). doi: 10.1063/1.1692407 ADSCrossRefGoogle Scholar
  106. H. Hasegawa, M. Fujimoto, T.-D. Phan, H. Rème, A. Balogh, M.W. Dunlop, C. Hashimoto, R. TanDokoro, Transport of solar wind into Earth’s magnetosphere through rolled-up Kelvin-Helmholtz vortices. Nature 430, 755–758 (2004). doi: 10.1038/nature02799 ADSCrossRefGoogle Scholar
  107. D.H. Hathaway, The solar cycle. Living Rev. Sol. Phys. 7, 1 (2010). doi: 10.12942/lrsp-2010-1 ADSCrossRefGoogle Scholar
  108. B. Heilig, H. Lühr, M. Rother, Comprehensive study of ULF upstream waves observed in the topside ionosphere by CHAMP and on the ground. Ann. Geophys. 25, 737–754 (2007). doi: 10.5194/angeo-25-737-2007 ADSCrossRefGoogle Scholar
  109. B. Heilig, S. Lotz, J. Verō, P. Sutcliffe, J. Reda, K. Pajunpää, T. Raita, Empirically modelled Pc3 activity based on solar wind parameters. Ann. Geophys. 28, 1703–1722 (2010). doi: 10.5194/angeo-28-1703-2010 ADSCrossRefGoogle Scholar
  110. J. Hershaw, C. Foullon, V.M. Nakariakov, E. Verwichte, Damped large amplitude transverse oscillations in an EUV solar prominence, triggered by large-scale transient coronal waves. Astron. Astrophys. 531, 53 (2011). doi: 10.1051/0004-6361/201116750 ADSCrossRefGoogle Scholar
  111. A. Hillier, R.J. Morton, R. Erdélyi, A statistical study of transverse oscillations in a quiescent prominence. Astrophys. J. Lett. 779, 16 (2013). doi: 10.1088/2041-8205/779/2/L16 ADSCrossRefGoogle Scholar
  112. J.V. Hollweg, Resonances of coronal loops. Astrophys. J. 277, 392–403 (1984). doi: 10.1086/161706 ADSCrossRefGoogle Scholar
  113. J.V. Hollweg, Resonant decay of global MHD modes at ‘thick’ interfaces. J. Geophys. Res. 95, 2319–2324 (1990). doi: 10.1029/JA095iA03p02319 ADSCrossRefGoogle Scholar
  114. J.V. Hollweg, G. Yang, Resonance absorption of compressible magnetohydrodynamic waves at thin ‘surfaces’. J. Geophys. Res. 93, 5423–5436 (1988) ADSCrossRefGoogle Scholar
  115. V. Holzwarth, D. Schmitt, M. Schüssler, Flow instabilities of magnetic flux tubes. II. Longitudinal flow. Astron. Astrophys. 469, 11–17 (2007). doi: 10.1051/0004-6361:20077269 ADSMATHCrossRefGoogle Scholar
  116. A.W. Hood, M. Ruderman, D.J. Pascoe, I. De Moortel, J. Terradas, A.N. Wright, Damping of kink waves by mode coupling. I. Analytical treatment. Astron. Astrophys. 551, 39 (2013). doi: 10.1051/0004-6361/201220617 ADSCrossRefGoogle Scholar
  117. W.J. Hughes, D.J. Southwood, The screening of micropulsation signals by the atmosphere and ionosphere. J. Geophys. Res. 81, 3234–3240 (1976). doi: 10.1029/JA081i019p03234 ADSCrossRefGoogle Scholar
  118. A.R. Inglis, V.M. Nakariakov, A multi-periodic oscillatory event in a solar flare. Astron. Astrophys. 493, 259–266 (2009). doi: 10.1051/0004-6361:200810473 ADSCrossRefGoogle Scholar
  119. A.R. Inglis, V.M. Nakariakov, V.F. Melnikov, Multi-wavelength spatially resolved analysis of quasi-periodic pulsations in a solar flare. Astron. Astrophys. 487, 1147–1153 (2008). doi: 10.1051/0004-6361:20079323 ADSCrossRefGoogle Scholar
  120. A.R. Inglis, T. Van Doorsselaere, C.S. Brady, V.M. Nakariakov, Characteristics of magnetoacoustic sausage modes. Astron. Astrophys. 503, 569–575 (2009). doi: 10.1051/0004-6361/200912088 ADSMATHCrossRefGoogle Scholar
  121. J.A. Ionson, Resonant absorption of Alfvénic surface waves and the heating of solar coronal loops. Astrophys. J. 226, 650–673 (1978). doi: 10.1086/156648 ADSCrossRefGoogle Scholar
  122. P. Jelínek, M. Karlický, Magnetoacoustic waves in diagnostics of the flare current sheets. Astron. Astrophys. 537, 46 (2012). doi: 10.1051/0004-6361/201117883 CrossRefGoogle Scholar
  123. L.K. Jian, C.T. Russell, J.G. Luhmann, R.J. Strangeway, J.S. Leisner, A.B. Galvin, Ion cyclotron waves in the solar wind observed by STEREO near 1 AU. Astrophys. J. Lett. 701, 105–109 (2009). doi: 10.1088/0004-637X/701/2/L105 ADSCrossRefGoogle Scholar
  124. P.S. Joarder, V.M. Nakariakov, B. Roberts, A manifestation of negative energy waves in the solar atmosphere. Sol. Phys. 176, 285–297 (1997). doi: 10.1023/A:1004977928351 ADSCrossRefGoogle Scholar
  125. B.B. Kadomtsev, Collective Phenomena in Plasmas (Elsevier Science Limited, Amsterdam, 1982) Google Scholar
  126. B.B. Kadomtsev, O.P. Pogutse, Plasma instability due to particle trapping in a toroidal geometry. Sov. Phys. JETP 24, 1172–1179 (1967) ADSGoogle Scholar
  127. M. Karlický, Cyclic magnetic field reconnection. Astrophys. J. Lett. 692, 72–75 (2009). doi: 10.1088/0004-637X/692/2/L72 ADSCrossRefGoogle Scholar
  128. M. Karlický, M. Bárta, Successive merging of plasmoids and fragmentation in a flare current sheet and their X-ray and radio signatures. Astrophys. J. 733, 107 (2011). doi: 10.1088/0004-637X/733/2/107 ADSCrossRefGoogle Scholar
  129. M. Karlický, B. Kliem, Reconnection of a kinking flux rope triggering the ejection of a microwave and hard X-ray source I. Observations and interpretation. Sol. Phys. 266, 71–89 (2010). doi: 10.1007/s11207-010-9606-4 ADSCrossRefGoogle Scholar
  130. M. Karlický, M. Bárta, H. Mészárosová, P. Zlobec, Time scales of the slowly drifting pulsating structure observed during the April 12, 2001 flare. Astron. Astrophys. 432, 705–712 (2005). doi: 10.1051/0004-6361:20041551 ADSCrossRefGoogle Scholar
  131. M. Karlický, M. Bárta, J. Rybák, Radio spectra generated during coalescence processes of plasmoids in a flare current sheet. Astron. Astrophys. 514, 28 (2010). doi: 10.1051/0004-6361/200913547 ADSCrossRefGoogle Scholar
  132. M. Karlický, P. Jelínek, H. Mészárosová, Magnetoacoustic waves in the narrowband dm-spikes sources. Astron. Astrophys. 529, 96 (2011). doi: 10.1051/0004-6361/201016171 CrossRefGoogle Scholar
  133. M. Karlický, H. Mészárosová, P. Jelínek, Radio fiber bursts and fast magnetoacoustic wave trains. Astron. Astrophys. 550, 1 (2013). doi: 10.1051/0004-6361/201220296 CrossRefGoogle Scholar
  134. A.C. Katsiyannis, D.R. Williams, R.T.J. McAteer, P.T. Gallagher, F.P. Keenan, F. Murtagh, Eclipse observations of high-frequency oscillations in active region coronal loops. Astron. Astrophys. 406, 709–714 (2003). doi: 10.1051/0004-6361:20030458 ADSCrossRefGoogle Scholar
  135. A. Keiling, K. Takahashi, Review of Pi2 Models. Space Sci. Rev. 161, 63–148 (2011). doi: 10.1007/s11214-011-9818-4 ADSCrossRefGoogle Scholar
  136. A. Keiling, J.R. Wygant, C. Cattell, W. Peria, G. Parks, M. Temerin, F.S. Mozer, C.T. Russell, C.A. Kletzing, Correlation of Alfvén wave Poynting flux in the plasma sheet at \(4\mbox{--}7~\mbox{R}_{E}\) with ionospheric electron energy flux. J. Geophys. Res. Space Phys. 107, 1132 (2002). doi: 10.1029/2001JA900140 ADSCrossRefGoogle Scholar
  137. A. Keiling, M. Fujimoto, H. Hasegawa, F. Honary, V. Sergeev, V.S. Semenov, H.U. Frey, O. Amm, H. Rème, I. Dandouras, E. Lucek, Association of Pi2 pulsations and pulsed reconnection: ground and Cluster observations in the tail lobe at \(16~\mbox{R}_{E}\). Ann. Geophys. 24, 3433–3449 (2006). doi: 10.5194/angeo-24-3433-2006 ADSCrossRefGoogle Scholar
  138. L. Kepko, H.E. Spence, Observations of discrete, global magnetospheric oscillations directly driven by solar wind density variations. J. Geophys. Res. Space Phys. 108, 1257 (2003). doi: 10.1029/2002JA009676 ADSCrossRefGoogle Scholar
  139. M.L. Khodachenko, V.V. Zaitsev, A.G. Kislyakov, A.V. Stepanov, Equivalent electric circuit models of coronal magnetic loops and related oscillatory phenomena on the Sun. Space Sci. Rev. 149, 83–117 (2009). doi: 10.1007/s11214-009-9538-1 ADSCrossRefGoogle Scholar
  140. S. Kim, V.M. Nakariakov, K. Shibasaki, Slow magnetoacoustic oscillations in the microwave emission of solar flares. Astrophys. J. Lett. 756, 36 (2012). doi: 10.1088/2041-8205/756/2/L36 ADSCrossRefGoogle Scholar
  141. S. Kim, V.M. Nakariakov, K.-S. Cho, Vertical kink oscillation of a magnetic flux rope structure in the solar corona. Astrophys. J. Lett. 797, 22 (2014). doi: 10.1088/2041-8205/797/2/L22 ADSCrossRefGoogle Scholar
  142. M.G. Kivelson, S.-H. Chen, The Magnetopause: Surface Waves and Instabilities and Their Possible Dynamical Consequences (Am. Geophys. Union, Washington, 1995), pp. 257–268. ISBN 9781118663974. doi: 10.1029/GM090p0257 CrossRefGoogle Scholar
  143. M.G. Kivelson, D.J. Southwood, Coupling of global magnetospheric MHD eigenmodes to field line resonances. J. Geophys. Res. 91, 4345–4351 (1986). doi: 10.1029/JA091iA04p04345 ADSCrossRefGoogle Scholar
  144. B. Kliem, M. Karlický, A.O. Benz, Solar flare radio pulsations as a signature of dynamic magnetic reconnection. Astron. Astrophys. 360, 715–728 (2000) ADSGoogle Scholar
  145. D.Y. Klimushkin, Method of description of the Alfvén and magnetosonic branches of inhomogeneous plasma oscillations. Plasma Phys. Rep. 20, 280–286 (1994) ADSGoogle Scholar
  146. D.Y. Klimushkin, Resonators for hydromagnetic waves in the magnetosphere. J. Geophys. Res. 103, 2369–2376 (1998). doi: 10.1029/97JA02193 ADSCrossRefGoogle Scholar
  147. D.Y. Klimushkin, The propagation of high-\(m\) Alfvén waves in the Earth’s magnetosphere and their interaction with high-energy particles. J. Geophys. Res. 105, 23303–23310 (2000). doi: 10.1029/1999JA000396 ADSCrossRefGoogle Scholar
  148. D.Y. Klimushkin, How energetic particles construct and destroy poloidal high-m Alfvén waves in the magnetosphere. Planet. Space Sci. 55, 722–730 (2007). doi: 10.1016/j.pss.2005.11.006 ADSCrossRefGoogle Scholar
  149. D.Y. Klimushkin, P.N. Mager, The structure of low-frequency standing Alfvén waves in the box model of the magnetosphere with magnetic field shear. J. Plasma Phys. 70, 379–395 (2004). doi: 10.1017/S0022377803002563 ADSCrossRefGoogle Scholar
  150. D.Y. Klimushkin, P.N. Mager, Spatial structure and stability of coupled Alfvén and drift compressional modes in non-uniform magnetosphere: gyrokinetic treatment. Planet. Space Sci. 59, 1613–1620 (2011). doi: 10.1016/j.pss.2011.07.010 ADSCrossRefGoogle Scholar
  151. D.Y. Klimushkin, P.N. Mager, The Alfvén wave parallel electric field in non-uniform space plasmas. Astrophys. Space Sci. 350, 579–583 (2014). doi: 10.1007/s10509-013-1774-x ADSCrossRefGoogle Scholar
  152. D. Klimushkin, P. Mager, K. Glassmeier, Toroidal and poloidal Alfvén waves with arbitrary azimuthal wavenumbers in a finite pressure plasma in the Earth’s magnetosphere. Ann. Geophys. 22, 267–287 (2004). doi: 10.5194/angeo-22-267-2004 ADSCrossRefGoogle Scholar
  153. D.Y. Klimushkin, P.N. Mager, V.A. Pilipenko, On the ballooning instability of the coupled Alfvén and drift compressional modes. Earth Planets Space 64, 777–781 (2012). doi: 10.5047/eps.2012.04.002 ADSCrossRefGoogle Scholar
  154. K. Kobayashi, J. Cirtain, A.R. Winebarger, K. Korreck, L. Golub, R.W. Walsh, B. De Pontieu, C. DeForest, A. Title, S. Kuzin, S. Savage, D. Beabout, B. Beabout, W. Podgorski, D. Caldwell, K. McCracken, M. Ordway, H. Bergner, R. Gates, S. McKillop, P. Cheimets, S. Platt, N. Mitchell, D. Windt, The high-resolution coronal imager (Hi-C). Sol. Phys. 289, 4393–4412 (2014). doi: 10.1007/s11207-014-0544-4 ADSCrossRefGoogle Scholar
  155. M.M. Kobrin, V.I. Malygin, S.D. Snegirev, Long-period pulsations of the earth’s magnetic field with periods more than 20 minutes before proton flares on the sun. Planet. Space Sci. 33, 1251–1257 (1985). doi: 10.1016/0032-0633(85)90003-0 ADSCrossRefGoogle Scholar
  156. D.Y. Kolotkov, V.M. Nakariakov, E.G. Kupriyanova, H. Ratcliffe, K. Shibasaki, Multi-mode quasi-periodic pulsations in a solar flare. Astron. Astrophys. 574, 53 (2015). doi: 10.1051/0004-6361/201424988 ADSCrossRefGoogle Scholar
  157. Y.G. Kopylova, A.V. Melnikov, A.V. Stepanov, Y.T. Tsap, T.B. Goldvarg, Oscillations of coronal loops and second pulsations of solar radio emission. Astron. Lett. 33, 706–713 (2007). doi: 10.1134/S1063773707100088 ADSCrossRefGoogle Scholar
  158. D.B. Korovinskiy, A. Divin, N.V. Erkaev, V.V. Ivanova, I.B. Ivanov, V.S. Semenov, G. Lapenta, S. Markidis, H.K. Biernat, M. Zellinger, MHD modeling of the double-gradient (kink) magnetic instability. J. Geophys. Res. 118, 1146–1158 (2013). doi: 10.1002/jgra.50206 CrossRefGoogle Scholar
  159. D.B. Korovinskiy, A.V. Divin, N.V. Erkaev, V.S. Semenov, A.V. Artemyev, V.V. Ivanova, I.B. Ivanov, G. Lapenta, S. Markidis, H.K. Biernat, The double-gradient magnetic instability: stabilizing effect of the guide field. Phys. Plasmas 22(1), 012904 (2015). doi: 10.1063/1.4905706 ADSCrossRefGoogle Scholar
  160. D.A. Kozlov, A.S. Leonovich, Polarization splitting of the Alfvén wave spectrum in a dipole magnetosphere with a rotating plasma. Plasma Phys. Rep. 32, 765–774 (2006). doi: 10.1134/S1063780X06090078 ADSCrossRefGoogle Scholar
  161. S. Krishna Prasad, D. Banerjee, T. Van Doorsselaere, J. Singh, Omnipresent long-period intensity oscillations in open coronal structures. Astron. Astrophys. 546, 50 (2012). doi: 10.1051/0004-6361/201219885 ADSCrossRefGoogle Scholar
  162. S. Krishna Prasad, D. Banerjee, T. Van Doorsselaere, Frequency-dependent damping in propagating slow magneto-acoustic waves. Astrophys. J. 789, 118 (2014). doi: 10.1088/0004-637X/789/2/118 ADSCrossRefGoogle Scholar
  163. E.G. Kupriyanova, V.F. Melnikov, V.M. Nakariakov, K. Shibasaki, Types of microwave quasi-periodic pulsations in single flaring loops. Sol. Phys. 267, 329–342 (2010). doi: 10.1007/s11207-010-9642-0 ADSCrossRefGoogle Scholar
  164. E.G. Kupriyanova, V.F. Melnikov, K. Shibasaki, Evolution of the source of quasi-periodic microwave pulsations in a single flaring loop. Publ. Astron. Soc. Jpn. 65, 3 (2013). doi: 10.1093/pasj/65.sp1.S3 ADSCrossRefGoogle Scholar
  165. N.A. Kurazhkovskaya, B.I. Klain, Effect of the solar wind and IMF parameters on the formation of long-period irregular pulsation burst regimes. Geomagn. Aeron. 52, 456–466 (2012). doi: 10.1134/S001679321204010X ADSCrossRefGoogle Scholar
  166. R.-Y. Kwon, L. Ofman, O. Olmedo, M. Kramar, J.M. Davila, B.J. Thompson, K.-S. Cho, STEREO observations of fast magnetosonic waves in the extended solar corona associated with EIT/EUV waves. Astrophys. J. 766, 55 (2013). doi: 10.1088/0004-637X/766/1/55 ADSCrossRefGoogle Scholar
  167. N. Labrosse, P. Heinzel, J.-C. Vial, T. Kucera, S. Parenti, S. Gunár, B. Schmieder, G. Kilper, Physics of solar prominences: spectral diagnostics and non-LTE modelling. Space Sci. Rev. 151, 243–332 (2010). doi: 10.1007/s11214-010-9630-6 ADSCrossRefGoogle Scholar
  168. O. Le Contel, R. Pellat, A. Roux, Self-consistent quasi-static radial transport during the substorm growth phase. J. Geophys. Res. 105, 12929–12944 (2000). doi: 10.1029/1999JA900498 ADSCrossRefGoogle Scholar
  169. D.-H. Lee, K. Kim, Compressional MHD waves in the magnetosphere: a new approach. J. Geophys. Res. 104, 12379–12386 (1999). doi: 10.1029/1999JA900053 ADSCrossRefGoogle Scholar
  170. L.C. Lee, R.K. Albano, J.R. Kan, Kelvin-Helmholtz instability in the magnetopause-boundary layer region. J. Geophys. Res. 86, 54–58 (1981). doi: 10.1029/JA086iA01p00054 ADSCrossRefGoogle Scholar
  171. L.C. Lee, Y. Shi, L.J. Lanzerotti, A mechanism for the generation of cusp region hydromagnetic waves. J. Geophys. Res. Space Phys. 93(A7), 7578–7585 (1988). doi: 10.1029/JA093iA07p07578 ADSCrossRefGoogle Scholar
  172. J. Lemaire, Plasmoid motion across a tangential discontinuity—with application to the magnetopause. J. Plasma Phys. 33, 425–436 (1985). doi: 10.1017/S0022377800002592 ADSCrossRefGoogle Scholar
  173. J.R. Lemen, A.M. Title, D.J. Akin, P.F. Boerner, C. Chou, J.F. Drake, D.W. Duncan, C.G. Edwards, F.M. Friedlaender, G.F. Heyman, N.E. Hurlburt, N.L. Katz, G.D. Kushner, M. Levay, R.W. Lindgren, D.P. Mathur, E.L. McFeaters, S. Mitchell, R.A. Rehse, C.J. Schrijver, L.A. Springer, R.A. Stern, T.D. Tarbell, J.-P. Wuelser, C.J. Wolfson, C. Yanari, J.A. Bookbinder, P.N. Cheimets, D. Caldwell, E.E. Deluca, R. Gates, L. Golub, S. Park, W.A. Podgorski, R.I. Bush, P.H. Scherrer, M.A. Gummin, P. Smith, G. Auker, P. Jerram, P. Pool, R. Soufli, D.L. Windt, S. Beardsley, M. Clapp, J. Lang, N. Waltham, The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO). Sol. Phys. 275, 17–40 (2012). doi: 10.1007/s11207-011-9776-8 ADSCrossRefGoogle Scholar
  174. A.S. Leonovich, V.A. Mazur, Linear transformation of the standing Alfvén wave in an axisymmetric magnetosphere. Planet. Space Sci. 43, 885–893 (1995a). doi: 10.1016/0032-0633(94)00207-8 ADSCrossRefGoogle Scholar
  175. A.S. Leonovich, V.A. Mazur, Magnetospheric resonator for transverse-small-scale standing Alfvén waves. Planet. Space Sci. 43, 881–883 (1995b). doi: 10.1016/0032-0633(94)00206-7 ADSCrossRefGoogle Scholar
  176. A.S. Leonovich, V.A. Mazur, On the spectrum of magnetosonic eigenoscillations of an axisymmetric magnetosphere. J. Geophys. Res. 106, 3919–3928 (2001). doi: 10.1029/2000JA000228 ADSCrossRefGoogle Scholar
  177. A.S. Leonovich, V.A. Mazur, Eigen ultra-low-frequency magnetosonic oscillations of the near plasma sheet. Cosm. Res. 46, 327–334 (2008). doi: 10.1134/S0010952508040072 ADSCrossRefGoogle Scholar
  178. A.S. Leonovich, V.V. Mishin, J.B. Cao, Penetration of magnetosonic waves into the magnetosphere: influence of a transition layer. Ann. Geophys. 21, 1083–1093 (2003). doi: 10.5194/angeo-21-1083-2003 ADSCrossRefGoogle Scholar
  179. A.S. Leonovich, D.A. Kozlov, V.A. Pilipenko, Magnetosonic resonance in a dipole-like magnetosphere. Ann. Geophys. 24, 2277–2289 (2006). doi: 10.5194/angeo-24-2277-2006 ADSCrossRefGoogle Scholar
  180. B. Leroy, Propagation of waves in an atmosphere in the presence of a magnetic field. II. The reflection of Alfvén waves. Astron. Astrophys. 91, 136–146 (1980) ADSMATHGoogle Scholar
  181. M.R. Lessard, D.J. Knudsen, Ionospheric reflection of small-scale Alfvén waves. Geophys. Res. Lett. 28, 3573–3576 (2001). doi: 10.1029/2000GL012529 ADSCrossRefGoogle Scholar
  182. W.Y. Li, X.C. Guo, C. Wang, Spatial distribution of Kelvin-Helmholtz instability at low-latitude boundary layer under different solar wind speed conditions. J. Geophys. Res. Space Phys. 117, 8230 (2012). doi: 10.1029/2012JA017780 ADSGoogle Scholar
  183. Y. Lin, Filament thread-like structures and their small-amplitude oscillations. Space Sci. Rev. 158, 237–266 (2011). doi: 10.1007/s11214-010-9672-9 ADSCrossRefGoogle Scholar
  184. Y. Lin, R. Soler, O. Engvold, J.L. Ballester, Ø. Langangen, R. Oliver, L.H.M. Rouppe van der Voort, Swaying threads of a solar filament. Astrophys. J. 704, 870–876 (2009). doi: 10.1088/0004-637X/704/1/870 ADSCrossRefGoogle Scholar
  185. W. Liu, L. Ofman, Advances in observing various coronal EUV waves in the SDO Era and their seismological applications (Invited Review). Sol. Phys. 289, 3233–3277 (2014). doi: 10.1007/s11207-014-0528-4 ADSCrossRefGoogle Scholar
  186. W. Liu, A.M. Title, J. Zhao, L. Ofman, C.J. Schrijver, M.J. Aschwanden, B. De Pontieu, T.D. Tarbell, Direct imaging of quasi-periodic fast propagating waves of \(\sim2000~\mbox{km}\,\mbox{s}^{-1}\) in the low solar corona by the solar dynamics observatory atmospheric imaging assembly. Astrophys. J. Lett. 736, 13 (2011). doi: 10.1088/2041-8205/736/1/L13 ADSCrossRefGoogle Scholar
  187. D.M. Long, P.T. Gallagher, R.T.J. McAteer, D.S. Bloomfield, Deceleration and dispersion of large-scale coronal bright fronts. Astron. Astrophys. 531, 42 (2011). doi: 10.1051/0004-6361/201015879 ADSCrossRefGoogle Scholar
  188. N.F. Loureiro, A.A. Schekochihin, S.C. Cowley, Instability of current sheets and formation of plasmoid chains. Phys. Plasmas 14(10), 100703 (2007). doi: 10.1063/1.2783986 ADSCrossRefGoogle Scholar
  189. V.I. Lukovnikova, V.A. Parkhomov, Geomagnetic pulsations associated with chromospheric flares. Geofiz. ž. 6, 52–58 (1984) Google Scholar
  190. P.M. Lushnikov, Two mechanisms of surface wave generation: Kelvin-Helmholtz and Miles instabilities. Atmos. Ocean. Phys. 34, 370–377 (1998) MathSciNetGoogle Scholar
  191. R.L. Lysak, Feedback instability of the ionospheric resonant cavity. J. Geophys. Res. 96, 1553–1568 (1991). doi: 10.1029/90JA02154 ADSCrossRefGoogle Scholar
  192. R.L. Lysak, C.T. Dum, Dynamics of magnetosphere-ionosphere coupling including turbulent transport. J. Geophys. Res. Space Phys. 88, 365–380 (1983a). doi: 10.1029/JA088iA01p00365 ADSCrossRefGoogle Scholar
  193. R.L. Lysak, C.T. Dum, Dynamics of magnetosphere-ionosphere coupling including turbulent transport. J. Geophys. Res. 88, 365–380 (1983b). doi: 10.1029/JA088iA01p00365 ADSCrossRefGoogle Scholar
  194. R.L. Lysak, D.-H. Lee, Response of the dipole magnetosphere to pressure pulses. Geophys. Res. Lett. 19, 937–940 (1992). doi: 10.1029/92GL00625 ADSCrossRefGoogle Scholar
  195. P.N. Mager, D.Y. Klimushkin, Theory of azimuthally small-scale Alfvén waves in an axisymmetric magnetosphere with small but finite plasma pressure. J. Geophys. Res. Space Phys. 107, 1356 (2002). doi: 10.1029/2001JA009137 ADSCrossRefGoogle Scholar
  196. P.N. Mager, D.Y. Klimushkin, Spatial localization and azimuthal wave numbers of Alfvén waves generated by drift-bounce resonance in the magnetosphere. Ann. Geophys. 23, 3775–3784 (2005). doi: 10.5194/angeo-23-3775-2005 ADSCrossRefGoogle Scholar
  197. P.N. Mager, D.Y. Klimushkin, Alfvén ship waves: high-m ULF pulsations in the magnetosphere generated by a moving plasma inhomogeneity. Ann. Geophys. 26, 1653–1663 (2008). doi: 10.5194/angeo-26-1653-2008 ADSCrossRefGoogle Scholar
  198. P.N. Mager, Y.D. Klimushkin, Giant pulsations as modes of a transverse Alfvénic resonator on the plasmapause. Earth Planets Space 65, 397–409 (2013). doi: 10.5047/eps.2012.10.002 ADSCrossRefGoogle Scholar
  199. P.N. Mager, D.Y. Klimushkin, V.A. Pilipenko, S. Schäfer, Field-aligned structure of poloidal Alfvén waves in a finite pressure plasma. Ann. Geophys. 27, 3875–3882 (2009). doi: 10.5194/angeo-27-3875-2009 ADSCrossRefGoogle Scholar
  200. P.N. Mager, D.Y. Klimushkin, D.V. Kostarev, Drift-compressional modes generated by inverted plasma distributions in the magnetosphere. J. Geophys. Res. Space Phys. 118, 4915–4923 (2013). doi: 10.1002/jgra.50471 ADSCrossRefGoogle Scholar
  201. A. Malanushenko, C.J. Schrijver, On the anisotropy in expansion of magnetic flux tubes in the solar corona. Astrophys. J. 775, 120 (2013). doi: 10.1088/0004-637X/775/2/120 ADSCrossRefGoogle Scholar
  202. J. Martínez-Sykora, B. De Pontieu, V. Hansteen, Two-dimensional radiative magnetohydrodynamic simulations of the importance of partial ionization in the chromosphere. Astrophys. J. 753, 161 (2012). doi: 10.1088/0004-637X/753/2/161 ADSCrossRefGoogle Scholar
  203. M. Mathioudakis, D.B. Jess, R. Erdélyi, Alfvén waves in the solar atmosphere. From theory to observations. Space Sci. Rev. 175, 1–27 (2013). doi: 10.1007/s11214-012-9944-7 ADSCrossRefGoogle Scholar
  204. V.A. Mazur, D.A. Chuiko, Azimuthal inhomogeneity in the MHD waveguide in the outer magnetosphere. J. Geophys. Res. Space Phys. 120, 4641–4655 (2015). doi: 10.1002/2014JA020819 ADSCrossRefGoogle Scholar
  205. V.A. Mazur, A.S. Leonovich, ULF hydromagnetic oscillations with the discrete spectrum as eigenmodes of MHD-resonator in the near-Earth part of the plasma sheet. Ann. Geophys. 24, 1639–1648 (2006). doi: 10.5194/angeo-24-1639-2006 ADSCrossRefGoogle Scholar
  206. N.G. Mazur, E.N. Fedorov, V.A. Pilipenko, On the possibility of reflection of Alfvén waves in a curvilinear magnetic field. Plasma Phys. Rep. 30, 413–421 (2004) ADSCrossRefGoogle Scholar
  207. S.W. McIntosh, B. de Pontieu, M. Carlsson, V. Hansteen, P. Boerner, M. Goossens, Alfvénic waves with sufficient energy to power the quiet solar corona and fast solar wind. Nature 475, 477–480 (2011). doi: 10.1038/nature10235 ADSCrossRefGoogle Scholar
  208. J.A. McLaughlin, A.W. Hood, MHD wave propagation in the neighbourhood of a two-dimensional null point. Astron. Astrophys. 420, 1129–1140 (2004). doi: 10.1051/0004-6361:20035900 ADSCrossRefGoogle Scholar
  209. J.A. McLaughlin, L. Ofman, Three-dimensional magnetohydrodynamic wave behavior in active regions: individual loop density structure. Astrophys. J. 682, 1338–1350 (2008). doi: 10.1086/588799 ADSCrossRefGoogle Scholar
  210. J.A. McLaughlin, J.O. Thurgood, D. MacTaggart, On the periodicity of oscillatory reconnection. Astron. Astrophys. 548, 98 (2012). doi: 10.1051/0004-6361/201220234 ADSCrossRefGoogle Scholar
  211. V.F. Melnikov, V.E. Reznikova, K. Shibasaki, V.M. Nakariakov, Spatially resolved microwave pulsations of a flare loop. Astron. Astrophys. 439, 727–736 (2005). doi: 10.1051/0004-6361:20052774 ADSCrossRefGoogle Scholar
  212. V.F. Melnikov, D.E. Gary, G.M. Nita, Peak frequency dynamics in solar microwave bursts. Sol. Phys. 253, 43–73 (2008). doi: 10.1007/s11207-008-9275-8 ADSCrossRefGoogle Scholar
  213. F.W. Menk, C.L. Waters, Magnetoseismology. Ground-Based Remote Sensing of Earth’s Magnetosphere (VCH, Weinheim, 2013), p. 251. 978-3-527-41027-9 CrossRefGoogle Scholar
  214. V.G. Merkin, J.G. Lyon, S.G. Claudepierre, Kelvin-Helmholtz instability of the magnetospheric boundary in a three-dimensional global MHD simulation during northward IMF conditions. J. Geophys. Res. Space Phys. 118, 5478–5496 (2013). doi: 10.1002/jgra.50520 ADSCrossRefGoogle Scholar
  215. H. Mészárosová, M. Karlický, J. Rybák, K. Jiřička, Tadpoles in wavelet spectra of a solar decimetric radio burst. Astrophys. J. Lett. 697, 108–110 (2009). doi: 10.1088/0004-637X/697/2/L108 ADSCrossRefGoogle Scholar
  216. H. Mészárosová, M. Karlický, P. Jelínek, J. Rybák, Magnetoacoustic waves propagating along a dense slab and Harris current sheet and their wavelet spectra. Astrophys. J. 788, 44 (2014). doi: 10.1088/0004-637X/788/1/44 ADSCrossRefGoogle Scholar
  217. V.V. Mishin, Velocity boundary layers in the distant geotail and the Kelvin Helmholtz instability. Planet. Space Sci. 53, 157–160 (2005). doi: 10.1016/j.pss.2004.09.040 ADSCrossRefGoogle Scholar
  218. A.P. Mitra (ed.), in Ionospheric Effects of Solar Flares. Astrophysics and Space Science Library, vol. 46 (1974) Google Scholar
  219. A. Miura, P.L. Pritchett, Nonlocal stability analysis of the MHD Kelvin-Helmholtz instability in a compressible plasma. J. Geophys. Res. 87, 7431–7444 (1982). doi: 10.1029/JA087iA09p07431 ADSCrossRefGoogle Scholar
  220. G.E. Moreton, \(\mbox{H}{\alpha}\) observations of flare-initiated disturbances with velocities \(\sim1000~\mbox{km}/\mbox{sec}\). Astron. J. 65, 494 (1960). doi: 10.1086/108346 ADSCrossRefGoogle Scholar
  221. R.J. Morton, J.A. McLaughlin, Hi-C and AIA observations of transverse magnetohydrodynamic waves in active regions. Astron. Astrophys. 553, 10 (2013). doi: 10.1051/0004-6361/201321465 ADSCrossRefGoogle Scholar
  222. R.J. Morton, G. Verth, J.A. McLaughlin, R. Erdélyi, Determination of sub-resolution structure of a jet by solar magnetoseismology. Astrophys. J. 744, 5 (2012). doi: 10.1088/0004-637X/744/1/5 ADSCrossRefGoogle Scholar
  223. G. Mossessian, G.D. Fleishman, Modeling of gyrosynchrotron radio emission pulsations produced by magnetohydrodynamic loop oscillations in solar flares. Astrophys. J. 748, 140 (2012). doi: 10.1088/0004-637X/748/2/140 ADSCrossRefGoogle Scholar
  224. D.A.N. Müller, H. Peter, V.H. Hansteen, Dynamics of solar coronal loops. II. Catastrophic cooling and high-speed downflows. Astron. Astrophys. 424, 289–300 (2004). doi: 10.1051/0004-6361:20040403 ADSCrossRefGoogle Scholar
  225. V.M. Nakariakov, Magnetohydrodynamic waves in coronal polar plumes. Philos. Trans. R. Soc. Lond. Ser. A 364, 473–483 (2006). doi: 10.1098/rsta.2005.1711 ADSCrossRefGoogle Scholar
  226. V.M. Nakariakov, V.F. Melnikov, Modulation of gyrosynchrotron emission in solar and stellar flares by slow magnetoacoustic oscillations. Astron. Astrophys. 446, 1151–1156 (2006). doi: 10.1051/0004-6361:20053944 ADSCrossRefGoogle Scholar
  227. V.M. Nakariakov, V.F. Melnikov, Quasi-periodic pulsations in solar flares. Space Sci. Rev. 149, 119–151 (2009). doi: 10.1007/s11214-009-9536-3 ADSCrossRefGoogle Scholar
  228. V.M. Nakariakov, E. Verwichte, Coronal waves and oscillations. Living Rev. Sol. Phys. 2, 3 (2005). doi: 10.12942/lrsp-2005-3 ADSCrossRefGoogle Scholar
  229. V.M. Nakariakov, I.V. Zimovets, Slow magnetoacoustic waves in two-ribbon flares. Astrophys. J. Lett. 730, 27 (2011). doi: 10.1088/2041-8205/730/2/L27 ADSCrossRefGoogle Scholar
  230. V.M. Nakariakov, L. Ofman, E.E. Deluca, B. Roberts, J.M. Davila, TRACE observation of damped coronal loop oscillations: implications for coronal heating. Science 285, 862–864 (1999). doi: 10.1126/science.285.5429.862 ADSCrossRefGoogle Scholar
  231. V.M. Nakariakov, E. Verwichte, D. Berghmans, E. Robbrecht, Slow magnetoacoustic waves in coronal loops. Astron. Astrophys. 362, 1151–1157 (2000) ADSGoogle Scholar
  232. V.M. Nakariakov, V.F. Melnikov, V.E. Reznikova, Global sausage modes of coronal loops. Astron. Astrophys. 412, 7–10 (2003). doi: 10.1051/0004-6361:20031660 ADSCrossRefGoogle Scholar
  233. V.M. Nakariakov, D. Tsiklauri, A. Kelly, T.D. Arber, M.J. Aschwanden, Acoustic oscillations in solar and stellar flaring loops. Astron. Astrophys. 414, 25–28 (2004a). doi: 10.1051/0004-6361:20031738 ADSCrossRefGoogle Scholar
  234. V.M. Nakariakov, T.D. Arber, C.E. Ault, A.C. Katsiyannis, D.R. Williams, F.P. Keenan, Time signatures of impulsively generated coronal fast wave trains. Mon. Not. R. Astron. Soc. 349, 705–709 (2004b). doi: 10.1111/j.1365-2966.2004.07537.x ADSCrossRefGoogle Scholar
  235. V.M. Nakariakov, D.J. Pascoe, T.D. Arber, Short quasi-periodic MHD waves in coronal structures. Space Sci. Rev. 121, 115–125 (2005). doi: 10.1007/s11214-006-4718-8 ADSCrossRefGoogle Scholar
  236. V.M. Nakariakov, C. Foullon, E. Verwichte, N.P. Young, Quasi-periodic modulation of solar and stellar flaring emission by magnetohydrodynamic oscillations in a nearby loop. Astron. Astrophys. 452, 343–346 (2006). doi: 10.1051/0004-6361:20054608 ADSCrossRefGoogle Scholar
  237. V.M. Nakariakov, M.J. Aschwanden, T. van Doorsselaere, The possible role of vortex shedding in the excitation of kink-mode oscillations in the solar corona. Astron. Astrophys. 502, 661–664 (2009). doi: 10.1051/0004-6361/200810847 ADSCrossRefGoogle Scholar
  238. V.M. Nakariakov, A.R. Inglis, I.V. Zimovets, C. Foullon, E. Verwichte, R. Sych, I.N. Myagkova, Oscillatory processes in solar flares. Plasma Phys. Control. Fusion 52(12), 124009 (2010a). doi: 10.1088/0741-3335/52/12/124009 ADSCrossRefGoogle Scholar
  239. V.M. Nakariakov, C. Foullon, I.N. Myagkova, A.R. Inglis, Quasi-periodic pulsations in the gamma-ray emission of a solar flare. Astrophys. J. Lett. 708, 47–51 (2010b). doi: 10.1088/2041-8205/708/1/L47 ADSCrossRefGoogle Scholar
  240. V.M. Nakariakov, C. Hornsey, V.F. Melnikov, Sausage oscillations of coronal plasma structures. Astrophys. J. 761, 134 (2012). doi: 10.1088/0004-637X/761/2/134 ADSCrossRefGoogle Scholar
  241. P.H. Ng, V.L. Patel, S. Chen, Drift compressional instability in the magnetosphere. J. Geophys. Res. 89, 10763–10769 (1984). doi: 10.1029/JA089iA12p10763 ADSCrossRefGoogle Scholar
  242. Z. Ning, Imaging observations of X-ray quasi-periodic oscillations at 3–6 keV in the 26 December 2002 solar flare. Sol. Phys. 289, 1239–1256 (2014). doi: 10.1007/s11207-013-0405-6 ADSCrossRefGoogle Scholar
  243. M.N. Nishino, M. Fujimoto, G. Ueno, T. Mukai, Y. Saito, Origin of temperature anisotropies in the cold plasma sheet: geotail observations around the Kelvin-Helmholtz vortices. Ann. Geophys. 25, 2069–2086 (2007). doi: 10.5194/angeo-25-2069-2007 ADSCrossRefGoogle Scholar
  244. G. Nisticò, V.M. Nakariakov, E. Verwichte, Decaying and decayless transverse oscillations of a coronal loop. Astron. Astrophys. 552, 57 (2013). doi: 10.1051/0004-6361/201220676 ADSCrossRefGoogle Scholar
  245. G. Nisticò, D.J. Pascoe, V.M. Nakariakov, Observation of a high-quality quasi-periodic rapidly propagating wave train using SDO/AIA. Astron. Astrophys. 569, 12 (2014). doi: 10.1051/0004-6361/201423763 ADSCrossRefGoogle Scholar
  246. L. Ofman, Chromospheric leakage of Alfvén waves in coronal loops. Astrophys. J. Lett. 568, 135–138 (2002). doi: 10.1086/340329 ADSCrossRefGoogle Scholar
  247. L. Ofman, Progress, challenges, and perspectives of the 3D MHD numerical modeling of oscillations in the solar corona. Space Sci. Rev. 149, 153–174 (2009a). doi: 10.1007/s11214-009-9501-1 ADSCrossRefGoogle Scholar
  248. L. Ofman, Three-dimensional magnetohydrodynamic models of twisted multithreaded coronal loop oscillations. Astrophys. J. 694, 502–511 (2009b). doi: 10.1088/0004-637X/694/1/502 ADSCrossRefGoogle Scholar
  249. L. Ofman, Wave modeling of the solar wind. Living Rev. Sol. Phys. 7, 4 (2010). doi: 10.12942/lrsp-2010-4 ADSCrossRefGoogle Scholar
  250. L. Ofman, M.J. Aschwanden, Damping time scaling of coronal loop oscillations deduced from transition region and coronal explorer observations. Astrophys. J. Lett. 576, 153–156 (2002). doi: 10.1086/343886 ADSCrossRefGoogle Scholar
  251. L. Ofman, L. Sui, Oscillations of hard X-ray flare emission observed by RHESSI: effects of super-Alfvénic beams? Astrophys. J. Lett. 644, 149–152 (2006). doi: 10.1086/505622 ADSCrossRefGoogle Scholar
  252. L. Ofman, B.J. Thompson, Interaction of EIT waves with coronal active regions. Astrophys. J. 574, 440–452 (2002). doi: 10.1086/340924 ADSCrossRefGoogle Scholar
  253. L. Ofman, B.J. Thompson, SDO/AIA observation of Kelvin-Helmholtz instability in the solar corona. Astrophys. J. Lett. 734, 11 (2011). doi: 10.1088/2041-8205/734/1/L11 ADSCrossRefGoogle Scholar
  254. L. Ofman, T. Wang, Hot coronal loop oscillations observed by SUMER: slow magnetosonic wave damping by thermal conduction. Astrophys. J. Lett. 580, 85–88 (2002). doi: 10.1086/345548 ADSCrossRefGoogle Scholar
  255. L. Ofman, J.M. Davila, R.S. Steinolfson, Coronal heating by the resonant absorption of Alfvén waves: the effect of viscous stress tensor. Astrophys. J. 421, 360–371 (1994). doi: 10.1086/173654 ADSCrossRefGoogle Scholar
  256. L. Ofman, J.M. Davila, R.S. Steinolfson, Coronal heating by the resonant absorption of Alfvén waves: wavenumber scaling laws. Astrophys. J. 444, 471–477 (1995). doi: 10.1086/175621 ADSCrossRefGoogle Scholar
  257. L. Ofman, M. Romoli, G. Poletto, G. Noci, J.L. Kohl, Ultraviolet coronagraph spectrometer observations of density fluctuations in the solar wind. Astrophys. J. Lett. 491, 111–114 (1997). doi: 10.1086/311067 ADSCrossRefGoogle Scholar
  258. L. Ofman, V.M. Nakariakov, C.E. DeForest, Slow magnetosonic waves in coronal plumes. Astrophys. J. 514, 441–447 (1999). doi: 10.1086/306944 ADSCrossRefGoogle Scholar
  259. L. Ofman, V.M. Nakariakov, N. Sehgal, Dissipation of slow magnetosonic waves in coronal plumes. Astrophys. J. 533, 1071–1083 (2000). doi: 10.1086/308691 ADSCrossRefGoogle Scholar
  260. L. Ofman, W. Liu, A. Title, M. Aschwanden, Modeling super-fast magnetosonic waves observed by SDO in active region funnels. Astrophys. J. Lett. 740, 33 (2011). doi: 10.1088/2041-8205/740/2/L33 ADSCrossRefGoogle Scholar
  261. L. Ofman, T.J. Wang, J.M. Davila, Slow magnetosonic waves and fast flows in active region loops. Astrophys. J. 754, 111 (2012). doi: 10.1088/0004-637X/754/2/111 ADSCrossRefGoogle Scholar
  262. R. Oliver, J.L. Ballester, Oscillations in quiescent solar prominences observations and theory (Invited Review). Sol. Phys. 206, 45–67 (2002). doi: 10.1023/A:1014915428440 ADSCrossRefGoogle Scholar
  263. A.A. Ostapenko, S.V. Poliakov, Dynamics of the coefficient of reflection of Alfvén waves in the Pc1 range from the ionosphere during variations of the electron density of the lower ionosphere. Geomagn. Aeron. 30, 50–56 (1990) ADSGoogle Scholar
  264. S. Parenti, Solar prominences: observations. Living Rev. Sol. Phys. 11, 1 (2014). doi: 10.12942/lrsp-2014-1 ADSCrossRefGoogle Scholar
  265. V.A. Parkhomov, A.V. Moldavanov, B. Tsegmed, On two different geomagnetic manifestations of solar flare November 4, 2003. J. Atmos. Sol.-Terr. Phys. 68, 1370–1382 (2006). doi: 10.1016/j.jastp.2006.05.002 ADSCrossRefGoogle Scholar
  266. V.A. Parkhomov, A.V. Dmitriev, A.V. Moldavanov, Unusual sudden ionospheric disturbance from solar flare of 4 November 2003. J. Atmos. Sol.-Terr. Phys. 70, 1963–1970 (2008). doi: 10.1016/j.jastp.2008.03.011 ADSCrossRefGoogle Scholar
  267. D.J. Pascoe, V.M. Nakariakov, E.G. Kupriyanova, Fast magnetoacoustic wave trains in magnetic funnels of the solar corona. Astron. Astrophys. 560, 97 (2013a). doi: 10.1051/0004-6361/201322678 ADSCrossRefGoogle Scholar
  268. D.J. Pascoe, A.W. Hood, I. De Moortel, A.N. Wright, Damping of kink waves by mode coupling. II. Parametric study and seismology. Astron. Astrophys. 551, 40 (2013b). doi: 10.1051/0004-6361/201220620 ADSCrossRefGoogle Scholar
  269. S. Patsourakos, A. Vourlidas, “Extreme Ultraviolet Waves” are waves: first quadrature observations of an extreme ultraviolet wave from STEREO. Astrophys. J. Lett. 700, 182–186 (2009). doi: 10.1088/0004-637X/700/2/L182 ADSCrossRefGoogle Scholar
  270. S. Patsourakos, A. Vourlidas, On the nature and genesis of EUV waves: a synthesis of observations from SOHO, STEREO, SDO, and Hinode (Invited Review). Sol. Phys. 281, 187–222 (2012). doi: 10.1007/s11207-012-9988-6 ADSGoogle Scholar
  271. H. Peter, S. Bingert, Constant cross section of loops in the solar corona. Astron. Astrophys. 548, 1 (2012). doi: 10.1051/0004-6361/201219473 ADSCrossRefGoogle Scholar
  272. A. Petrosyan, A. Balogh, M.L. Goldstein, J. Léorat, E. Marsch, K. Petrovay, B. Roberts, R. von Steiger, J.C. Vial, Turbulence in the solar atmosphere and solar wind. Space Sci. Rev. 156, 135–238 (2010). doi: 10.1007/s11214-010-9694-3 ADSCrossRefGoogle Scholar
  273. V.A. Pilipenko, E.N. Fedorov, M.J. Engebretson, Alfvén resonator in the topside ionosphere beneath the auroral acceleration region. J. Geophys. Res. 107(A9) (2002). doi: 10.1029/2002JA009282
  274. V.A. Pilipenko, N.G. Mazur, E.N. Fedorov, M.J. Engebretson, Interaction of propagating magnetosonic and Alfvén waves in a longitudinally inhomogeneous plasma. J. Geophys. Res. 113, 8218 (2008). doi: 10.1029/2007JA012651 Google Scholar
  275. F. Plaschke, V. Angelopoulos, K.-H. Glassmeier, Magnetopause surface waves: THEMIS observations compared to MHD theory. J. Geophys. Res. Space Phys. 118, 1483–1499 (2013). doi: 10.1002/jgra.50147 ADSCrossRefGoogle Scholar
  276. J.J. Podesta, Evidence of kinetic Alfvén waves in the solar wind at 1 AU. Sol. Phys. 286, 529–548 (2013). doi: 10.1007/s11207-013-0258-z ADSCrossRefGoogle Scholar
  277. S. Poedts, M. Goossens, W. Kerner, Numerical simulation of coronal heating by resonant absorption of Alfvén waves. Sol. Phys. 123, 83–115 (1989). doi: 10.1007/BF00150014 ADSCrossRefGoogle Scholar
  278. S. Poedts, M. Goossens, W. Kerner, On the efficiency of coronal loop heating by resonant absorption. Astrophys. J. 360, 279–287 (1990). doi: 10.1086/169118 ADSMATHCrossRefGoogle Scholar
  279. O.A. Pokhotelov, M.A. Balikhin, H.S.-C.K. Alleyne, O.G. Onishchenko, Mirror instability with finite electron temperature effects. J. Geophys. Res. 105, 2393–2402 (2000). doi: 10.1029/1999JA900351 ADSCrossRefGoogle Scholar
  280. O.A. Pokhotelov, V. Khruschev, M. Parrot, S. Senchenkov, V.P. Pavlenko, Ionospheric Alfvén resonator revisited: feedback instability. J. Geophys. Res. 106, 25813–25824 (2001). doi: 10.1029/2000JA000450 ADSCrossRefGoogle Scholar
  281. P. Porazik, Z. Lin, Gyrokinetic particle simulation of drift-compressional modes in dipole geometry. Phys. Plasmas 18(7), 072107 (2011). doi: 10.1063/1.3605031 ADSCrossRefGoogle Scholar
  282. A.S. Potapov, ULF wave activity in high-speed streams of the solar wind: impact on the magnetosphere. J. Geophys. Res. Space Phys. 118, 6465–6477 (2013). doi: 10.1002/2013JA019119 ADSCrossRefGoogle Scholar
  283. A.S. Potapov, T.N. Polyushkina, V.A. Pulyaev, Observations of ULF waves in the solar corona and in the solar wind at the Earth’s orbit. J. Atmos. Sol.-Terr. Phys. 102, 235–242 (2013). doi: 10.1016/j.jastp.2013.06.001 ADSCrossRefGoogle Scholar
  284. I.A. Price, C.L. Waters, F.W. Menk, G.J. Bailey, B.J. Fraser, A technique to investigate plasma mass density in the topside ionosphere using ULF waves. J. Geophys. Res. 104, 12723–12732 (1999). doi: 10.1029/1999JA900042 ADSCrossRefGoogle Scholar
  285. Z.-y. Pu, M.G. Kivelson, Kelvin-Helmholtz instability at the magnetopause: energy flux into the magnetosphere. J. Geophys. Res. 88, 853–862 (1983). doi: 10.1029/JA088iA02p00853 ADSCrossRefGoogle Scholar
  286. I.J. Rae, I.R. Mann, C.E.J. Watt, L.M. Kistler, W. Baumjohann, Equator-S observations of drift mirror mode waves in the dawnside magnetosphere. J. Geophys. Res. 112, 11203 (2007). doi: 10.1029/2006JA012064 CrossRefGoogle Scholar
  287. I.J. Rae, K.R. Murphy, C.E.J. Watt, G. Rostoker, R. Rankin, I.R. Mann, C.R. Hodgson, H.U. Frey, A.W. Degeling, C. Forsyth, Field line resonances as a trigger and a tracer for substorm onset. J. Geophys. Res. Space Phys. 119, 5343–5363 (2014). doi: 10.1002/2013JA018889 ADSCrossRefGoogle Scholar
  288. F. Reale, Coronal loops: observations and modeling of confined plasma. Living Rev. Sol. Phys. 11, 4 (2014). doi: 10.12942/lrsp-2014-4 ADSCrossRefGoogle Scholar
  289. H.A.S. Reid, N. Vilmer, E.P. Kontar, Characteristics of the flare acceleration region derived from simultaneous hard X-ray and radio observations. Astron. Astrophys. 529, 66 (2011). doi: 10.1051/0004-6361/201016181 ADSCrossRefGoogle Scholar
  290. V.E. Reznikova, P. Antolin, T. Van Doorsselaere, Forward modeling of gyrosynchrotron intensity perturbations by sausage modes. Astrophys. J. 785, 86 (2014). doi: 10.1088/0004-637X/785/2/86 ADSCrossRefGoogle Scholar
  291. E. Robbrecht, E. Verwichte, D. Berghmans, J.F. Hochedez, S. Poedts, V.M. Nakariakov, Slow magnetoacoustic waves in coronal loops: EIT and TRACE. Astron. Astrophys. 370, 591–601 (2001). doi: 10.1051/0004-6361:20010226 ADSCrossRefGoogle Scholar
  292. B. Roberts, Slow magnetohydrodynamic waves in the solar atmosphere. Philos. Trans. R. Soc. Lond. Ser. A 364, 447–460 (2006). doi: 10.1098/rsta.2005.1709 ADSMathSciNetCrossRefGoogle Scholar
  293. B. Roberts, P.M. Edwin, A.O. Benz, Fast pulsations in the solar corona. Nature 305, 688–690 (1983). doi: 10.1038/305688a0 ADSCrossRefGoogle Scholar
  294. M.S. Ruderman, B. Roberts, The damping of coronal loop oscillations. Astrophys. J. 577, 475–486 (2002) ADSCrossRefGoogle Scholar
  295. C.T. Russell, R.C. Elphic, ISEE observations of flux transfer events at the dayside magnetopause. Geophys. Res. Lett. 6, 33–36 (1979). doi: 10.1029/GL006i001p00033 ADSCrossRefGoogle Scholar
  296. A.J.B. Russell, L. Fletcher, Propagation of Alfvénic waves from corona to chromosphere and consequences for solar flares. Astrophys. J. 765, 81 (2013). doi: 10.1088/0004-637X/765/2/81 ADSCrossRefGoogle Scholar
  297. T. Sakurai, M. Goossens, J.V. Hollweg, Resonant behaviour of MHD waves on magnetic flux tubes. I. Connection formulae at the resonant surfaces. Sol. Phys. 133, 227–245 (1991) ADSCrossRefGoogle Scholar
  298. J.C. Samson, B.G. Harrold, J.M. Ruohoniemi, R.A. Greenwald, A.D.M. Walker, Field line resonances associated with MHD waveguides in the magnetosphere. Geophys. Res. Lett. 19, 441–444 (1992). doi: 10.1029/92GL00116 ADSCrossRefGoogle Scholar
  299. S. Schäfer, K.H. Glassmeier, P.T.I. Eriksson, P.N. Mager, V. Pierrard, K.H. Fornaçon, L.G. Blomberg, Spatio-temporal structure of a poloidal Alfvén wave detected by Cluster adjacent to the dayside plasmapause. Ann. Geophys. 26, 1805–1817 (2008). doi: 10.5194/angeo-26-1805-2008 ADSCrossRefGoogle Scholar
  300. A. Schekotov, V. Pilipenko, K. Shiokawa, E. Fedorov, ULF impulsive magnetic response at mid-latitudes to lightning activity. Earth Planets Space 63, 119–128 (2011). doi: 10.5047/eps.2010.12.009 ADSCrossRefGoogle Scholar
  301. J.M. Schmidt, L. Ofman, Global simulation of an extreme ultraviolet imaging telescope wave. Astrophys. J. 713, 1008–1015 (2010). doi: 10.1088/0004-637X/713/2/1008 ADSCrossRefGoogle Scholar
  302. C.J. Schrijver, D.S. Brown, Oscillations in the magnetic field of the solar corona in response to flares near the photosphere. Astrophys. J. Lett. 537, 69–72 (2000). doi: 10.1086/312753 ADSCrossRefGoogle Scholar
  303. M. Selwa, L. Ofman, K. Murawski, Numerical simulations of slow standing waves in a curved solar coronal loop. Astrophys. J. Lett. 668, 83–86 (2007). doi: 10.1086/522602 ADSCrossRefGoogle Scholar
  304. M. Selwa, S.K. Solanki, L. Ofman, The role of active region loop geometry. II. Symmetry breaking in three-dimensional active region: why are vertical kink oscillations observed so rarely? Astrophys. J. 728, 87 (2011). doi: 10.1088/0004-637X/728/2/87 ADSCrossRefGoogle Scholar
  305. R.P. Sharma, N. Yadav, N. Pathak, Role of 3d-dispersive Alfvén waves in coronal heating. Astrophys. Space Sci. 351, 75–80 (2014). doi: 10.1007/s10509-014-1845-7 ADSCrossRefGoogle Scholar
  306. K. Shibasaki, High-beta disruption in the solar atmosphere. Astrophys. J. 557, 326–331 (2001). doi: 10.1086/321651 ADSCrossRefGoogle Scholar
  307. K. Shibata, T. Magara, Solar flares: magnetohydrodynamic processes. Living Rev. Sol. Phys. 8, 6 (2011). doi: 10.12942/lrsp-2011-6 ADSCrossRefGoogle Scholar
  308. D.G. Sibeck, G. Korotova, D.L. Turner, V. Angelopoulos, K.-H. Glaßmeier, J.P. McFadden, Frequency doubling and field-aligned ion streaming in a long-period poloidal pulsation. J. Geophys. Res. Space Phys. 117, 11215 (2012). doi: 10.1029/2011JA017473 ADSCrossRefGoogle Scholar
  309. R. Soler, R. Oliver, J.L. Ballester, Magnetohydrodynamic waves in a partially ionized filament thread. Astrophys. J. 699, 1553–1562 (2009). doi: 10.1088/0004-637X/699/2/1553 ADSCrossRefGoogle Scholar
  310. R. Soler, R. Oliver, J.L. Ballester, Spatial damping of propagating kink waves in prominence threads. Astrophys. J. 726, 102 (2011). doi: 10.1088/0004-637X/726/2/102 ADSCrossRefGoogle Scholar
  311. R. Soler, J. Andries, M. Goossens, Resonant Alfvén waves in partially ionized plasmas of the solar atmosphere. Astron. Astrophys. 537, 84 (2012). doi: 10.1051/0004-6361/201118235 ADSCrossRefGoogle Scholar
  312. R. Soler, M. Goossens, J. Terradas, R. Oliver, The behavior of transverse waves in nonuniform solar flux tubes. I. Comparison of ideal and resistive results. Astrophys. J. 777, 158 (2013). doi: 10.1088/0004-637X/777/2/158 ADSCrossRefGoogle Scholar
  313. D.J. Southwood, Some features of field line resonances in the magnetosphere. Planet. Space Sci. 22, 483–491 (1974). doi: 10.1016/0032-0633(74)90078-6 ADSCrossRefGoogle Scholar
  314. D.J. Southwood, M.A. Saunders, Curvature coupling of slow and Alfvén MHD waves in a magnetotail field configuration. Planet. Space Sci. 33, 127–134 (1985). doi: 10.1016/0032-0633(85)90149-7 ADSCrossRefGoogle Scholar
  315. K. Stasiewicz, P. Bellan, C. Chaston, C. Kletzing, R. Lysak, J. Maggs, O. Pokhotelov, C. Seyler, P. Shukla, L. Stenflo, A. Streltsov, J.-E. Wahlund, Small scale Alfvénic structure in the Aurora. Space Sci. Rev. 92, 423–533 (2000) ADSCrossRefGoogle Scholar
  316. R.S. Steinolfson, J.M. Davila, Coronal heating by the resonant absorption of Alfvén waves—importance of the global mode and scaling laws. Astrophys. J. 415, 354–363 (1993). doi: 10.1086/173169 ADSCrossRefGoogle Scholar
  317. A.V. Stepanov, V.V. Zaitsev, Quasi-periodic pulsations and diagnostics of flaring plasma. Geomagn. Aeron. 54, 969–981 (2014). doi: 10.1134/S0016793214080167 ADSCrossRefGoogle Scholar
  318. A.V. Stepanov, V.V. Zaitsev, V.M. Nakariakov, Coronal seismology. Phys. Usp. 55(27), 4 (2012). doi: 10.3367/UFNe.0182.201209f.0999 ADSGoogle Scholar
  319. V.V. Surkov, M. Hayakawa, Ultra and Extremely Low Frequency Electromagnetic Fields (Springer, Tokyo, 2014). doi: 10.1007/978-4-431-54367-1 CrossRefGoogle Scholar
  320. R. Sych, V.M. Nakariakov, M. Karlicky, S. Anfinogentov, Relationship between wave processes in sunspots and quasi-periodic pulsations in active region flares. Astron. Astrophys. 505, 791–799 (2009). doi: 10.1051/0004-6361/200912132 ADSCrossRefGoogle Scholar
  321. T. Tajima, J. Sakai, H. Nakajima, T. Kosugi, F. Brunel, M.R. Kundu, Current loop coalescence model of solar flares. Astrophys. J. 321, 1031–1048 (1987). doi: 10.1086/165694 ADSCrossRefGoogle Scholar
  322. K. Takahashi, A.Y. Ukhorskiy, Solar wind control of Pc5 pulsation power at geosynchronous orbit. J. Geophys. Res. Space Phys. 112, 11205 (2007). doi: 10.1029/2007JA012483 ADSCrossRefGoogle Scholar
  323. K. Takahashi, K.-H. Glassmeier, V. Angelopoulos, J. Bonnell, Y. Nishimura, H.J. Singer, C.T. Russell, Multisatellite observations of a giant pulsation event. J. Geophys. Res. Space Phys. 116, 11223 (2011). doi: 10.1029/2011JA016955 ADSGoogle Scholar
  324. Y. Taroyan, R. Erdélyi, J.G. Doyle, S.J. Bradshaw, Footpoint excitation of standing acoustic waves in coronal loops. Astron. Astrophys. 438, 713–720 (2005). doi: 10.1051/0004-6361:20052794 ADSCrossRefGoogle Scholar
  325. M.G.G.T. Taylor, H. Hasegawa, B. Lavraud, T. Phan, C.P. Escoubet, M.W. Dunlop, Y.V. Bogdanova, A.L. Borg, M. Volwerk, J. Berchem, O.D. Constantinescu, J.P. Eastwood, A. Masson, H. Laakso, J. Soucek, A.N. Fazakerley, H.U. Frey, E.V. Panov, C. Shen, J.K. Shi, D.G. Sibeck, Z.Y. Pu, J. Wang, J.A. Wild, Spatial distribution of rolled up kelvin-Helmholtz vortices at earth’s dayside and flank magnetopause. Ann. Geophys. 30(6), 1025–1035 (2012). doi: 10.5194/angeo-30-1025-2012. ADSCrossRefGoogle Scholar
  326. J. Terradas, R. Molowny-Horas, E. Wiehr, H. Balthasar, R. Oliver, J.L. Ballester, Two-dimensional distribution of oscillations in a quiescent solar prominence. Astron. Astrophys. 393, 637–647 (2002). doi: 10.1051/0004-6361:20020967 ADSCrossRefGoogle Scholar
  327. J. Terradas, R. Oliver, J.L. Ballester, On the excitation of trapped and leaky modes in coronal slabs. Astron. Astrophys. 441, 371–378 (2005). doi: 10.1051/0004-6361:20053198 ADSCrossRefGoogle Scholar
  328. J. Terradas, J. Andries, M. Goossens, On the excitation of leaky modes in cylindrical loops. Sol. Phys. 246, 231–242 (2007). doi: 10.1007/s11207-007-9067-6 ADSCrossRefGoogle Scholar
  329. J. Terradas, J. Andries, M. Goossens, I. Arregui, R. Oliver, J.L. Ballester, Nonlinear instability of kink oscillations due to shear motions. Astrophys. J. Lett. 687, 115–118 (2008a). doi: 10.1086/593203 ADSCrossRefGoogle Scholar
  330. J. Terradas, I. Arregui, R. Oliver, J.L. Ballester, J. Andries, M. Goossens, Resonant absorption in complicated plasma configurations: applications to multistranded coronal loop oscillations. Astrophys. J. 679, 1611–1620 (2008b). doi: 10.1086/586733 ADSCrossRefGoogle Scholar
  331. J. Terradas, M. Goossens, G. Verth, Selective spatial damping of propagating kink waves due to resonant absorption. Astron. Astrophys. 524, 23 (2010). doi: 10.1051/0004-6361/201014845 ADSCrossRefGoogle Scholar
  332. B.J. Thompson, J.B. Gurman, W.M. Neupert, J.S. Newmark, J.-P. Delaboudinière, O.C. St. Cyr, S. Stezelberger, K.P. Dere, R.A. Howard, D.J. Michels, SOHO/EIT observations of the 1997 April 7 coronal transient: possible evidence of coronal Moreton waves. Astrophys. J. Lett. 517, 151–154 (1999). doi: 10.1086/312030 ADSCrossRefGoogle Scholar
  333. D.J. Thomson, L.J. Lanzerotti, C.G. Maclennan, B. Heber, H. Kunow, R.E. Gold, Coherence of charged particle oscillations in the heliosphere (\(\mbox{f}\approx5~\upmu \mbox{Hz}\)): implications for a solar modulation source. J. Geophys. Res. 106, 29341–29354 (2001). doi: 10.1029/2001JA000011 ADSCrossRefGoogle Scholar
  334. J. Threlfall, C.E. Parnell, I. De Moortel, K.G. McClements, T.D. Arber, Nonlinear wave propagation and reconnection at magnetic X-points in the Hall MHD regime. Astron. Astrophys. 544, 24 (2012). doi: 10.1051/0004-6361/201219098 ADSCrossRefGoogle Scholar
  335. J. Threlfall, I. De Moortel, S.W. McIntosh, C. Bethge, First comparison of wave observations from CoMP and AIA/SDO. Astron. Astrophys. 556, 124 (2013). doi: 10.1051/0004-6361/201321782 ADSCrossRefGoogle Scholar
  336. J.O. Thurgood, R.J. Morton, J.A. McLaughlin, First direct measurements of transverse waves in solar polar plumes using SDO/AIA. Astrophys. J. Lett. 790, 2 (2014). doi: 10.1088/2041-8205/790/1/L2 ADSCrossRefGoogle Scholar
  337. V.T. Tikhonchuk, V.Y. Bychenkov, Effect of anomalous resistivity on MHD wave damping. J. Geophys. Res. 100, 9535–9538 (1995). doi: 10.1029/95JA00520 ADSCrossRefGoogle Scholar
  338. S. Tomczyk, S.W. McIntosh, Time-distance seismology of the solar corona with CoMP. Astrophys. J. 697, 1384–1391 (2009). doi: 10.1088/0004-637X/697/2/1384 ADSCrossRefGoogle Scholar
  339. S. Tomczyk, S.W. McIntosh, S.L. Keil, P.G. Judge, T. Schad, D.H. Seeley, J. Edmondson, Alfvén waves in the solar corona. Science 317, 1192 (2007). doi: 10.1126/science.1143304 ADSCrossRefGoogle Scholar
  340. V.Y. Trakhtengertz, A.Y. Feldstein, About dissipation of Alfvén waves in the layer with anomalous resistance. Geomagn. Aeron. 25, 334–336 (1985) ADSGoogle Scholar
  341. V.A. Troitskaya, History of the study of upstream sources of ULF waves, in Geophysical Monograph, ed. by M.J. Engebretson, K. Takahashi, M. Scholer. Am, vol. 81 (Geophys, Union, Washington, 1994), p. 45 Google Scholar
  342. V.A. Troitskaya, A.V. Gul’elmi, Geomagnetic micropulsations and diagnostics of the magnetosphere. Space Sci. Rev. 7, 689–768 (1967). doi: 10.1007/BF00542894 ADSCrossRefGoogle Scholar
  343. D. Tsiklauri, J.-I. Sakai, S. Saito, Particle-in-cell simulations of circularly polarised Alfvén wave phase mixing: a new mechanism for electron acceleration in collisionless plasmas. Astron. Astrophys. 435, 1105–1113 (2005). doi: 10.1051/0004-6361:20042436 ADSCrossRefGoogle Scholar
  344. Y. Uchida, Propagation of hydromagnetic disturbances in the solar corona and Moreton’s wave phenomenon. Sol. Phys. 4, 30–44 (1968). doi: 10.1007/BF00146996 ADSCrossRefGoogle Scholar
  345. J. Vaclavik, K. Appert, Theory of plasma heating by low frequency waves: magnetic pumping and Alfvén resonance heating. Nucl. Fusion 31(10), 1945 (1991). CrossRefGoogle Scholar
  346. T. Van Doorsselaere, J. Andries, S. Poedts, M. Goossens, Damping of coronal loop oscillations. Calculation of resonantly damped kink oscillations of one-dimensional nonuniform loops. Astrophys. J. 606, 1223–1232 (2004a) ADSCrossRefGoogle Scholar
  347. T. Van Doorsselaere, A. Debosscher, J. Andries, S. Poedts, The effect of curvature on quasi-modes in coronal loops. Astron. Astrophys. 424, 1065–1074 (2004b). doi: 10.1051/0004-6361:20041239 ADSCrossRefGoogle Scholar
  348. T. Van Doorsselaere, V.M. Nakariakov, E. Verwichte, Detection of waves in the solar corona: kink or Alfvén? Astrophys. J. Lett. 676, 73–75 (2008c). doi: 10.1086/587029 ADSCrossRefGoogle Scholar
  349. T. Van Doorsselaere, C.S. Brady, E. Verwichte, V.M. Nakariakov, Seismological demonstration of perpendicular density structuring in the solar corona. Astron. Astrophys. 491, 9–12 (2008b). doi: 10.1051/0004-6361:200810659 CrossRefGoogle Scholar
  350. T. Van Doorsselaere, V.M. Nakariakov, P.R. Young, E. Verwichte, Coronal magnetic field measurement using loop oscillations observed by Hinode/EIS. Astron. Astrophys. 487, 17–20 (2008c). doi: 10.1051/0004-6361:200810186 CrossRefGoogle Scholar
  351. T. Van Doorsselaere, N. Wardle, G. Del Zanna, K. Jansari, E. Verwichte, V.M. Nakariakov, The first measurement of the adiabatic index in the solar corona using time-dependent spectroscopy of Hinode/EIS observations. Astrophys. J. 727, 32 (2011). doi: 10.1088/2041-8205/727/2/L32 CrossRefGoogle Scholar
  352. S. Vasheghani Farahani, T. Van Doorsselaere, E. Verwichte, V.M. Nakariakov, Propagating transverse waves in soft X-ray coronal jets. Astron. Astrophys. 498, 29–32 (2009). doi: 10.1051/0004-6361/200911840 ADSMATHCrossRefGoogle Scholar
  353. S. Vasheghani Farahani, C. Hornsey, T. Van Doorsselaere, M. Goossens, Frequency and damping rate of fast sausage waves. Astrophys. J. 781, 92 (2014). doi: 10.1088/0004-637X/781/2/92 ADSCrossRefGoogle Scholar
  354. A.M. Veronig, M. Temmer, B. Vršnak, High-cadence observations of a global coronal wave by STEREO EUVI. Astrophys. J. Lett. 681, 113–116 (2008). doi: 10.1086/590493 ADSCrossRefGoogle Scholar
  355. A.M. Veronig, N. Muhr, I.W. Kienreich, M. Temmer, B. Vršnak, First observations of a dome-shaped large-scale coronal extreme-ultraviolet wave. Astrophys. J. Lett. 716, 57–62 (2010). doi: 10.1088/2041-8205/716/1/L57 ADSCrossRefGoogle Scholar
  356. G. Verth, J. Terradas, M. Goossens, Observational evidence of resonantly damped propagating kink waves in the solar corona. Astrophys. J. Lett. 718, 102–105 (2010). doi: 10.1088/2041-8205/718/2/L102 ADSCrossRefGoogle Scholar
  357. E. Verwichte, M.J. Aschwanden, T. Van Doorsselaere, C. Foullon, V.M. Nakariakov, Seismology of a large solar coronal loop from EUVI/STEREO observations of its transverse oscillation. Astrophys. J. 698, 397–404 (2009). doi: 10.1088/0004-637X/698/1/397 ADSCrossRefGoogle Scholar
  358. E. Verwichte, T. Van Doorsselaere, R.S. White, P. Antolin, Statistical seismology of transverse waves in the solar corona. Astron. Astrophys. 552, 138 (2013). doi: 10.1051/0004-6361/201220456 ADSCrossRefGoogle Scholar
  359. N.M. Viall, L. Kepko, H.E. Spence, Relative occurrence rates and connection of discrete frequency oscillations in the solar wind density and dayside magnetosphere. J. Geophys. Res. Space Phys. 114, 1201 (2009). doi: 10.1029/2008JA013334 ADSCrossRefGoogle Scholar
  360. J. Vogt, Alfvén wave coupling in the auroral current circuit. Surv. Geophys. 23, 335–377 (2002) ADSCrossRefGoogle Scholar
  361. Y.M. Voitenko, Excitation of kinetic Alfvén waves in a flaring loop. Sol. Phys. 182, 411–430 (1998). doi: 10.1023/A:1005049006572 ADSCrossRefGoogle Scholar
  362. Y. Voitenko, M. Goossens, Nonlinear decay of phase-mixed Alfvén waves in the solar corona. Astron. Astrophys. 357, 1073–1085 (2000) ADSGoogle Scholar
  363. A.D.M. Walker, The Kelvin-Helmholtz instability in the low-latitude boundary layer. Planet. Space Sci. 29, 1119–1133 (1981). doi: 10.1016/0032-0633(81)90011-8 ADSCrossRefGoogle Scholar
  364. A.D.M. Walker, MHD Waves in Geospace (Institute of Physics Publishing, London, 2005) Google Scholar
  365. Y.-M. Wang, EIT waves and fast-mode propagation in the solar corona. Astrophys. J. Lett. 543, 89–93 (2000). doi: 10.1086/318178 ADSCrossRefGoogle Scholar
  366. T. Wang, Standing slow-mode waves in hot coronal loops: observations, modeling, and coronal seismology. Space Sci. Rev. 158, 397–419 (2011). doi: 10.1007/s11214-010-9716-1 ADSCrossRefGoogle Scholar
  367. T.J. Wang, S.K. Solanki, Vertical oscillations of a coronal loop observed by TRACE. Astron. Astrophys. 421, 33–36 (2004). doi: 10.1051/0004-6361:20040186 ADSCrossRefGoogle Scholar
  368. T. Wang, S.K. Solanki, W. Curdt, D.E. Innes, I.E. Dammasch, Doppler shift oscillations of hot solar coronal plasma seen by SUMER: a signature of loop oscillations? Astrophys. J. Lett. 574, 101–104 (2002). doi: 10.1086/342189 ADSCrossRefGoogle Scholar
  369. T. Wang, D.E. Innes, J. Qiu, Determination of the coronal magnetic field from hot-loop oscillations observed by SUMER and SXT. Astrophys. J. 656, 598–609 (2007). doi: 10.1086/510424 ADSCrossRefGoogle Scholar
  370. T. Wang, L. Ofman, J.M. Davila, Y. Su, Growing transverse oscillations of a multistranded loop observed by SDO/AIA. Astrophys. J. Lett. 751, 27 (2012). doi: 10.1088/2041-8205/751/2/L27 ADSCrossRefGoogle Scholar
  371. A. Warmuth, G. Mann, Kinematical evidence for physically different classes of large-scale coronal EUV waves. Astron. Astrophys. 532, 151 (2011). doi: 10.1051/0004-6361/201116685 ADSCrossRefGoogle Scholar
  372. D.F. Webb, T.A. Howard, Coronal mass ejections: observations. Living Rev. Sol. Phys. 9, 3 (2012). doi: 10.12942/lrsp-2012-3 ADSCrossRefGoogle Scholar
  373. R.S. White, E. Verwichte, C. Foullon, First observation of a transverse vertical oscillation during the formation of a hot post-flare loop. Astron. Astrophys. 545, 129 (2012). doi: 10.1051/0004-6361/201219856 ADSCrossRefGoogle Scholar
  374. R.S. White, E. Verwichte, C. Foullon, Anti-phase signature of flare generated transverse loop oscillations. Astrophys. J. 774, 104 (2013). doi: 10.1088/0004-637X/774/2/104 ADSCrossRefGoogle Scholar
  375. D.R. Williams, M. Mathioudakis, P.T. Gallagher, K.J.H. Phillips, R.T.J. McAteer, F.P. Keenan, P. Rudawy, A.C. Katsiyannis, An observational study of a magneto-acoustic wave in the solar corona. Mon. Not. R. Astron. Soc. 336, 747–752 (2002). doi: 10.1046/j.1365-8711.2002.05764.x ADSCrossRefGoogle Scholar
  376. J. Woch, R. Lundin, Temporal magnetosheath plasma injection observed with Viking—a case study. Ann. Geophys. 9, 133–142 (1991) ADSGoogle Scholar
  377. J. Woch, G. Kremser, A. Korth, A comprehensive investigation of compressional ULF waves observed in the ring current. J. Geophys. Res. 95, 15113–15132 (1990). doi: 10.1029/JA095iA09p15113 ADSCrossRefGoogle Scholar
  378. A.N. Wright, Dispersion and wave coupling in inhomogeneous MHD waveguides. J. Geophys. Res. 99, 159–167 (1994). doi: 10.1029/93JA02206 ADSCrossRefGoogle Scholar
  379. D.M. Wright, T.K. Yeoman, I.J. Rae, J. Storey, A.B. Stockton-Chalk, J.L. Roeder, K.J. Trattner, Ground-based and polar spacecraft observations of a giant (Pg) pulsation and its associated source mechanism. J. Geophys. Res. 106, 10837–10852 (2001). doi: 10.1029/2001JA900022 ADSCrossRefGoogle Scholar
  380. J.R. Wygant, A. Keiling, C.A. Cattell, M. Johnson, R.L. Lysak, M. Temerin, F.S. Mozer, C.A. Kletzing, J.D. Scudder, W. Peterson, C.T. Russell, G. Parks, M. Brittnacher, G. Germany, J. Spann, Polar spacecraft based comparisons of intense electric fields and Poynting flux near and within the plasma sheet-tail lobe boundary to UVI images: an energy source for the aurora. J. Geophys. Res. 105, 18675 (2000). doi: 10.1029/1999JA900500 ADSCrossRefGoogle Scholar
  381. T.K. Yeoman, D.M. Wright, L.J. Baddeley, Ionospheric signatures of ULF waves: active radar techniques, in Magnetospheric ULF Waves: Synthesis and New Directions, ed. by K. Takahashi, P.J. Chi, R.E. Denton, R.L. Lysak. Washington DC American Geophysical Union Geophysical Monograph Series, vol. 169 (2006), p. 273 CrossRefGoogle Scholar
  382. T.K. Yeoman, M. James, P.N. Mager, D.Y. Klimushkin, SuperDARN observations of high-m ULF waves with curved phase fronts and their interpretation in terms of transverse resonator theory. J. Geophys. Res. Space Phys. 117, 6231 (2012). doi: 10.1029/2012JA017668 ADSGoogle Scholar
  383. S. Yu, V.M. Nakariakov, L.A. Selzer, B. Tan, Y. Yan, Quasi-periodic wiggles of microwave zebra structures in a solar flare. Astrophys. J. 777, 159 (2013). doi: 10.1088/0004-637X/777/2/159 ADSCrossRefGoogle Scholar
  384. D. Yuan, V.M. Nakariakov, Measuring the apparent phase speed of propagating EUV disturbances. Astron. Astrophys. 543, 9 (2012). doi: 10.1051/0004-6361/201218848 ADSCrossRefGoogle Scholar
  385. D. Yuan, V.M. Nakariakov, N. Chorley, C. Foullon, Leakage of long-period oscillations from the chromosphere to the corona. Astron. Astrophys. 533, 116 (2011). doi: 10.1051/0004-6361/201116933 ADSCrossRefGoogle Scholar
  386. D. Yuan, Y. Shen, Y. Liu, V.M. Nakariakov, B. Tan, J. Huang, Distinct propagating fast wave trains associated with flaring energy releases. Astron. Astrophys. 554, 144 (2013). doi: 10.1051/0004-6361/201321435 ADSCrossRefGoogle Scholar
  387. K. Yumoto, V. Pilipenko, E. Fedorov, N. Kurneva, M. De Lauretis, K Kitamura, Magnetospheric ULF wave phenomena stimulated by SSC. J. Geomagn. Geoelectr. 49(10), 1179–1195 (1997) CrossRefGoogle Scholar
  388. V.V. Zaitsev, A.V. Stepanov, On the origin of the hard X-ray pulsations during solar flares. Sov. Astron. Lett. 8, 132–134 (1982) ADSGoogle Scholar
  389. V.V. Zaitsev, A.V. Stepanov, Coronal magnetic loops. Phys. Usp. 51, 1123–1160 (2008). doi: 10.1070/PU2008v051n11ABEH006657 ADSCrossRefGoogle Scholar
  390. I.V. Zimovets, V.M. Nakariakov, Excitation of kink oscillations of coronal loops: statistical study. Astron. Astrophys. 577, 4 (2015). doi: 10.1051/0004-6361/201424960 ADSCrossRefGoogle Scholar
  391. I.V. Zimovets, A.B. Struminsky, Imaging observations of quasi-periodic pulsatory nonthermal emission in two-ribbon solar flares. Sol. Phys. 258, 69–88 (2009). doi: 10.1007/s11207-009-9394-x ADSCrossRefGoogle Scholar
  392. N.A. Zolotukhina, P.N. Mager, D.Y. Klimushkin, Pc5 waves generated by substorm injection: a case study. Ann. Geophys. 26, 2053–2059 (2008). doi: 10.5194/angeo-26-2053-2008 ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • V. M. Nakariakov
    • 1
    • 2
    • 3
  • V. Pilipenko
    • 4
  • B. Heilig
    • 5
  • P. Jelínek
    • 6
  • M. Karlický
    • 7
  • D. Y. Klimushkin
    • 8
  • D. Y. Kolotkov
    • 1
  • D.-H. Lee
    • 2
  • G. Nisticò
    • 1
  • T. Van Doorsselaere
    • 9
  • G. Verth
    • 10
  • I. V. Zimovets
    • 11
    • 12
    • 4
  1. 1.Centre for Fusion, Space and AstrophysicsUniversity of WarwickCoventryUK
  2. 2.School of Space ResearchKyung Hee UniversityYonginKorea
  3. 3.Central Astronomical Observatory at PulkovoSt. PetersburgRussia
  4. 4.Space Research InstituteMoscowRussia
  5. 5.Tihany Geophysical ObservatoryGeological and Geophysical Institute of HungaryTihanyHungary
  6. 6.Faculty of Science, Institute of Physics and BiophysicsUniversity of South BohemiaČeské BudějoviceCzech Republic
  7. 7.Astronomical Institute of the Academy of Sciences of the Czech RepublicOndřejovCzech Republic
  8. 8.Institute of Solar-Terrestrial PhysicsIrkutskRussia
  9. 9.Department of Mathematics, Centre for Mathematical Plasma AstrophysicsKU LeuvenLeuvenBelgium
  10. 10.Solar Physics and Space Plasma Research Centre (SP2RC)University of SheffieldSheffieldUK
  11. 11.National Space Science CenterChinese Academy of SciencesBeijingChina
  12. 12.International Space Science InstituteBeijingChina

Personalised recommendations