Skip to main content
Log in

25 Years of Self-organized Criticality: Space and Laboratory Plasmas

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

Studies of complexity in extended dissipative dynamical systems, in nature and in laboratory, require multiple approaches and the framework of self-organized criticality (SOC) has been used extensively in the studies of such nonequilibrium systems. Plasmas are inherently nonlinear and many ubiquitous features such as multiscale behavior, intermittency and turbulence have been analyzed using SOC concepts. The role of SOC in advancing our understanding of space and laboratory plasmas as nonequilibrium systems is reviewed in this article. The main emphasis is on how SOC and related approaches have provided new insights and models of nonequilibrium plasma phenomena. Among the natural plasmas the magnetosphere, driven by the solar wind, is a prominent example and extensive data from ground-based and space-borne instruments have been used to study phenomena of direct relevance to space weather, viz. geomagnetic storms and substorms. During geomagnetically active periods the magnetosphere is far from equilibrium, due to its internal dynamics and being driven by the turbulent solar wind, and substorms are prominent features of the complex driven system. Studies using solar wind and magnetospheric data have shown both global and multiscale features of substorms. While the global behavior exhibits system-wide changes, the multiscale behavior shows scaling features. Along with the studies based on observational data, analogue models of the magnetosphere have advanced the understanding of space plasmas as well as the role of SOC in natural systems. In laboratory systems, SOC has been used in modeling the plasma behavior in fusion experiments, mainly in tokamaks and stellarators. Tokamaks are the dominant plasma confinement system and modeling based on SOC have provided a complementary approach to the understanding of plasma behavior under fusion conditions. These studies have provided insights into key features of toroidally confined plasmas, e.g., the existence of critical temperature gradients above which the transport rates increase drastically. The SOC models address the transport properties from a more general approach, compared to those based on turbulence arising from specific plasma instabilities, and provide a better framework for modeling features such as superdiffusion. The studies of space and laboratory plasmas as nonequilibrium systems have been motivated by features such as scaling and critical behavior, and have provided new insights by highlighting the properties that are common with other systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. The Hurst exponent \(H\) is related to the spectral index \(\beta\) via the Berry formula \(\beta= 2H +1\). \(H=1/2\) corresponds to white noise, with \(\beta= 0\); \(H < 0\) to fractional Brownian noise; \(H=0\) to flicker noise; \(0 < H < 1\) to fractional Brownian motion.

  2. Indeed neoclassical transport is classical transport including the effects of toroidal geometry. The transport is still driven by Coulomb collisions—no anomalous transport due to plasma microscopic instabilities is included. The collisional character of the transport implies that there is a characteristic scale posed by the dynamics. So this scale will be always there in the thermodynamic (large-system) limit at odds with the multi-scale features characterizing SOC. The net result is that SOC is to be expected in regimes where Coulomb collisions lose their importance, which is somehow the case of rarefied thermonuclear plasmas.

  3. The inverse spectral energy transfer is inherent to fluid-turbulence systems in two dimensions (2D), including the ubiquitous drift-wave turbulence. In 2D turbulence energy cascades from small to large scales because the phenomenon of vortex stretching is forbidden.

  4. The idea that activity in one region can stimulate activity in another region, particularly in a nonlinear context, is in fact very general and as such must occur in many applications. Here we mention the processes of stimulated galaxy formation discussed by Schulman and Seiden (1986), who used this to model the hierarchical structure in the distribution of galaxies with power law correlations.

  5. Because of amplification, we expect a steeper drop-off in the energy spectrum of the coupled SOC-turbulence system as compared to the inertial range of the fluid (drift-wave) turbulence. In this connection, we should stress that the avalanching transport is triggered by the explicit radial dependence in the profiles, and, when account is taken for the inverse cascade of the energy, by boundary feedbacks, so that the assumptions of constant energy transfer and of infiniteness of the system, resulting in the fluid-like \(-5/3\) behavior, do not really apply here.

  6. The Fick paradigm states that the internal fluxes are described by a set of local transport coefficients—diffusivities or conductivities—related to the local thermodynamic forces which induce the fluxes through Fick’s law. Models based on these assumptions are referred to as local models.

  7. The Russian word “roy” means a “swarm” in English.

References

  • H.D. Abarbanel, R. Brown, J.J. Sidorovich, T.S. Tsimring, The analysis of observed chaotic data in physical systems. Rev. Mod. Phys. 65, 1331 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  • P.W. Anderson, More is different. Science 177, 393–396 (1972)

    Article  ADS  Google Scholar 

  • P.W. Anderson, More and Different: Notes from a Thoughtful Curmudgeon (World Scientific, Singapore, 2011)

    Book  Google Scholar 

  • V. Angelopoulos, F.V. Coroniti, C.F. Kennel, M.G. Kivelson, R.J. Walker, C.T. Russell, R.L. McPherron, E. Sanchez, C.I. Meng, W. Baumjohann, G.D. Reeves, R.D. Belian, N. Sato, E. Friis-Christensen, P.R. Sutcliffe, K. Yumoto, T. Harris, Multipoint analysis of a bursty bulk flow event on April 11, 1985. J. Geophys. Res. 101(A3), 4967–4990 (1996)

    Article  ADS  Google Scholar 

  • V. Angelopoulos, T. Mukai, S. Kokubun, Evidence for intermittency in Earth’s plasma sheet and implications for self-organized criticality. Phys. Plasmas 6(11), 4161–4168 (1999)

    Article  ADS  Google Scholar 

  • K. Arzner, M. Scholer, R.A. Treumann, Percolation of charged particle orbits in two-dimensional irregular fields and its effect in the magnetospheric tail. J. Geophys. Res. Space Phys. 107(A4) (2002). doi:10.1029/2001JA000027

  • M.J. Aschwanden, A statistical fractal-diffusive avalanche model of a slowly-driven self-organized criticality system. Astron. Astrophys. 539(A2), 15 (2012)

    Google Scholar 

  • M.J. Aschwanden, Theoretical models of SOC systems, chap. 2, in Self-organized Criticality Systems, ed. by M.J. Aschwanden (Open Academic Press, Berlin, 2013a), pp. 23–72. http://www.openacademicpress.de

    Google Scholar 

  • M.J. Aschwanden, SOC systems in astrophysics, chap. 13, in Proceedings Self-organized Criticality Systems, ed. by M.J. Aschwanden (Open Academic Press, Berlin, 2013b), pp. 439–483. http://www.openacademicpress.de

    Google Scholar 

  • M.J. Aschwanden, J.M. McTiernan, Reconciliation of waiting time statistics of solar flares observed in hard X-rays. Astrophys. J. 717, 683–692 (2010)

    Article  ADS  Google Scholar 

  • M.J. Aschwanden, N.B. Crosby, M. Dimitropoulou, M.K. Georgoulis, S. Hergarten, J. McAteer, A.V. Milovanov, S. Mineshige, L. Morales, N. Nishizuka, G. Pruessner, R. Sanchez, A.S. Sharma, A. Strugarek, V. Uritsky, 25 years of self-organized criticality solar and astrophysics. Space Sci. Rev. 181(1–4), 1–120 (2014). doi:10.1007/s11214-014-0054-6

    Google Scholar 

  • P. Bak, C. Tang, Earthquakes as a self-organized critical phenomenon. J. Geophys. Res. 94, 15635–15637 (1989)

    Article  ADS  Google Scholar 

  • P. Bak, C. Tang, K. Wiesenfeld, Self-organized criticality: An explanation of \(1/f\) noise. Phys. Rev. Lett. 59(27), 381–384 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  • D.N. Baker, A.J. Klimas, R.L. McPherron, J. Buchner, A nonlinear dynamical analogue model of geomagnetic activity. Geophys. Res. Lett. 17, 41 (1990)

    Article  ADS  Google Scholar 

  • D.N. Baker, T.I. Pulkkinen, J. Büchner, A.J. Klimas, Substorms: A global instability of the magnetosphere-ionosphere system. J. Geophys. Res. Space Phys. 104, 14601–14611 (1999)

    Article  ADS  Google Scholar 

  • R. Balecu, Statistical Dynamics: Matter Out of Equilibrium (Imperial College Press, London, 1997)

    Book  Google Scholar 

  • L.F. Bargatze, D.N. Baker, R.L. McPherron, E.W. Hones, Magnetospheric impulse response for many levels of geomagnetic activity. J. Geophys. Res. 90, 6387–6394 (1985). doi:10.1029/JA090iA07p06387. ISSN: 0148-0227

    Article  ADS  Google Scholar 

  • R. Basu, T. Jessen, V. Naulin, J.J. Rasmussen, Turbulent flux and the diffusion of passive tracers in electrostatic turbulence. Phys. Plasmas 10, 2696–2703 (2003)

    Article  ADS  Google Scholar 

  • S. Benkadda (ed.), Turbulent Transport in Fusion Plasmas. AIP Conf. Proc., vol. 1013 (AIP, Melville, 2008)

    Google Scholar 

  • H.L. Berk, B.N. Breizman, J. Fitzpatrick, M.S. Pekker, H.V. Wong, K.L. Wong, Nonlinear response of driven systems in weak turbulence theory. Phys. Plasmas 3(5), 1827–1838 (1996)

    Article  ADS  Google Scholar 

  • P. Beyer, S. Benkadda, X. Garbet, P.H. Diamond, Nondiffusive transport in tokamaks: Three-dimensional structure of bursts and the role of zonal flows. Phys. Rev. Lett. 85, 4892–4895 (2000)

    Article  ADS  Google Scholar 

  • J. Birn, J.F. Drake, M.A. Shay, B.N. Rogers, R.E. Denton, M. Hesse, M. Kuznetsova, Z.W. Ma, A. Bhattacharjee, A. Otto, P.L. Pritchett, Geospace Environmental Modeling (GEM) magnetic reconnection challenge. J. Geophys. Res. 106(A3), 3715–3719 (2001)

    Article  ADS  Google Scholar 

  • G. Boffetta, V. Carbone, P. Giuliani, P. Veltri, A. Vulpiani, Power laws in solar flares: Self-organized criticality or turbulence. Phys. Rev. Lett. 83(2), 4662–4665 (1999)

    Article  ADS  Google Scholar 

  • J.E. Borovsky, The occurrence rate of magnetospheric-substorm onsets: Random and periodic substorms. J. Geophys. Res. 98(A3), 3807–3813 (1993)

    Article  ADS  Google Scholar 

  • W. Bristow, Statistics of velocity fluctuations observed by SuperDARN under steady interplanetary magnetic field conditions. J. Geophys. Res. 113, CiteID:A11202 (2008)

  • D.S. Broomhead, G.P. King, Extracting qualitative dynamics from experimental data. Physica D 20(2–3), 217–236 (1986)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • R.M. Bryce, K.B. Sprague, Revisiting detrended fluctuation analysis. Sci. Rep. 2, 315 (2012). doi:10.1038/srep00315

    Article  ADS  Google Scholar 

  • V.P. Budaev, N. Ohno, S. Masuzaki, T. Morisaki, A. Komori, S. Takamura, Extended self-similarity of intermittent turbulence in edge magnetized plasmas. Nucl. Fusion 48, 024014 (2008)

    Article  ADS  Google Scholar 

  • V.P. Budaev, S.P. Savin, L.M. Zelenyi, Investigation of intermittency and generalized self-similarity of turbulent boundary layers in laboratory and magnetospheric plasmas: Towards a quantitative definition of plasma transport features. Phys. Usp. 54, 875–918 (2011)

    Article  ADS  Google Scholar 

  • A. Bunde, J.F. Eichner, J.W. Kantelhardt, S. Havlin, Long-term memory: A natural mechanism for the clustering of extreme events and anomalous residual times in climate records. Phys. Rev. Lett. 94, 048701 (2005)

    Article  ADS  Google Scholar 

  • A. Carbone, G. Castellia, H.E. Stanley, Time-dependent Hurst exponent in financial time series. Physica A 344(1–2), 267–271 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  • J.M. Carlson, J. Doyle, Complexity and robustness. Proc. Natl. Acad. Sci. USA 99, 2538–2545 (2002)

    Article  ADS  Google Scholar 

  • D. Carralero, I. Calvo, M. Shoji, B.A. Carreras, K. Ida, S. Ohdachi, S. Sakakibara, H. Yamada, C. Hidalgo, Influence of \(\beta\) on the self-similarity properties of LHD edge fluctuations. Plasma Phys. Control. Fusion 53, 095010 (2011)

    Article  ADS  Google Scholar 

  • B.A. Carreras, Progress in anomalous transport research in toroidal magnetic confinement devices. IEEE Trans. Plasma Sci. 25, 1281–1321 (1997)

    Article  ADS  Google Scholar 

  • B.A. Carreras, D.E. Newman, V.E. Lynch, P.H. Diamond, A model realization of self-organized criticality for plasma confinement. Phys. Plasmas 3, 2903 (1996)

    Article  ADS  Google Scholar 

  • B.A. Carreras, B. van Milligen, M.A. Pedrosa, R. Balbín, C. Hidalgo, D.E. Newman, E. Sánchez, M. Frances, I. García-Cortés, J. Bleuel, M. Endler, S. Davies, G.F. Matthews, Long-range time correlations in plasma edge turbulence. Phys. Rev. Lett. 80, 4438–4441 (1998)

    Article  ADS  Google Scholar 

  • B.A. Carreras, B. van Milligen, C. Hidalgo, R. Balbin, E. Sanchez, I. Garcia-Cortes, M.A. Pedrosa, J. Bleuel, M. Endler, Self-similarity properties of the probability distribution function of turbulence-induced particle fluxes at the plasma edge. Phys. Rev. Lett. 83, 3653–3656 (1999)

    Article  ADS  Google Scholar 

  • B.A. Carreras, V.E. Lynch, D.E. Newman, R. Balbin, Intermittency of plasma edge fluctuation data: Multifractal analysis. Phys. Plasmas 7, 3278 (2000)

    Article  ADS  Google Scholar 

  • B.A. Carreras, V.E. Lynch, G.M. Zaslavsky, Anomalous diffusion and exit time distribution of particle tracers in plasma turbulence model. Phys. Plasmas 8, 5096 (2001)

    Article  ADS  Google Scholar 

  • T.S. Chang, Low-dimensional behavior and symmetry breaking of stochastic systems near criticality—Can these effects be observed in space and in the laboratory. IEEE Trans. Plasma Sci. 20(6), 691–694 (1992)

    Article  ADS  Google Scholar 

  • T.S. Chang, Self-organized criticality, multi-fractal spectra, and intermittent merging of coherent structures in the magnetotail. Astrophys. Space Sci. 264, 303–316 (1999a)

    Article  ADS  MATH  Google Scholar 

  • T.S. Chang, Self-organized criticality, multi-fractal spectra, sporadic localized reconnections and intermittent turbulence in the magnetotail. Phys. Plasmas 6(11), 4137–4145 (1999b)

    Article  ADS  Google Scholar 

  • T.S. Chang, S.W.Y. Tam, C.C. Wu, G. Consolini, Complexity, forced and/or self-organized criticality and topological phase transitions in space plasmas. Space Sci. Rev. 107, 425–445 (2003)

    Article  ADS  Google Scholar 

  • T.S. Chang, S.W.Y. Tam, C.C. Wu, Complexity induced anisotropic bimodal intermittent turbulence in space plasmas. Phys. Plasmas 11(4), 1287–1299 (2004)

    Article  ADS  Google Scholar 

  • S.C. Chapman, R.M. Nicol, Generalized similarity in finite range solar wind magnetohydrodynamic turbulence. Phys. Rev. Lett. 103(24), CiteID 241101 (2009)

  • S.C. Chapman, N. Watkins, Avalanching and self-organised criticality, a paradigm for geomagnetic activity? Space Sci. Rev. 95, 293–307 (2001)

    Article  ADS  Google Scholar 

  • S.C. Chapman, N.W. Watkins, Avalanching systems under intermediate driving rate. Plasma Phys. Control. Fusion 51, 124006 (2009) (9 pp.)

    Article  ADS  Google Scholar 

  • S.C. Chapman, N.W. Watkins, R.O. Dendy, P. Helander, G. Rowlands, A simple avalanche model as an analogue for magnetospheric activity. Geophys. Res. Lett. 25(13), 2397–2400 (1998)

    Article  ADS  Google Scholar 

  • S.C. Chapman, R.O. Dendy, G. Rowlands, A sandpile model with dual scaling for laboratory, space and astrophysical plasmas. Phys. Plasmas 6(11), 4169–4177 (1999)

    Article  ADS  Google Scholar 

  • S.C. Chapman, N. Watkins, G. Rowlands, Signatures of dual scaling regimes in a simple avalanche model for magnetospheric activity. J. Atmos. Sol.-Terr. Phys. 63, 1361–1370 (2001)

    Article  ADS  Google Scholar 

  • S.C. Chapman, G. Rowlands, N.W. Watkins, Macroscopic control parameter for avalanche models for bursty transport. Phys. Plasmas 16, 012303 (2009)

    Article  ADS  Google Scholar 

  • A.V. Chechkin, R. Metzler, V.Y. Gonchar, J. Klafter, L.V. Tanatarov, First passage and arrival times densities for Levy flights and the failure of the method of images. J. Phys. A 36, L537 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • L. Chen, Theory of magnetohydrodynamic instabilities excited by energetic particles in tokamaks. Phys. Plasmas 1(5), 1519–1522 (1994)

    Article  ADS  Google Scholar 

  • J. Chen, Spatio-temporal dynamics of the magnetosphere during geospace storms, Ph.D. dissertation, University of Maryland, College Park (2007)

  • J. Chen, A.S. Sharma, Modeling and prediction of magnetospheric dynamics during intense geospace storms. J. Geophys. Res. 111(A4), A04209 (2006)

    ADS  Google Scholar 

  • C.X. Chen, R.A. Wolf, Interpretation of high-speed flows in the plasma sheet. J. Geophys. Res. 98, 21409 (1993)

    Article  ADS  Google Scholar 

  • L. Chen, F. Zonca, Physics of Alfvén waves and energetic particles in burning plasmas. Nucl. Fusion 47, S727–S734 (2007)

    Article  ADS  Google Scholar 

  • L. Chen, F. Zonca, Physics of Alfvén waves and energetic particles in burning plasmas. Rev. Mod. Phys. (2015, accepted)

  • J. Chen, A.S. Sharma, J. Edwards, X. Shao, Y. Kamide, Spatio-temporal dynamics of the magnetosphere during geospace storms: Mutual information analysis. J. Geophys. Res. 113, A05217 (2008). doi:10.1029/2007JA012310

    ADS  Google Scholar 

  • S.P. Christon, D.J. Williams, D.G. Mitchell, L.A. Frank, C.Y. Huang, Spectral characteristics of plasma sheet ion and electron populations during undisturbed geomagnetic conditions. J. Geophys. Res. Space Phys. 94, 13409–13424 (1989)

    Article  ADS  Google Scholar 

  • G. Consolini, Sandpile cellular automata and magnetospheric dynamics, in Proc., Cosmic Physics in the Year 2000, vol. 58, ed. by S. Aiello, N. Iucci, G. Sironi, A. Treves, U. Villante (SIF, Bologna, Italy, 1997), pp. 123–126

    Google Scholar 

  • G. Consolini, Self-organized criticality: A new paradigm for the magnetotail dynamics. Fractals 10, 275–283 (2002)

    Article  Google Scholar 

  • G. Consolini, T.S. Chang, Magnetic field topology and criticality in geotail dynamics: Relevance to substorm phenomena. Space Sci. Rev. 95, 309–321 (2001)

    Article  ADS  Google Scholar 

  • G. Consolini, M. Kretzschmar, Thermodynamics of rare events and impulsive relaxation events in the magnetospheric substorm dynamics. Planet. Space Sci. 55(15), 2244–2250 (2007)

    Article  ADS  Google Scholar 

  • G. Consolini, M.F. Marcucci, M. Candidi, Multifractal structure of auroral electrojet index data. Phys. Rev. Lett. 76, 4082 (1996)

    Article  ADS  Google Scholar 

  • N.B. Crosby, M.J. Aschwanden, B.R. Dennis, Frequency distributions and correlations of solar X-ray flare parameters. Sol. Phys. 143, 275–299 (1993)

    Article  ADS  Google Scholar 

  • N.B. Crosby, N.P. Meredith, A.J. Coates, R.H.A. Iles, Modelling the outer radiation belt as a complex system in a self-organised critical state. Nonlinear Process. Geophys. 12, 993–1001 (2005)

    Article  ADS  Google Scholar 

  • M.C. Cross, P.C. Hohenberg, Pattern formation outside of equilibrium. Rev. Mod. Phys. 65, 851 (1993)

    Article  ADS  Google Scholar 

  • P.G. de Gennes, Granular matter: A tentative view. Rev. Mod. Phys. 71, S374 (1999)

    Article  Google Scholar 

  • D. del Castillo-Negrete, Fractional diffusion models of nonlocal transport. Phys. Plasmas 13, 082308 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  • D. del Castillo-Negrete, B.A. Carreras, V.E. Lynch, Fractional diffusion in plasma turbulence. Phys. Plasmas 11, 3854–3864 (2004)

    Article  ADS  Google Scholar 

  • D. del-Castillo-Negrete, P. Mantica, V. Naulin, J.J. Rasmussen (JET EFDA contributors), Fractional diffusion models of nonlocal perturbative transport: Numerical results and application to JET experiments. Nucl. Fusion 48, 075009 (2008) (13 pp.)

    Article  ADS  Google Scholar 

  • R.O. Dendy, P. Helander, Sandpiles, silos and tokamak phenomenology: A brief review. Plasma Phys. Control. Fusion 39, 1947–1961 (1997)

    Article  ADS  Google Scholar 

  • D. Dhar, Theoretical studies of self-organized criticality. Physica A 369, 29–70 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  • P.H. Diamond, T.S. Hahm, On the dynamics of turbulent transport near marginal stability. Phys. Plasmas 2, 3640–3649 (1995)

    Article  ADS  Google Scholar 

  • P.H. Diamond, S.-I. Itoh, K. Itoh, T.S. Hahm, Zonal flows in plasma—A review. Plasma Phys. Control. Fusion 47, R35–R161 (2005)

    Article  ADS  Google Scholar 

  • G. Dif-Pradalier, P.H. Diamond, V. Grandgirard, Y. Sarazin, J. Abiteboul, X. Garbet, Ph. Ghendrih, A. Strugarek, S. Ku, C.S. Chang, On the validity of the local diffusive paradigm in turbulent plasma transport. Phys. Rev. E 82, 025401(R) (2010) (4 pp.)

    Article  ADS  Google Scholar 

  • G. Dif-Pradalier, G. Hornung, Ph. Ghendrih, Y. Sarazin, F. Clairet, L. Vermare, P.H. Diamond, J. Abiteboul, T. Cartier-Michaud, C. Ehrlacher, D. Estève, X. Garbet, V. Grandgirard, Ö.D. Gürcan, P. Hennequin, Y. Kosuga, G. Latu, P. Maget, P. Morel, C. Norscini, R. Sabot, A. Storelli, Finding the elusive \(E\times B\) staircase in magnetized plasmas. Phys. Rev. Lett. 114, 085004 (2015) (4 pp.)

    Article  ADS  Google Scholar 

  • M. Dimitropoulou, H. Isliker, L. Vlahos, M.K. Georgoulis, Simulating flaring events in complex active regions driven by observed magnetograms. Astron. Astrophys. 529, A101 (2011)

    Article  ADS  Google Scholar 

  • D.A. D’Ippolito, J.R. Myra, S.J. Zweben, Convective transport by intermittent blob-filaments: Comparison of theory and experiment. Phys. Plasmas 18, 060501 (2011) (48 pp.)

    Article  Google Scholar 

  • J.M. Dixon, J.A. Tuszynski, P.A. Clarkson, From Nonlinearity to Coherence Universal Features of Nonlinear Behaviour in Many-Body Physics (Oxford University Press, London, 1999)

    Google Scholar 

  • G.Z. dos Santos Lima, K.C. Iarosz, A.M. Batista, I.L. Caldas, Z.O. Guimaraes-Filho, R.L. Viana, S.R. Lopes, I.C. Nascimento, Y.K. Kuznetsov, Self-organized criticality in MHD driven plasma edge turbulence. Phys. Lett. A 376, 753–757 (2012)

    Article  ADS  MATH  Google Scholar 

  • E.J. Doyle et al., ITER data basis: Chap. 2—Plasma confinement and transport. Nucl. Fusion 47, S18 (2007)

    Article  ADS  Google Scholar 

  • D.G. Dritschel, M.E. McIntyre, Multiple jets as PV staircases: The Phillips effect and the resilience of eddy-transport barriers. J. Atmos. Sci. 65, 855–874 (2008)

    Article  ADS  Google Scholar 

  • G. Einaudi, M. Velli, The distribution of flares, statistics of magnetohydrodynamic turbulence and coronal heating. Phys. Plasmas 6(11), 4146–4153 (1999)

    Article  ADS  Google Scholar 

  • Z. Eisler, J. Kertész, S.-H. Yook, A.-L. Barabási, Multiscaling and non-universality in fluctuations of driven complex systems. Europhys. Lett. 69(4), 664 (2005)

    Article  ADS  Google Scholar 

  • D.H. Fairfield, J. Jones, Variability of the tail lobe field strength. J. Geophys. Res. 101, 7785–7791 (1996)

    Article  ADS  Google Scholar 

  • M.E. Fisher, The renormalization group in the theory of critical behavior. Rev. Mod. Phys. 46, 597 (1974)

    Article  ADS  Google Scholar 

  • H.C. Fogedby, Langevin-equations for continuous-time Lévy flights. Phys. Rev. E 50, 1657–1660 (1994)

    Article  ADS  Google Scholar 

  • E.D. Fredrickson, R.E. Bell, D.S. Darrow, G.Y. Fu, N.N. Gorelenkov, B.P. LeBlanck, S.S. Medley, J.E. Menard, H. Park, A.L. Roquemore, W.W. Heidbrink, S.A. Sabbagh, D. Stutman, K. Tritz, N.A. Crocker, S. Kubota, W. Peebles, K.C. Lee, F.M. Levington, Collective fast ion instability-induced losses in national spherical tokamak experiment. Phys. Plasmas 13(5), 056109 (2006)

    Article  ADS  Google Scholar 

  • M.P. Freeman, N.W. Watkins, D.J. Riley, Power law distributions of burst duration and interburst interval in the solar wind: Turbulence of dissipative self-organized criticality? Phys. Rev. E 62(6), 8794–8797 (2000a)

    Article  ADS  Google Scholar 

  • M.P. Freeman, N.W. Watkins, D.J. Riley, Evidence for a solar wind origin of the power law burst lifetime distribution of the AE indices. Geophys. Res. Lett. 27, 1087–1090 (2000b)

    ADS  Google Scholar 

  • J. Freidberg, Plasma Physics and Fusion Energy (Cambridge University Press, Cambridge, 2007)

    Book  Google Scholar 

  • S.B. Gabriel, J. Feynman, Power law distribution for solar energetic proton events. Sol. Phys. 165, 337–346 (1996)

    Article  ADS  Google Scholar 

  • X. Garbet, R.E. Waltz, Heat flux driven ion turbulence. Phys. Plasmas 5, 2836 (1998)

    Article  ADS  MATH  Google Scholar 

  • X. Garbet, P. Mantica, F. Ryter, G. Cordey, F. Imbeaux, C. Sozzi, A. Manini, E. Asp, V. Parail, R. Wolf (the JET EFDA Contributors), Profile stiffness and global confinement. Plasma Phys. Control. Fusion 46, 1351–1359 (2004)

    Article  Google Scholar 

  • L. Garcia, B.A. Carreras, Avalanche properties in a transport model based on critical-gradient fluctuation dynamics. Phys. Plasmas 12, 092305 (2005) (7 pp.)

    Article  ADS  Google Scholar 

  • L. Garcia, B.A. Carreras, D.E. Newman, A self-organized critical transport model based on critical-gradient fluctuation dynamics. Phys. Plasmas 9, 841 (2002)

    Article  ADS  Google Scholar 

  • M.K. Georgoulis, L. Vlahos, Variability of the occurrence frequency of solar flares and the statistical flare. Astron. Astrophys. 336, 721–734 (1998)

    ADS  Google Scholar 

  • L. Gil, D. Sornette, Landau-Ginzburg theory of self-organized criticality. Phys. Rev. Lett. 76, 3991–3994 (1996)

    Article  ADS  Google Scholar 

  • R. Gilmore, Catastrophe Theory for Scientists and Engineers (Dover, New York, 1993)

    MATH  Google Scholar 

  • M. Gilmore, C.X. Yu, T.L. Rhodes, W.A. Peebles, Investigation of rescaled range analysis, the Hurst exponent, and long-time correlations in plasma turbulence. Phys. Plasmas 9, 1312 (2002)

    Article  ADS  Google Scholar 

  • B.V. Gnedenko, A.N. Kolmogorov, Limit Distributions for Sums of Independent Random Variables (Addison-Wesley, Reading, 1954)

    MATH  Google Scholar 

  • A. Greco, W.H. Matthaeus, S. Servidio, P. Chuychai, P. Dmitruk, Statistical analysis of discontinuities in solar wind ACE data and comparison with intermittent MHD turbulence. Astrophys. J. 69, L111–L114 (2009b)

    Article  ADS  Google Scholar 

  • A. Greco, W.H. Matthaeus, S. Servidio, P. Dmitruk, Waiting-time distributions of magnetic discontinuities: Clustering or Poisson process? Phys. Rev. E 80, CiteID 046401 (2009a)

  • J.D. Gunton, The dynamics of random interfaces in phase transitions. J. Stat. Phys. 34(5), 1019–1037 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  • O.D. Gurcan, P.H. Diamond, T.S. Hahm, Z. Lin, Dynamics of turbulence spreading in magnetically confined plasmas. Phys. Plasmas 12, 032303 (2005)

    Article  ADS  Google Scholar 

  • T.C. Halsey, M.H. Jensen, L.P. Kadanoff, I. Procaccia, B.I. Shraiman, Fractal measures and their singularities: The characterization of strange sets. Phys. Rev. A 33, 1141 (1986)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • A. Hasegawa, Self-organization processes in continuous media. Adv. Phys. 34(1), 1–42 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  • S. Havlin, D. ben-Avraham, Diffusion in disordered media. Adv. Phys. 51, 187–292 (2002)

    Article  ADS  Google Scholar 

  • W.W. Heidbrink, Basic physics of Alfven instabilities driven by energetic particles in toroidally confined plasmas. Phys. Plasmas 15, 055501 (2008) (15 pp.)

    Article  ADS  Google Scholar 

  • S. Hergarten, H.J. Neugebauer, Self-organized criticality in a landslide model. Geophys. Res. Lett. 25(4), 801–804 (1998). doi:10.1029/98GL50419

    Article  ADS  Google Scholar 

  • B. Hnat, S.C. Chapman, K. Kiyani, G. Rowlands, N.W. Watkins, On the fractal nature of the magnetic field energy density in the solar wind. Geophys. Res. Lett. 34(15), CiteID L15108 (2007)

  • P.C. Hohenberg, B.I. Halperin, Theory of dynamic critical phenomena. Rev. Mod. Phys. 49, 435 (1977)

    Article  ADS  Google Scholar 

  • T.S. Horbury, A. Balogh, Structure function measurements of the intermittent MHD turbulent cascade. Nonlinear Process. Geophys. 4(3), 185–199 (1997)

    Article  ADS  Google Scholar 

  • W. Horton, I. Doxas, A low-dimensional energy-conserving state space model for substorm dynamics. J. Geophys. Res. 101(A2), 27223–27238 (1996)

    Article  ADS  Google Scholar 

  • W. Horton, J.P. Smith, R. Weigel, C. Crabtree, I. Doxas, B. Goode, J. Cary, The solar-wind driven magnetosphere-ionosphere as a complex dynamical system. Phys. Plasmas 6(11), 1–7 (1999)

    Article  Google Scholar 

  • M. Hoshino, Y. Omura, L. Lanzerotti (eds.), Frontiers in Magnetospheric Plasma Physics: Celebrating 10 Years of Geotail Operation (Elsevier, Amsterdam, 2005)

    Google Scholar 

  • K. Hu, P.C. Ivanov, Z. Chen, P. Carpena, H.E. Stanley, Effect of trends on detrended fluctuation analysis. Phys. Rev. E 64, 011114 (2001)

    Article  ADS  Google Scholar 

  • H.E. Hurst, Long-term storage capacity of reservoirs (with discussion). Trans. Am. Soc. Civ. Eng. 116, 770–799 (1951)

    Google Scholar 

  • G.T.A. Huysmans, ELMs: MHD instabilities at the transport barrier. Plasma Phys. Control. Fusion 47, B165–B178 (2005)

    Article  Google Scholar 

  • K. Ida, J.E. Rice, Rotation and momentum transport in tokamaks and helical systems. Nucl. Fusion 54, 045001 (2014)

    Article  ADS  Google Scholar 

  • Y. Idomura, M. Ida, T. Urano Kano, N. Aiba, S. Tokuda, Conservative global gyrokinetic toroidal full-f five dimensional Vlasov simulation. Comput. Phys. Commun. 179, 391 (2008)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Y. Idomura, H. Urano, N. Aiba, S. Tokuda, Study of ion turbulent transport and profile formations using global gyrokinetic full-f Vlasov simulations. Nucl. Fusion 49, 065029 (2009)

    Article  ADS  Google Scholar 

  • N. Jain, A.S. Sharma, Electron-scale processes in collisionless magnetic reconnection. Phys. Plasmas 16, 055905 (2009)

    Article  Google Scholar 

  • S. Jalan, R.E. Amritkar, Self-organized and driven phase synchronization in coupled maps. Phys. Rev. Lett. 90(1), 014101 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • H.J. Jensen, Self-organized Criticality. Emergent Complex Behavior in Physical and Biological Systems (Cambridge University Press, Cambridge, 1998)

    Book  MATH  Google Scholar 

  • S. Jespersen, R. Metzler, H.C. Fogedby, Lévy flights in external force fields: Langevin and fractional Fokker-Planck equations and their solutions. Phys. Rev. E 59, 2736–2745 (1999)

    Article  ADS  Google Scholar 

  • R. Jha, P.K. Kaw, D.R. Kulkarni, J.C. Parikh, A. Team, Evidence of Levy stable process in tokamak edge turbulence. Phys. Plasmas 10, 699 (2003)

    Article  ADS  Google Scholar 

  • J.W. Kantelhardt, E. Kpscielny-Bunde, H.A. Rego, S. Havlin, A. Bunde, Detecting long-range correlations with detrended fluctuation analysis. Physica A 295, 441–454 (2001)

    Article  ADS  MATH  Google Scholar 

  • J.W. Kantelhardt, S.A. Zschesinger, E. Kpscielny-Bunde, S. Havlin, A. Bunde, H.E. Stanely, Multifractal detrended fluctuation analysis of nonstationary time series. Physica A 316, 87–114 (2002)

    Article  ADS  MATH  Google Scholar 

  • A.J. Klimas, D. Vassiliadis, D.N. Baker, D.A. Roberts, The organized nonlinear dynamics of the magnetosphere. J. Geophys. Res. 101(A6), 13089–13113 (1996)

    Article  ADS  Google Scholar 

  • A.J. Klimas, J.A. Valdivia, D. Vassiliadis, D.N. Baker, M. Hesse, J. Takalo, Self-organized criticality in the substorm phenomenon and its relation to localized reconnection in the magnetosphere plasma sheet. J. Geophys. Res. 105(A8), 18765–18780 (2000)

    Article  ADS  Google Scholar 

  • A.J. Klimas, V.M. Uritsky, D. Vassiliadis, D.N. Baker, Reconnection and scale-free avalanching in a driven current-sheet model. J. Geophys. Res. 109, A02218 (2004)

    ADS  Google Scholar 

  • A.J. Klimas, V.M. Uritsky, D. Vassiliadis, D.N. Baker, A mechanism for the loading-unloading substorm cycle missing in MHD global magnetospheric simulation models. Geophys. Res. Lett. 32, L14108 (2005)

    Article  ADS  Google Scholar 

  • A. Kolmogorov, The local structure of turbulence in incompressible viscous fluid for very large Reynold’s numbers. Dokl. Akad. Nauk SSSR 30, 301–305 (1941)

    ADS  Google Scholar 

  • B.V. Kozelov, V.M. Uritsky, A.J. Klimas, Power law probability distributions of multiscale auroral dynamics from ground-based tv observations. Geophys. Res. Lett. 31(20), 20804 (2004)

    Article  ADS  Google Scholar 

  • R.H. Kraichnan, On Kolmogorov’s inertial-range theories. J. Fluid Mech. 62, 305–330 (1974)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • S. Ku, C.S. Chang, P.H. Diamond, Full-f gyrokinetic particle simulation of centrally heated global ITG turbulence from magnetic axis to edge pedestal top in a realistic tokamak geometry. Nucl. Fusion 49, 115021 (2009)

    Article  ADS  Google Scholar 

  • S. Lennartz, A. Bunde, Distribution of natural trends in long-term correlated records: A scaling approach. Phys. Rev. E 84, 021129 (2011)

    Article  ADS  Google Scholar 

  • E.J. Lerner, Space Weather, Discover (August 1995)

  • Z.V. Lewis, On the apparent randomness of substorms. Geophys. Res. Lett. 18, 1849 (1991)

    Article  Google Scholar 

  • W.W. Liu, P. Charbonneau, K. Thibault, L. Morales, Energy avalanches in the central plasma sheet. Geophys. Res. Lett. 33, L19106 (2006)

    Article  ADS  Google Scholar 

  • W.W. Liu, L.F. Morales, V.M. Uritsky, P. Charbonneau, Formation and disruption of current filaments in a flow-driven turbulent magnetosphere. J. Geophys. Res. 116, 03213 (2011)

    Google Scholar 

  • E.T. Lu, Avalanches in continuum driven dissipative systems. Phys. Rev. Lett. 74(13), 2511 (1995)

    Article  ADS  Google Scholar 

  • E.T. Lu, R.J. Hamilton, Avalanches and the distribution of solar flares. Astrophys. J. 380, L89–L92 (1991)

    Article  ADS  Google Scholar 

  • A.T.Y. Lui, R.E. Lopez, S.M. Krimigis, R.W. McEntire, L.J. Zanetti, T.A. Potemra, A case study of magnetotail current sheet disruption and diversion. Geophys. Res. Lett. 15, 721–724 (1988)

    Article  ADS  Google Scholar 

  • A.T.Y. Lui, S.C. Chapman, K. Liou, P.T. Newell, C.I. Meng, M. Brittnacher, G.K. Parks, Is the dynamic magnetosphere an avalanching system? Geophys. Res. Lett. 27(7), 911–914 (2000)

    Article  ADS  Google Scholar 

  • J.G. Lyon, The solar wind-magnetosphere-ionosphere system. Science 288, 1987–1991 (2000)

    Article  ADS  Google Scholar 

  • C.-Y. Ma, D. Summers, Formation of power law energy spectra in space plasmas by stochastic acceleration due to whistler-mode waves. Geophys. Res. Lett. 25, 4099–4102 (1998)

    Article  ADS  Google Scholar 

  • W.M. Macek, Chaos and multifractals in the solar wind. Adv. Space Sci. 46(4), 526–531 (2010)

    Article  ADS  Google Scholar 

  • W.M. Macek, A. Szczepaniak, Generalized two-scale weighted Cantor set model for solar wind turbulence. Geophys. Res. Lett. 35(2), L02108 (2008)

    Article  ADS  Google Scholar 

  • W.M. Macek, A. Wawrzaszek, Evolution of asymmetric multifractal scaling of solar wind turbulence in the outer heliosphere. J. Geophys. Res. 114, A03108 (2009). doi:10.1029/2008JA013795

    ADS  Google Scholar 

  • J. Madsen, J.J. Rasmussen, J. Juul, V. Naulin, A.H. Nielsen, F. Treue, Gyrofluid potential vorticity equation and turbulent equipartion states. Plasma Phys. Control. Fusion 57(5), 054016 (2015)

    Article  ADS  Google Scholar 

  • B.D. Malamud, G. Morein, D.L. Turcotte, Forest fires: An example of self-organized critical behavior. Science 281(5384), 1840–1842 (1998). doi:10.1126/science.281.5384.1840

    Article  ADS  Google Scholar 

  • B. Mandelbrot, J.R. Wallis, Some long-run properties geophysical record. Water Resour. Res. 5, 321–340 (1969)

    Article  ADS  Google Scholar 

  • P. Mantica, F. Ryter, Perturbative studies of turbulent transport in fusion plasmas. C. R. Phys. 7, 634–649 (2006)

    Article  ADS  Google Scholar 

  • P. Mantica, A. Thyagaraja, J. Weiland, G.M.D. Hogeweij, P.J. Knight, Heat pinches in electron-heated tokamak plasmas: Theoretical turbulence models versus experiments. Phys. Rev. Lett. 95(18), 185002 (2005) (4 pp.)

    Article  ADS  Google Scholar 

  • W.H. Matthaeus, M.L. Goldstein, Low-frequency \(1/f\) noise in the interplanetary magnetic field. Phys. Rev. Lett. 57, 495–498 (1986)

    Article  ADS  Google Scholar 

  • N. Mattor, P.H. Diamond, Drift wave propagation as a source of plasma edge turbulence. Phys. Rev. Lett. 72, 486 (1994)

    Article  ADS  Google Scholar 

  • J.M. McAteer, M.J. Aschwanden, M. Dimitropoulou, M.K. Georgoulis, G. Pruessner, L. Morales, J. Ireland, V. Abramenko, 25 years of self-organized criticality: Numerical detection methods. Space Sci. Rev. (2015), this issue. doi:10.1007/s11214-015-0158-7

    Google Scholar 

  • R. Metzler, J. Klafter, The random walk’s guide to anomalous diffusion: A fractional dynamics approach. Phys. Rep. 339, 1–77 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • R. Metzler, J. Klafter, The restaurant at the end of the random walk: Recent developments in the description of anomalous transport by fractional dynamics. J. Phys. A 37, R161–R208 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • R. Meyrand, S. Galtier, A universal law for solar-wind turbulence at electron scales. Astrophys. J. 721, 1421–1424 (2010)

    Article  ADS  Google Scholar 

  • J.A. Mier, L. Garcia, R. Sanchez, Study of the interaction between diffusive and avalanche-like transport in near-critical dissipative-trapped-electron-mode turbulence. Phys. Plasmas 13, 102308 (2006)

    Article  ADS  Google Scholar 

  • J.A. Mier, R. Sanchez, L. Garcia, B.A. Carreras, D.E. Newman, Characterization of nondiffusive transport in plasma turbulence via a novel Lagrangian method. Phys. Rev. Lett. 101, 165001 (2008)

    Article  ADS  Google Scholar 

  • A.V. Milovanov, Pseudochaos and low-frequency percolation scaling for turbulent diffusion in magnetized plasma. Phys. Rev. E 79, 046403 (2009) (10 pp.)

    Article  ADS  Google Scholar 

  • A.V. Milovanov, Self-organized criticality with a fishbone-like instability cycle. Europhys. Lett. 89, 60004 (2010) (6 pp.)

    Article  ADS  Google Scholar 

  • A.V. Milovanov, Dynamic polarization random walk model and fishbone-like instability for self-organized critical systems. New J. Phys. 13, 043034 (2011) (22 pp.)

    Article  ADS  Google Scholar 

  • A.V. Milovanov, Percolation models of self-organized critical phenomena, chap. 4, in Self-organized Criticality Systems, ed. by M.J. Aschwanden (Open Academic Press, Berlin, 2013), pp. 103–182

    Google Scholar 

  • A.V. Milovanov, A. Iomin, Localization-delocalization transition on a separatrix system of nonlinear Schrödinger equation with disorder. Europhys. Lett. 100, 10006 (2012) (6 pp.)

    Article  Google Scholar 

  • A.V. Milovanov, A. Iomin, Topological approximation of the nonlinear Anderson model. Phys. Rev. E 89, 062921 (2014) (19 pp.)

    Article  ADS  Google Scholar 

  • A.V. Milovanov, A. Iomin, Topology of delocalization in the nonlinear Anderson model and anomalous diffusion on finite clusters. Discontinuity, Nonlinearity, Complex. 4(2), 149–160 (2015)

    MATH  Google Scholar 

  • A.V. Milovanov, J.J. Rasmussen, Critical conducting networks in disordered solids: ac universality from topological arguments. Phys. Rev. B 64, 212203 (2001) (4 pp.)

    Article  ADS  Google Scholar 

  • A.V. Milovanov, J.J. Rasmussen, Fractional generalization of the Ginzburg-Landau equation: An unconventional approach to critical phenomena in complex media. Phys. Lett. A 337, 75–80 (2005) (6 pp.)

    Article  ADS  MATH  Google Scholar 

  • A.V. Milovanov, J.J. Rasmussen, A mixed SOC-turbulence model for nonlocal transport and Lévy-fractional Fokker-Planck equation. Phys. Lett. A 378, 1492–1500 (2014) (9 pp.)

    Article  ADS  MathSciNet  Google Scholar 

  • A.V. Milovanov, J.J. Rasmussen, Self-organized criticality revisited: Nonlocal transport by turbulent amplification. J. Plasma Phys. 81, 495810606 (2015)

    Article  Google Scholar 

  • A.V. Milovanov, L.M. Zelenyi, Fracton excitations as a driving mechanism for the self-organized dynamical structuring in the solar ind. Astrophys. Space Sci. 264, 317–345 (1999)

    Article  ADS  MATH  Google Scholar 

  • A.V. Milovanov, L.M. Zelenyi, Functional background of the Tsallis entropy: “coarse-grained” systems and “kappa” distribution functions. Nonlinear Process. Geophys. 7, 211–221 (2000)

    Article  ADS  Google Scholar 

  • A.V. Milovanov, L.M. Zelenyi, “Strange” Fermi processes and power law nonthermal tails from a self-consistent fractional kinetic equation. Phys. Rev. E 64, 052101 (2001) (4 pp.)

    Article  ADS  Google Scholar 

  • A.V. Milovanov, L.M. Zelenyi, Nonequilibrium stationary states in the Earth’s magnetotail: Stochastic acceleration processes and nonthermal distribution functions. Adv. Space Res. 30(12), 2667–2674 (2002)

    Article  ADS  Google Scholar 

  • A.V. Milovanov, L.M. Zelenyi, G. Zimbardo, P. Veltri, Self-organized branching of magnetotail current systems near the percolation threshold. J. Geophys. Res. Space Phys. 106(A4), 6291–6308 (2001a)

    Article  ADS  Google Scholar 

  • A.V. Milovanov, L.M. Zelenyi, P. Veltri, G. Zimbardo, A.L. Taktakishvili, Geometric description of the magnetic field and plasma coupling in the near-Earth stretched tail prior to a substorm. J. Atmos. Sol.-Terr. Phys. 63, 705–721 (2001b)

    Article  ADS  Google Scholar 

  • N.R. Moloney, J. Davidsen, Extreme bursts in the solar wind. Geophys. Res. Lett. 38(14) (2011). doi:10.1029/2011GL048245

  • R. Monasson, R. Zecchina, S. Kirkpatrick, B. Selman, L. Troyansky, Determining computational complexity from characteristic ‘phase transitions’. Nature 400, 133–137 (1999). doi:10.1038/22055

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • E.W. Montroll, M.F. Shlesinger, On \(1/f\) noise and other distributions with long tails. Proc. Natl. Acad. Sci. USA 79, 3380–3383 (1982)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • E.W. Montroll, G.H. Weiss, Random walks on lattices. II. J. Math. Phys. 6, 167–181 (1965)

    Article  ADS  MathSciNet  Google Scholar 

  • L. Morales, P. Charbonneau, Scaling laws and frequency distributions of avalanche areas in a SOC model of solar flares. Geophys. Res. Lett. 35, 4108 (2008a)

    Article  ADS  Google Scholar 

  • L. Morales, P. Charbonneau, Self-organized critical model of energy release in an idealized coronal loop. Astrophys. J. 682, 654–666 (2008b)

    Article  ADS  Google Scholar 

  • L. Morales, P. Charbonneau, Geometrical properties of avalanches in a pseudo-3D coronal loop. Astrophys. J. 698, 1893–1902 (2009)

    Article  ADS  Google Scholar 

  • S. Nagel, Instabilities in a sandpile. Rev. Mod. Phys. 64, 321 (1992)

    Article  ADS  Google Scholar 

  • M. Nakata, Y. Idomura, Study of ion turbulent transport and profile formations using global gyrokinetic full-f Vlasov simulations. Nucl. Fusion 49, 065029 (2013)

    Google Scholar 

  • V. Naulin, A.H. Nielsen, J.J. Rasmussen, Dispersion of ideal particles in a two-dimensional model of electrostatic turbulence. Phys. Plasmas 6, 4575–4585 (1999)

    Article  ADS  Google Scholar 

  • V. Naulin, O.E. Garcia, A.H. Nielsen, J.J. Rasmussen, Statistical properties of transport in plasma turbulence. Phys. Lett. A 321, 355–365 (2004)

    Article  ADS  MATH  Google Scholar 

  • V. Naulin, A.H. Nielsen, J.J. Rasmussen, Turbulence spreading, anomalous transport, and pinch effect. Phys. Plasmas 12, 122306 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  • V. Naulin, J. Rasmussen, P. Mantica, D. del-Castillo-Negrete (JET-EFDA contributors), Fast heat pulse propagation by turbulence spreading. J. Plasma Fusion Res. 8, 55–59 (2009)

    Google Scholar 

  • D.E. Newman, B.A. Carreras, P.H. Diamond, T.S. Hahm, The dynamics of marginality and self-organized criticality as a paradigm turbulent transport. Phys. Plasmas 3(5), 1858–1866 (1996)

    Article  ADS  Google Scholar 

  • R.M. Nicol, S.C. Chapman, R.O. Dendy, Quantifying the anisotropy and solar cycle dependence of \(1/f\) solar wind fluctuations observed by advanced composition explorer. Astrophys. J. 703, 2138–2151 (2009)

    Article  ADS  Google Scholar 

  • G. Nicolis, I. Prigogine, Self-organization in Nonequilibrium Systems (Wiley, New York, 1977)

    MATH  Google Scholar 

  • N. Nishizuka, A. Asai, H. Takasaki, H. Kurokawa, K. Shibata, The power law distribution of flare kernels and fractal current sheets in a solar flare. Astrophys. J. 694, L74–L78 (2009)

    Article  ADS  Google Scholar 

  • Md. Nurujjaman, A.N. Sekar Iyengar, Realization of SOC behavior in a dc glow discharge plasma. Phys. Lett. A 360(6), 717–721 (2007)

    Article  ADS  Google Scholar 

  • S. Ohtani, T. Higuchi, A.T.Y. Lui, K. Takahashi, AMPTE/CCE-SCATHA simultaneous observations of substorm-associated magnetic fluctuations. J. Geophys. Res. 103, 4671 (1995). doi:10.1029/97JA03239

    Article  ADS  Google Scholar 

  • S. Ohtani, K. Takahashi, T. Higuchi, A.T.Y. Lui, H.E. Spence, J.F. Fennell, AMPTE/CCE-SCATHA simultaneous observations of substorm-associated magnetic fluctuations. J. Geophys. Res. 103, 4671 (1998). doi:10.1029/97JA03239

    Article  ADS  Google Scholar 

  • E.N. Parker, Dynamics of the interplanetary gas and magnetic fields. Astrophys. J. 128, 664–676 (1958)

    Article  ADS  Google Scholar 

  • M.A. Pedrosa, C. Hidalgo, B.A. Carreras, R. Balbin, Full-f gyrokinetic particle simulation of centrally heated global ITG turbulence from magnetic axis to edge pedestal top in a realistic tokamak geometry. Nucl. Fusion 49, 115021 (1999)

    Google Scholar 

  • R.-F. Peltier, J.L. Véhel, Multifractional Brownian motion: Definition and preliminary results. INRIA Res. Rep. RR-2645 (1995)

  • C.-K. Peng, S.V. Buldyrev, S. Havlin, F. Sciortino, M. Simons, H.E. Stanley, Long-range correlations in nucleotide sequences. Nature 356, 168 (1992)

    Article  ADS  Google Scholar 

  • A.A. Petrukovich, T. Mukai, S. Kokubun, S.A. Romanov, Y. Saito, T. Yamamoto, L.M. Zelenyi, Substorm-associated pressure variations in the magnetotail plasma sheet and lobe. J. Geophys. Res. 104(A3), 4501–4513 (1999)

    Article  ADS  Google Scholar 

  • A. Pizzuto, F. Gnesotto, M. Lontano, R. Albanese, G. Ambrosino, M.L. Apicella, M. Baruzzo, A. Bruschi, G. Calabrò, A. Cardinali, R. Cesario, F. Crisanti, V. Cocilovo, A. Coletti, R. Coletti, P. Costa, S. Briguglio, P. Frosi, F. Crescenzi, V. Coccorese, A. Cucchiaro, B. Esposito, G. Fogaccia, E. Giovannozzi, G. Granucci, G. Maddaluno, R. Maggiora, M. Marinucci, D. Marocco, P. Martin, G. Mazzitelli, F. Mirizzi, S. Nowak, R. Paccagnella, L. Panaccione, G.L. Ravera, F. Orsitto, V. Pericoli Ridolfini, G. Ramogida, C. Rita, M. Santinelli, M. Schneider, A.A. Tuccillo, R. Zagórski, M. Valisa, R. Villari, G. Vlad, F. Zonca, The Fusion Advanced Studies Torus (FAST): A proposal for an ITER satellite facility in support of the development of fusion energy. Nucl. Fusion 50, 095005 (2010) (16 pp.)

    Article  ADS  Google Scholar 

  • J.J. Podesta, D.A. Roberts, M.L. Goldstein, Power spectrum of small-scale turbulent velocity fluctuations in the solar wind. J. Geophys. Res. 111(A10), CiteID A10109 (2006a)

  • J.J. Podesta, D.A. Roberts, M.L. Goldstein, Self-similar scaling of magnetic energy in the inertial range of solar wind turbulence. J. Geophys. Res. 111(A9), CiteID A09105 (2006b)

  • J.J. Podesta, D.A. Roberts, M.L. Goldstein, Spectral exponents of kinetic and magnetic energy spectra in solar wind turbulence. Astrophys. J. 664, 543–548 (2007)

    Article  ADS  Google Scholar 

  • I. Podlubny, Fractional Differential Equations (Academic Press, San Diego, 1999)

    MATH  Google Scholar 

  • P. Politzer, Observation of avalanche like phenomena in a magnetically confined plasma. Phys. Rev. Lett. 84, 1192–1195 (2000)

    Article  ADS  Google Scholar 

  • P.A. Politzer, M.E. Austin, M. Gilmore, G.R. McKee, T.L. Rhodes, C.X. Yu, E.J. Doyle, T.E. Evans, R.A. Moyere, Characterization of avalanche-like events in a confined plasma. Phys. Plasmas 9(5), 1962–1969 (2002)

    Article  ADS  Google Scholar 

  • D. Prichard, J.E. Borovsky, P.M. Lemons, C.P. Price, Time dependence of substorm recurrence: An information-theoretic analysis. J. Geophys. Res. 101(A7), 15359–15369 (1996)

    Article  ADS  Google Scholar 

  • G. Pruessner, SOC systems in astrophysics, chap. 7, in Self-organized Criticality Systems, ed. by M.J. Aschwanden (Open Academic Press, Berlin, 2013), pp. 233–286. http://www.openacademicpress.de

    Google Scholar 

  • S. Ratynskaia, K. Rypdal, C. Knapek, S. Khrapak, A.V. Milovanov, A. Ivlev, J.J. Rasmussen, G.E. Morfill, Superdiffusion and viscoelastic vortex flows in a two-dimensional complex plasma. Phys. Rev. Lett. 96, 105010 (2006)

    Article  ADS  Google Scholar 

  • T.L. Rhodes, R.A. Moyer, R. Groebner, E.J. Doyle, R. Lehmer, W.A. Peebles, C.L. Retting, Experimental evidence for self-organized criticality in tokamak plasma turbulence. Phys. Lett. A 253, 181–186 (1999)

    Article  ADS  Google Scholar 

  • M.O. Riazantzeva, V.P. Budaev, L.M. Zelenyi, G.N. Zastenker, G.P. Pavlos, J. Safrankova, Z. Nemecek, L. Prech, F. Nemec, Dynamic properties of small-scale solar wind plasma fluctuations. Philos. Trans. R. Soc. Lond. A 373, 20140146 (2015). doi:10.1098/rsta.2014.0146

    Article  ADS  Google Scholar 

  • J.E. Rice, M.J. Greenwald, Y.A. Podpaly, M.L. Reinke, P.H. Diamond, J.W. Hughes, N.T. Howard, Y. Ma, I. Cziegler, B.P. Duval, P.C. Ennever, D. Ernst, C.L. Fiore, C. Cao, J.H. Irby, E.S. Marmar, M. Porkolab, N. Tsujii, S.M. Wolfe, Ohmic energy confinement saturation and core toroidal rotation reversal in Alcator C-Mod plasmas. Phys. Plasmas 19, 056106 (2012)

    Article  ADS  Google Scholar 

  • E. Robbrecht, D. Berghmans, R.A.M. Van der Linden, Automated LASCO CME catalog for solar cycle 23: Are CMEs scale invariant? Astrophys. J. 691, 1222–1234 (2009)

    Article  ADS  Google Scholar 

  • R.R. Rosa, A.S. Sharma, J.A. Valdivia, Characterization of localized turbulence in plasma extended systems. Physica A 257(1–4), 509–514 (1998)

    Article  ADS  Google Scholar 

  • R.R. Rosa, A.S. Sharma, J.A. Valdivia, Characterization of asymmetric fragmentation patterns in spatially extended systems. Int. J. Mod. Phys. C 10(1), 147–163 (1999)

    Article  ADS  Google Scholar 

  • R. Rosner, W.H. Tucker, G.S. Vaiana, Dynamics of quiescent solar corona. Astrophys. J. 220, 643–665 (1978)

    Article  ADS  Google Scholar 

  • G. Rostoker, Implications of the hydrodynamic analogue for the solar-terrestrial interaction and the mapping of high latitude convection pattern into the magnetotail. Geophys. Res. Lett. 11(3), 251–254 (1984)

    Article  ADS  Google Scholar 

  • M. Rypdal, K. Rypdal, Stochastic modeling of the AE index and its relation to fluctuations in \(B_{z}\) of the IMF on time scales shorter than substorm duration. J. Geophys. Res. 115(A11), CiteID A11216 (2010)

  • M. Rypdal, K. Rypdal, Discerning a linkage between solar wind turbulence and ionospheric dissipation by a method of confined multifractal motions. J. Geophys. Res. 116(A2), CiteID A02202 (2011)

  • F. Sahraoui, M.L. Goldstein, G. Belmont, P. Canu, L. Rezeau, Three dimensional anisotropic k spectra of turbulence at subproton scales in the solar wind. Phys. Rev. Lett. 105, 131101 (2010)

    Article  ADS  Google Scholar 

  • S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional Integrals and Derivative. Theory and Applications (Gordon & Breach, Amsterdam, 1993)

    MATH  Google Scholar 

  • R. Sanchez, D.E. Newman, B.A. Carreras, Mixed SOC diffusive dynamics as a paradigm for transport in fusion devices. Nucl. Fusion 41, 247–256 (2001)

    Article  ADS  Google Scholar 

  • R. Sanchez, D.E. Newman, B.A. Carreras, Waiting-time statistics of self-organized-criticality systems. Phys. Rev. Lett. 88, 068302 (2002)

    Article  ADS  Google Scholar 

  • R. Sanchez, B.P. van Milligen, D.E. Newman, B.A. Carreras, Quiet-time statistics of electrostatic turbulent fluxes from the JET tokamak and the W7-AS and TJ-II stellarators. Phys. Rev. Lett. 90, 185005 (2003)

    Article  ADS  Google Scholar 

  • R. Sanchez, B.P. van Milligen, B.A. Carreras, Probabilistic transport models for plasma transport in the presence of critical thresholds: Beyond the diffusive paradigm. Phys. Plasmas 12, 056105 (2005)

    Article  ADS  Google Scholar 

  • R. Sanchez, B.A. Carreras, D.E. Newman, V.E. Lynch, B.P. van Milligen, Renormalization of tracer turbulence leading to fractional differential equations. Phys. Rev. E 74, 016305 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  • Y. Sarazin, P. Ghendrih, Intermittent particle transport in two-dimensional edge turbulence. Phys. Plasmas 5, 4214–4228 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  • Y. Sarazin, V. Grandgirard, J. Abiteboul, S. Allfrey, X. Garbet, P. Ghendrih, G. Latu, A. Strugarek, G. Dif-Pradalier, Large scale dynamics in flux driven gyrokinetic turbulence. Nucl. Fusion 50, 054004 (2010)

    Article  ADS  Google Scholar 

  • Y. Sarazin et al., Predictions on heat transport and plasma rotation from global gyrokinetic simulations. Nucl. Fusion 51, 103023 (2011)

    Article  ADS  Google Scholar 

  • S. Savin, L. Zelenyi, E. Amata, V. Budaev, J. Buechner, J. Blecki, M. Balikhin, S. Klimov, V.E. Korepanov, L. Kozak, V. Kudryashov, V. Kunitsyn, L. Lezhen, A.V. Milovanov, Z. Nemecek, I. Nesterov, D. Novikov, E. Panov, J.L. Rauch, H. Rothkaehl, S. Romanov, J. Safrankova, A. Skalsky, M. Veselov, ROY—A multiscale magnetospheric mission. Planet. Space Sci. 59, 606–617 (2011)

    Article  ADS  Google Scholar 

  • S. Savin, V.B. Belakhovsky, V.A. Pilipenko, V. Budaev, F. Marcucci, G. Consolini, A.S. Sharma, L. Kozak, J. Safrankova, Z. Nemecek, J. Blecki, L. Legen, Correlations of the super-low frequency resonances at magnetospheric boundaries with geostationary and ionospheric data. Adv. Space Res. (2015, in press)

  • C. Schäfer, M.G. Rosenblum, J. Kurths, H.H. Abel, Heartbeat synchronized with ventilation. Nature 392, 239–240 (1998)

    Article  ADS  Google Scholar 

  • L.S. Schulman, P.E. Seiden, Hierarchical structure in the distribution of galaxies. Astrophys. J. 311, 1–5 (1986)

    Article  ADS  Google Scholar 

  • V.A. Sergeev et al., Detection of localized, plasma-depleted flux tubes or bubbles in the midtail plasma sheet. J. Geophys. Res. 101, 10817 (1996)

    Article  ADS  Google Scholar 

  • V.A. Sergeev, M.I. Sitnov, A.S. Sharma, Linear and nonlinear prediction models using multispacecraft data. Eos Trans. AGU 81(48), F1049 (2000). Paper SM12B-08

    Google Scholar 

  • V.A. Setty, Application of fluctuation analysis to characterize multiscale nature and predictability of complex systems. Ph.D. dissertation, University of Maryland, College Park (2014)

  • V.A. Setty, A.S. Sharma, Characterizing detrended fluctuation analysis of multifractional Brownian motion. Physica A 419, 698 (2015)

    Article  ADS  Google Scholar 

  • A.S. Sharma, Assessing the magnetospheres nonlinear behavior—Its dimension is low, its predictability high. Rev. Geophys. 33(Suppl), 645–650 (1995)

    Article  Google Scholar 

  • A.S. Sharma, Nonlinear dynamical studies of global magnetospheric dynamics, in Nonlinear Waves and Chaos in Space Plasmas, ed. by T. Hada, H. Matsumoto (Terra Scientific, Tokyo, 1997), pp. 359–389

    Google Scholar 

  • A.S. Sharma, The magnetospheric: A complex driven system, in Waves, Coherent Structures and Turbulence in Plasmas, ed. by A. Sen, A.S. Sharma, P.N. Guzdar. AIP Conf. Proc., vol. 1308 (AIP, Melville, 2010), pp. 200–212

    Google Scholar 

  • A.S. Sharma, Complexity in nature and data-enabled science: The Earth’s magnetosphere, in Complex Processes in Plasmas and Nonlinear Dynamical Systems Extreme, ed. by A. Das, A.S. Sharma. AIP Conf. Proc., vol. 1582 (AIP, Melville, 2014), pp. 35–45. ISBN: 978-0-7354-1214-9

    Google Scholar 

  • A.S. Sharma, S.A. Curtiss, Magnetospheric multiscale mission: Cross-scale exploration of complexity in the magnetosphere, in Nonequilibrium Phenomena in Plasmas, ed. by A.S. Sharma, P.K. Kaw (Springer, Berlin 2005), pp. 179–195

    Chapter  Google Scholar 

  • A.S. Sharma, P.K. Kaw (eds.), Nonequilibrium Phenomena in Plasmas (Springer, Berlin, 2005)

    Google Scholar 

  • A.S. Sharma, V.A. Setty, Langevin model of crossover in multiscale fluctuations: Substorm time-scales in Earth’s magnetosphere, in Amer. Phys. Soc. Div. Plasma Phys. Meeting, Abstract: TO5.00014 (2015a)

    Google Scholar 

  • A.S. Sharma, V.A. Setty, Crossover behavior in multiscale fluctuations in Earth’s magnetosphere, in Amer. Geophys. Union Fall Meeting (2015b)

    Google Scholar 

  • A.S. Sharma, T. Veeramani, Extreme events and long-range correlations in space weather. Nonlinear Process. Geophys. 18, 719–725 (2011). doi:10.5194/npg-18-719-2011

    Article  ADS  Google Scholar 

  • A.S. Sharma, D. Vassiliadis, K. Papadopoulos, Reconstruction of low-dimensional magnetospheric dynamics by singular spectrum analysis. Geophys. Res. Lett. 20(5), 335–338 (1993)

    Article  ADS  Google Scholar 

  • A.S. Sharma, J.A. Valdivia, R. Rosa, Spatio-temporal chaos using time series data, in Nonlinear Dynamics and Computational Physics, ed. by V.B. Sheorey (Narosa Publishers, New Delhi, 1998), pp. 201–213

    Google Scholar 

  • A.S. Sharma et al., Magnetail dynamics from multispacecraft data: Phase transition-like behavior, Fall Meeting, AGU (2000)

  • A.S. Sharma, M.I. Sitnov, K. Papadopoulos, Substorms as nonequilibrium transitions of the magnetosphere. J. Atmos. Sol.-Terr. Phys. 63(13), 1399–1406 (2001)

    Article  ADS  Google Scholar 

  • A.S. Sharma, R. Nakamura, A. Runov, E.E. Grigorenko, H. Hasegawa, M. Hoshino, P. Louarn, C.J. Owen, A. Petrukovich, J.A. Sauvaud, V. Semenev, V. Sergeev, J.A. Slavin, B.U.O. Sonnerup, L.M. Zelenyi, G. Fruit, S. Haaland, H. Malova, K. Snekvik, Transient and localized processes in the magnetotail: A review. Ann. Geophys. 26, 955–1006 (2008)

    Article  ADS  Google Scholar 

  • A.S. Sharma, D.N. Baker, A. Bhattacharyya, A. Bunde, V.P. Dimri, H.K. Gupta, V.K. Gupta, S. Lovejoy, I.G. Main, D. Schertzer, H. von Storch, N.W. Watkins, Complexity and extreme events in geosciences: An overview, in Complexity and Extreme Events in Geosciences, ed. by A.S. Sharma, V.P. Dimri, A. Bunde, D.N. Baker. Geophysical Monograph Series, vol. 196 (Am. Geophys. Union, Washington, 2012), pp. 1–16

    Google Scholar 

  • G. Siscoe, The magnetosphere: A union of interdependent parts. Eos Trans. AGU 72, 494–495 (1991)

    Article  ADS  Google Scholar 

  • M.I. Sitnov, H.V. Malova, A.S. Sharma, Role of the temperature ratio in the linear stability of the quasi-neutral sheet tearing model. Geophys. Res. Lett. 25(3), 269–272 (1998)

    Article  ADS  Google Scholar 

  • M.I. Sitnov, A.S. Sharma, K. Papadopoulos, D. Vassiliadis, J.A. Valdivia, A.J. Klimas, D.N. Baker, Phase transition-like behavior of the magnetosphere during substorms. J. Geophys. Res. 105(A6), 12955–12974 (2000)

    Article  ADS  Google Scholar 

  • M.I. Sitnov, A.S. Sharma, K. Papadopoulos, D. Vassiliadis, Modeling substorm dynamics of the magnetosphere: From self-organization and self-organized criticality to nonequilibrium phase transitions. Phys. Rev. E 65, 016116 (2001)

    Article  ADS  Google Scholar 

  • M.I. Sitnov, A.S. Sharma, P.N. Guzdar, P.H. Yoon, Magnetic reconnection onset in the tail of the Earth’s magnetosphere. J. Geophys. Res. 107(A9), 1256 (2002). doi:10.1029/2001JA009148

    Article  ADS  Google Scholar 

  • J.P. Smith, W. Horton, Analysis of the bimodanl nature of solar wind-magnetosphere coupling. J. Geophys. Res. 103, 14917 (1998)

    Article  ADS  Google Scholar 

  • I.M. Sokolov, J. Klafter, A. Blumen, Fractional kinetics. Phys. Today 55, 48–54 (2002)

    Article  Google Scholar 

  • D. Sornette, Critical phase transitions made self-organized: A dynamical system feedback mechanism for self-organized criticality. J. Phys. I France 2, 2065–2073 (1992)

    Article  Google Scholar 

  • D. Sornette, G. Ouillon, Dragon kings: Mechanisms, statistical methods and empirical evidence. Eur. Phys. J. Spec. Top. 205, 1–26 (2012)

    Article  Google Scholar 

  • H.E. Stanley, Introduction to Phase Transitions and Critical Phenomena (Oxford University Press, London, 1971)

    Google Scholar 

  • H.E. Stanley, Scaling, universality, and renormalization: Three pillars of modern critical phenomena. Rev. Mod. Phys. 71, S358 (1999)

    Article  Google Scholar 

  • J. Takalo, J. Timonem, H. Koskinen, Correlation dimension and affinity of AE data and bicolored noise. Geophys. Res. Lett. 20, 1527–1530 (1993)

    Article  ADS  Google Scholar 

  • J. Takalo, J. Timonem, A. Klimas, J. Valdivia, D. Vassiliadis, Nonlinear energy dissipation in a cellular automaton magnetotail field model. Geophys. Res. Lett. 26(13), 1813–1816 (1999a)

    Article  ADS  Google Scholar 

  • J. Takalo, J. Timonem, A. Klimas, J. Valdivia, D. Vassiliadis, A coupled-map model for the magnetotail current sheet. Geophys. Res. Lett. 26(19), 2913–2916 (1999b)

    Article  ADS  Google Scholar 

  • S.W.Y. Tam, T. Chang, S.C. Chapman, N.W. Watkins, Analytical determination of power law index for the Chapman et al. sandpile (FSOC) analog for magnetospheric activity. Geophys. Res. Lett. 27(9), 1367 (2000)

    Article  ADS  Google Scholar 

  • V. Tangri, A. Das, P.K. Kaw, R. Singh, Continuum self-organized criticality model of turbulent transport in tokamaks. Phys. Rev. Lett. 91(2), 025001 (2003)

    Article  ADS  Google Scholar 

  • J.B. Taylor, Relaxation and magnetic reconnection in plasmas. Rev. Mod. Phys. 58(3), 741–763 (1986)

    Article  ADS  Google Scholar 

  • B. Thomas, A.S. Sharma, M.I. Sitnov, Multifractal properties of the solar wind-magnetosphere system, in Amer. Geophys. Union Fall Meeting (2001)

    Google Scholar 

  • S. Tokunaga, H. Jhang, S.S. Kim, P.H. Diamond, A statistical analysis of avalanching heat transport in stationary enhanced core confinement regimes. Phys. Plasmas 19, 092303 (2012)

    Article  ADS  Google Scholar 

  • C. Tsallis, Possible generalization of Boltzmann-Gibbs statistics. J. Stat. Phys. 52, 479–487 (1988)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • B.T. Tsurutani, M. Sugiura, T. Iyemori, B.E. Goldstein, W.D. Gonzalez, S.I. Akasofu, E.J. Smith, The nonlinear response of AE to the IMF Bs driver: A spectral break at 5 hours. Geophys. Res. Lett. 17, 279 (1990)

    Article  ADS  Google Scholar 

  • D. Turcotte, J. Rundle, H. Frauenfelder (eds.), Self-organized Complexity in the Physical, Biological and Social Science (National Academy Press, Washington, 2002)

    MATH  Google Scholar 

  • A.Y. Ukhorskiy, Global and multiscale aspects of magnetospheric dynamics: From modeling to forecasting, Ph.D. dissertation, University of Maryland, College Park (2003)

  • A.Y. Ukhorskiy, M.I. Sitnov, A.S. Sharma, K. Papadopoulos, Global and multiscale aspects of magnetospheric dynamics in local-linear filters. J. Geophys. 107(A11), 1369 (2002)

    Article  ADS  Google Scholar 

  • A.Y. Ukhorskiy, M.I. Sitnov, A.S. Sharma, K. Papadopoulos, Combining global and multiscale features in the description of solar wind—Magnetosphere couplings. Ann. Geophys. 21(9), 1913 (2004a)

    Article  ADS  Google Scholar 

  • A.Y. Ukhorskiy, M.I. Sitnov, A.S. Sharma, K. Papadopoulos, Global and multiscale dynamics of the magnetosphere: From modeling to forecasting. Geophys. Res. Lett. 31(8), L08802 (2004b). doi:10.1029/2003GL018932. See also J. Atmos. Sol.-Terr. Phys. 63(13), 1399–1406.

    Article  ADS  Google Scholar 

  • V.M. Uritsky, A.J. Klimas, D. Vassiliadis, Comparative study of dynamical critical scaling in the auroral electrojet index versus solar wind fluctuations. Geophys. Res. Lett. 28(19), 3809–3812 (2001a)

    Article  ADS  Google Scholar 

  • V.M. Uritsky, M.I. Pudovkin, A. Steen, Geomagnetic substorms as perturbed self-organized critical dynamics of the magnetosphere. J. Atmos. Sol.-Terr. Phys. 63(13), 1415–1424 (2001b)

    Article  ADS  Google Scholar 

  • V.M. Uritsky, A.J. Klimas, D. Vassiliadis, D. Chua, G. Parks, Scale-free statistics of spatiotemporal auroral emissions as depicted by POLAR UVI images: Dynamic magnetosphere is an avalanching system. J. Geophys. Res. 107(A12), 1426 (2002)

    Article  Google Scholar 

  • V.M. Uritsky, A.J. Klimas, D. Vassiliadis, Evaluation of spreading critical exponents from the spatiotemporal evolution of emission regions in the nighttime aurora. Geophys. Res. Lett. 30(15), L1813 (2003)

    Article  ADS  Google Scholar 

  • V.M. Uritsky, A.J. Klimas, D. Vassiliadis, Critical finite-size scaling of energy and lifetime probability distributions of auroral emissions. Geophys. Res. Lett. 33(8), L08102 (2006)

    Article  ADS  Google Scholar 

  • V.M. Uritsky, E.F. Donovan, A.J. Klimas, E. Spanswick, Scale-free and scale-dependent modes of energy release dynamics in the nighttime magnetosphere. Geophys. Res. Lett. 35(21), L21101 (2008)

    Article  ADS  Google Scholar 

  • J.A. Valdivia, A.S. Sharma, K. Papadopoulos, Prediction of magnetic storms by nonlinear models. Geophys. Res. Lett. 23(21), 2899–2902 (1996)

    Article  ADS  Google Scholar 

  • J.A. Valdivia, D. Vassilliadis, A.J. Klimas, A.S. Sharma, K. Papadopoulos, Modeling the spatial structure of the high latitude magnetic perturbations and the related current systems. Phys. Plasmas 6(11), 4185–4194 (1998)

    Article  ADS  Google Scholar 

  • J.A. Valdivia, D. Vassilliadis, A.J. Klimas, A.S. Sharma, K. Papadopoulos, Spatio-temporal activity of magnetic storms. J. Geophys. Res. 104(A6), 12239–12250 (1999)

    Article  ADS  Google Scholar 

  • M.-A. Vallières-Nollet, P. Charbonneau, V.M. Uritsky, E. Donovan, W.W. Liu, Dual scaling for self-organized critical models of the magnetosphere. J. Geophys. Res. 115, A12217 (2010)

    Article  ADS  Google Scholar 

  • B.P. van Milligen, R. Sanchez, B.P. Carreras, Probabilistic finite-size transport models for fusion: Anomalous transport and scaling laws. Phys. Plasmas 11(5), 2272–2285 (2004)

    Article  ADS  Google Scholar 

  • B.Ph. van Milligen, R. Sanchez, B.A. Carreras, V.E. Lynch, Additional evidence for the universality of the probability distribution of turbulent fluctuations and fluxes in the scrape-off layer region of fusion plasmas. Phys. Plasmas 12, 052507 (2005)

    Article  ADS  Google Scholar 

  • D. Vassiliadis, Systems theory for geospace plasma dynamics. Rev. Geophys. 44, RG2002 (2006)

    ADS  Google Scholar 

  • D. Vassiliadis, A.S. Sharma, T.E. Eastman, K. Papadopoulos, Low-dimensional chaos in magnetospheric activity from AE time series. Geophys. Res. Lett. 17(11), 1841–1844 (1990)

    Article  ADS  Google Scholar 

  • D. Vassiliadis, A.S. Sharma, K. Papadopoulos, Lyapunov exponent of magnetospheric activity from AL time series. Geophys. Res. Lett. 18(8), 1731–1734 (1991a)

    Article  Google Scholar 

  • D. Vassiliadis, A.S. Sharma, K. Papadopoulos, An empirical model relating the auroral geomagnetic activity to the interplanetary magnetic field. Geophys. Res. Lett. 20(16), 1643–1646 (1991b)

    Article  ADS  Google Scholar 

  • D. Vassiliadis, A.J. Klimas, D.N. Baker, D.A. Roberts, A description of the solar wind-magnetosphere coupling based on nonlinear filters. J. Geophys. Res. 100(A3), 3495–3512 (1995)

    Article  ADS  Google Scholar 

  • D. Vassiliadis, A. Anastasiadis, M. Georgoulis, L. Vlahos, Derivation of solar flare cellular automata models from a subset of the magnetohydrodynamic equations. Astrophys. J. 509, L53–L56 (1998)

    Article  ADS  Google Scholar 

  • P. Veltri, MHD turbulence in the solar wind: Self-similarity, intermittency and coherent structures. Plasma Phys. Control. Fusion 41, A787–A795 (1999)

    Article  ADS  Google Scholar 

  • A. Vespignani, S. Zapperi, How self-organized criticality works: A unified mean-field picture. Phys. Rev. E. 57, 6345, 6362 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  • L. Vlahos, M.K. Georgoulis, On the self-similarity of unstable magnetic discontinuities in solar active regions. Astrophys. J. 603, L61–L64 (2004)

    Article  ADS  Google Scholar 

  • W.H. Wang, C.X. Yu, Y.Z. Wen, L. Wang, X.Z. Yang, C.H. Feng, Effect of poloidal sheared flow on the long-range correlation characters of edge plasma turbulent transport. Phys. Plasmas 11, 2075 (2004)

    Article  ADS  Google Scholar 

  • N.W. Watkins, Bunched black (and grouped grey) swans, dissipative and non-dissipative models of correlated extreme fluctuations in complex geosystems. Geophys. Res. Lett. 40, 402–410 (2013). doi:10.1002/grl.50103

    Article  ADS  MathSciNet  Google Scholar 

  • N.W. Watkins, S.C. Chapman, R.O. Dendy, G. Rowlands, Robustness of collective behavior in strongly driven avalanche models: Magnetospheric implications. Geophys. Res. Lett. 26(16), 2617–2620 (1999)

    Article  ADS  Google Scholar 

  • N.W. Watkins, S. Oughton, M.P. Freeman, What can we infer about the underlying physics from burst distributions observed in an RMHD simulation. Planet. Space Sci. 49, 1233–1237 (2001)

    Article  ADS  Google Scholar 

  • N.W. Watkins, D. Credgington, R. Sanchez, S.J. Rosenberg, S.C. Chapman, Kinetic equation of linear fractional stable motion and applications to modeling the scaling of intermittent bursts. Phys. Rev. E 79, 041124 (2009)

    Article  ADS  Google Scholar 

  • N.W. Watkins, G. Pruessner, S. Chapman, N. Crosby, H.J. Jensen, 25 years of self-organized criticality: Concepts and controversies. Space Sci. Rev. (2015), this issue. doi:10.1007/s11214-015-0155-x

    MATH  Google Scholar 

  • W. Wen-Hao, Y. Chang-Xuan, W. Yi-Zhi, X. Yu-Hong, L. Bi-Li, G. Xian-Zu, L. Bao-Hua, N.W. Bao, Self-organized criticality properties of the turbulence-induced particle flux at the plasma edge of the HT-6M tokamak. Chin. Phys. Lett. 18, 793 (2001)

    Article  ADS  Google Scholar 

  • J. Wesson, Tokamaks (Oxford University Press, Oxford, 2004)

    MATH  Google Scholar 

  • M.S. Wheatland, P.A. Sturrock, J.M. McTiernan, The waiting-time distribution of solar flare hard X-ray bursts. Astrophys. J. 509, 448–455 (1998)

    Article  ADS  Google Scholar 

  • K.G. Wilson, The renormalization group: Critical phenomena and the Kondo problem. Rev. Mod. Phys. 47, 773–840 (1975)

    Article  ADS  MathSciNet  Google Scholar 

  • R. Woodard, D. Newman, R. Sanchez, B. Carreras, Persistent dynamic correlations in self-organized critical systems away from their critical point. Physica A 373, 215–230 (2007)

    Article  ADS  Google Scholar 

  • A.J. Wootton, M.E. Austin, R.D. Bengtson, J.A. Boedo, R.V. Bravenec, D.L. Brower, J.Y. Chen, G. Cima, P.H. Diamond, R.D. Durst, Fluctuations and anomalous transport (in tokamaks, particularly TEXT). Plasma Phys. Control. Fusion 30, 1479–1491 (1988)

    Article  ADS  Google Scholar 

  • Y.H. Xu, S. Jachmich, R.R. Weynants, On the properties of turbulence intermittency in the boundary of the TEXTOR tokamak. Plasma Phys. Control. Fusion 47, 1841–1855 (2005)

    Article  ADS  Google Scholar 

  • G.S. Xu, V. Naulin, W. Fundamenski, J.J. Rasmussen, A.H. Nielsen, B.N. Wan, Intermittent convective transport carried by propagating electromagnetic filamentary structures in nonuniformly magnetized plasma. Phys. Plasmas 17, 022501 (2010)

    Article  ADS  Google Scholar 

  • C.X. Yu, M. Gilmore, W.A. Peebles, T.L. Rhodes, Structure function analysis of long-range correlations in plasma turbulence. Phys. Plasmas 10, 2772 (2003)

    Article  ADS  Google Scholar 

  • H. Yuan, Q. Xiao-Ming, D. Xuan-Tong, W. En-Yao, Self-organized criticality processes in HL-1M tokamak plasma. Chin. Phys. Lett. 20, 87 (2003)

    Article  ADS  Google Scholar 

  • G.M. Zaslavsky, M.N. Edelman, P.N. Guzdar, M.I. Sitnov, A.S. Sharma, Self-similarity and fractional kinetics of solar wind—Magnetosphere coupling. Physica A 321, 11–20 (2007)

    Article  ADS  Google Scholar 

  • G.M. Zaslavsky, M.N. Edelman, P.N. Guzdar, M.I. Sitnov, A.S. Sharma, Multiscale behavior and fractional kinetics from the data of solar wind—Magnetosphere coupling. Commun. Nonlinear Sci. Numer. Simul. 13, 314–330 (2008)

    Article  ADS  MATH  Google Scholar 

  • L.M. Zelenyi, A.V. Milovanov, Fractal topology and strange kinetics: From percolation theory to problems in cosmic electrodynamics. Phys. Usp. 47(8), 749–788 (2004)

    Article  Google Scholar 

  • L.M. Zelenyi, A.V. Milovanov, G. Zimbardo, Multiscale magnetic structure of the distant tail: Self-consistent fractal approach, in New Perspectives on the Earth’s Magnetotail, ed. by A. Nishida, D.N. Baker, S.W.H. Cowley. Geophys. Monogr. Ser., vol. 105 (Am. Geophys. Union, Washington, 1998), pp. 321–339

    Chapter  Google Scholar 

  • L.M. Zelenyi, A. Artemyev, H. Malova, A.V. Milovanov, G. Zimbardo, Particle transport and acceleration in a time-varying electromagnetic field with a multi-scale structure. Phys. Lett. A 372, 6284–6287 (2008)

    Article  ADS  MATH  Google Scholar 

  • Y.-C. Zhang, Scaling theory of self-organized criticality. Phys. Rev. Lett. 63, 470–473 (1989)

    Article  ADS  Google Scholar 

  • H.B. Zhou, K. Papadopoulos, A.S. Sharma, C.-L. Chang, Electronmagnetohydrodynamic response of a plasma to an external current pulse. Phys. Plasmas 3, 1484 (1996)

    Article  ADS  Google Scholar 

  • F. Zonca, S. Briguglio, L. Chen, G. Fogaccia, G. Vlad, Transition from weak to strong energetic ion transport in burning plasmas. Nucl. Fusion 45, 477–484 (2005)

    Article  ADS  Google Scholar 

  • F. Zonca, S. Briguglio, L. Chen, G. Fogaccia, T.S. Hahm, A.V. Milovanov, G. Vlad, Physics of burning plasmas in toroidal magnetic confinement devices. Plasma Phys. Control. Fusion 48, B15–B28 (2006)

    Article  Google Scholar 

  • F. Zonca, P. Buratti, A. Cardinali, L. Chen, J.-Q. Dong, Y.-X. Long, A.V. Milovanov, F. Romanelli, P. Smeulders, L. Wang, Z.-T. Wang, C. Castaldo, R. Cesario, E. Giovanozzi, M. Marinucci, V. Pericoli Ridolfini, Electron fishbones: Theory and experimental evidence. Nucl. Fusion 47, 1588–1597 (2007)

    Article  ADS  Google Scholar 

  • F. Zonca, L. Chen, S. Briguglio, G. Fogaccia, A.V. Milovanov, Z. Qiu, G. Vlad, X. Wang, Energetic particles and multi-scale dynamics in fusion plasmas. Plasma Phys. Control. Fusion 57, 014024 (2015) (10 pp.)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The author team acknowledges the hospitality and partial support for two workshops on “Self-Organized Criticality and Turbulence” at the International Space Science Institute (ISSI) in Bern, Switzerland, during October 15–19, 2012, and September 16–20, 2013. Discussions with V.P. Budaev, J. Chen, G. Dif-Pradalier, A. Iomin, P.K. Kaw, V. Krishnamurthy, K. Papadopoulos, J.J. Rasmussen, A. Sen, X. Shao, M.I. Sitnov, A.Y. Ukhorskiy, D. Vassiliadis, T. Veeramani, L.M. Zelenyi, and F. Zonca are gratefully acknowledged. The research at the University of Maryland was supported by NSF grants AGS-1036473 and IIP-1338634.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Surjalal Sharma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, A.S., Aschwanden, M.J., Crosby, N.B. et al. 25 Years of Self-organized Criticality: Space and Laboratory Plasmas. Space Sci Rev 198, 167–216 (2016). https://doi.org/10.1007/s11214-015-0225-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11214-015-0225-0

Keywords

Navigation