Space Science Reviews

, Volume 195, Issue 1–4, pp 173–198 | Cite as

The Langmuir Probe and Waves (LPW) Instrument for MAVEN

  • L. Andersson
  • R. E. Ergun
  • G. T. Delory
  • A. Eriksson
  • J. Westfall
  • H. Reed
  • J. McCauly
  • D. Summers
  • D. Meyers
Article

Abstract

We describe the sensors, the sensor biasing and control, the signal-processing unit, and the operation of the Langmuir Probe and Waves (LPW) instrument on the Mars Atmosphere and Volatile EvolutioN (MAVEN) mission. The LPW instrument is designed to measure the electron density and temperature in the ionosphere of Mars and to measure spectral power density of waves (DC-2 MHz) in Mars’ ionosphere, including one component of the electric field. Low-frequency plasma waves can heat ions resulting in atmospheric loss. Higher-frequency waves are used to calibrate the density measurement and to study strong plasma processes. The LPW is part of the Particle and Fields (PF) suite on the MAVEN spacecraft. The LPW instrument utilizes two, 40 cm long by 0.635 cm diameter cylindrical sensors with preamplifiers, which can be configured to measure either plasma currents or plasma waves. The sensors are mounted on a pair of \({\sim}7\) meter long stacer booms. The sensors and nearby surfaces are controlled by a Boom Electronics Board (BEB). The Digital Fields Board (DFB) conditions the analog signals, converts the analog signals to digital, processes the digital signals including spectral analysis, and packetizes the data for transmission. The BEB and DFB are located inside of the Particle and Fields Digital Processing Unit (PFDPU).

Keywords

Mars Langmuir Probe Waves instrument Ionosphere Electron temperature 

References

  1. J.E. Allen, Probe theory—the orbital motion approach. Phys. Scr. 45, 497 (1992). doi:10.1088/0031-8949/45/5/013 CrossRefADSGoogle Scholar
  2. S.D. Bale et al., The electric antennas for the STEREO/WAVES experiment. Space Sci. Rev. 136(1–4), 529–547 (2008). doi:10.1007/s11214-007-9251-x CrossRefADSGoogle Scholar
  3. J.W. Bonnell, F.S. Mozer, G.T. Delory, A.J. Hull, R.E. Ergun, C.M. Cully, V. Angelopoulos, P.R. Harvey, The Electric Field Instrument (EFI) for THEMIS. Space Sci. Rev. 141(1–4), 303–341 (2008). doi:10.1007/s11214-008-9469-2 CrossRefADSGoogle Scholar
  4. L.H. Brace, R.F. Theis, A. Dalgarno, The cylindrical electrostatic probes for atmosphere explorer-C, -D, and -E. Radio Sci. 8(4), 341–348 (1973). doi:10.1029/RS008i004p00341 CrossRefADSGoogle Scholar
  5. L.B. Brace, Langmuir probe measurements in the ionosphere measurement techniques in space plasmas—particles, in Geophysical Monograph 102, ed. by R.F. Pfaff, J.E. Borovsky, D.T. Young (Am. Geophys. Union, Washington, 1998), p. 23 Google Scholar
  6. D.A. Brain, J.S. Halekas, L.M. Peticolas, R.P. Lin, J.G. Luhmann, D.L. Mitchell, G.T. Delory, S.W. Bougher, M.H. Acuña, H. Rème, On the origin of aurorae on Mars. Geophys. Res. Lett. 33, L01201 (1973). doi:10.1029/2005GL024782 ADSGoogle Scholar
  7. F.F. Chen, Saturation ion currents to Langmuir probes. J. Appl. Phys. 36, 675 (1965). doi:10.1063/1.1714200 CrossRefADSGoogle Scholar
  8. J.E.P. Connerney, J. Espley, P. Lawton, S. Murphy, J. Odom, R. Oliversen, D. Sheppard, The MAVEN magnetic field investigation. Space Sci. Rev. (2015). doi:10.1007/s11214-015-0169-4 Google Scholar
  9. C.M. Cully, R.E. Ergun, K. Stevens, A. Nammari, J. Westfall, The THEMIS digital fields board. Space Sci. Rev. 141, 343–355 (2008) CrossRefADSGoogle Scholar
  10. F. Epavier et al., Space Sci. Rev. (2014, this issue) Google Scholar
  11. R.E. Ergun et al., The FAST satellite field instrument. Space Sci. Rev. 98(1/2), 67–91 (2001) CrossRefADSGoogle Scholar
  12. R.E. Ergun, L. Andersson, W.K. Peterson, D. Brain, G.T. Delory, D.L. Mitchell, R.P. Lin, A.W. Yau, Role of plasma waves in Mars’ atmospheric loss. Geophys. Res. Lett. 33, L14103 (2006). doi:10.1029/2006GL025785 CrossRefADSGoogle Scholar
  13. A.I. Eriksson, R. Boström, R. Gill, L. Åhlén, S.-E. Jansson, J.-E. Wahlund, M. André, A. Mälkki, J.A. Holtet, B. Lybekk RPC-LAP, The Rosetta Langmuir probe instrument. Space Sci. Rev. 128(1–4), 729–744 (2007) CrossRefADSGoogle Scholar
  14. J.R. Espley, P.A. Cloutier, D.A. Brain, D.H. Crider, M.H. Acuña, Observations of low-frequency magnetic oscillations in the Martian magnetosheath, magnetic pileup region, and tail. J. Geophys. Res. 109, A07213 (2004). doi:10.1029/2003JA010193 ADSGoogle Scholar
  15. J. Etcheto, H. de Feraudy, J.G. Trotignon, Plasma resonance stimulation in space plasmas. Adv. Space Res. 1(2), 183–196 (1981). doi:10.1016/0273-1177(81)90289-1 CrossRefADSGoogle Scholar
  16. U. Fahleson, Theory of electric field measurements conducted in the magnetosphere with electric probes. Space Sci. Rev. 7, 238–262 (1967). doi:10.1007/BF00215600 CrossRefADSGoogle Scholar
  17. R. Grard, A. Pedersen, S. Klimov, S. Savin, A. Skalsky, J.G. Trotignon, C. Kennel, First measurements of plasma waves near Mars. Nature 341, 607–609 (1989). doi:10.1038/341607a0 CrossRefADSGoogle Scholar
  18. D.A. Gurnett, W.S. Kurth, D.L. Kirchner, G.B. Hospodarsky, T.F. Averkamp, P. Zarka, A. Lecacheux, R. Manning, A. Roux, P. Canu et al., The Cassini radio and plasma wave investigation. Space Sci. Rev. 114(1–4), 395–463 (2004) CrossRefADSGoogle Scholar
  19. D.A. Gurnett, D.L. Kirchner, R.L. Huff, D. Morgan, Radar soundings of the ionosphere of Mars. Science 310, 1929 (2005) CrossRefADSGoogle Scholar
  20. D.A. Gurnett et al., An overview of radar soundings of the martian ionosphere from the Mars express spacecraft. Adv. Space Res. 41, 1335–1346 (2008) CrossRefADSGoogle Scholar
  21. J.S. Halekas, E.R. Taylor, G. Dalton, G. Johnson, D.W. Curtis, J.P. McFadden, D.L. Mitchell, R.P. Lin, B.M. Jakosky, The solar wind ion analyzer for MAVEN. Space Sci. Rev. (2015). doi:10.1007/s11214-013-0029-z Google Scholar
  22. W.B. Hanson, S. Sanatani, D.R. Zuccaro, The Martian ionosphere as observed by the Viking retarding potential analyzers. J. Geophys. Res. 82(28), 4351–4363 (1977). doi:10.1029/JS082i028p04351 CrossRefADSGoogle Scholar
  23. P. Harvey, F.S. Mozer, D. Pankow, J. Wygant, N.C. Maynard, H. Singer, W. Sullivan, P.B. Anderson, R. Pfaff, T. Aggson, A. Pedersen, C.-G. Fälthammar, P. Tanskannen, The electric field instrument on the polar satellite. Space Sci. Rev. 71(1–4), 583–596 (1995) CrossRefADSGoogle Scholar
  24. J.D. Jackson, Classical Electrodynamics, 2nd edn. (Wiley, New York, 1975), 92/12/31 MATHGoogle Scholar
  25. J.P. Krehbiel, L.H. Brace, R.F. Theis, W.H. Pinkus, R.B. Kaplan, The dynamics explorer Langmuir probe instrument. Space Sci. Instrum. 5, 493–502 (1981) ADSGoogle Scholar
  26. D.E. Larson et al., Space Sci. Rev. (2014, this issue) Google Scholar
  27. J.-.-P. Lebreton, S. Stverak, P. Travnicek, M. Maksimovic, D. Klinge, S. Merikallio, D. Lagoutte, B. Poirier, P.-L. Blelly, Z. Kozacek, M. Salaquarda, The ISL Langmuir probe experiment processing onboard DEMETER: scientific objectives, description and first results. Planet. Space Sci. 54, 472–486 (2006) CrossRefADSGoogle Scholar
  28. R. Lundin et al., Solar wind-induced atmospheric erosion at Mars: first results from ASPERA-3 on Mars express. Science 305, 1933–1936 (2004) CrossRefADSGoogle Scholar
  29. D.M. Malaspina, M. Horanyi, A. Zaslavsky, K. Goetz, L.B. Wilson III, K. Kersten, Interplanetary and interstellar dust observed by the Wind/WAVES electric field instrument. Geophys. Res. Lett. 41, 266–272 (2014). doi:10.1002/2013GL058786 CrossRefADSGoogle Scholar
  30. J.P. McFadden et al., Space Sci. Rev. (2014, this issue) Google Scholar
  31. N. Meyer-Vernet, A. Czechowski, I. Mann, M. Maksimovic, A. Lecacheux, K. Goetz, M.L. Kaiser, O.C.St. Cyr, S.D. Bale, G. Le Chat, Detection of fast nanoparticles in the solar wind. AIP Conf. Proc. 1216, 502 (2010). doi:10.1063/1.3395912 CrossRefADSGoogle Scholar
  32. D.L. Mitchell, C. Mazelle, J.A. Sauvaud, D. Toublanc, J.J. Thocaven, J. Rouzaud, A. Federov, E.R. Taylor, M. Robinson, P. Turin, D.W. Curtis, The MAVEN solar wind electron analyzer (SWEA). Space Sci. Rev. (2014, this issue) Google Scholar
  33. H.M. Mott-Smith, I. Langmuir, The theory of collectors in gaseous discharges. Phys. Rev. 28(4), 727–763 (1926). doi:10.1103/PhysRev.28.727 CrossRefADSGoogle Scholar
  34. D. Pankow, R. Besuner, R. Wilkes, R. Ullrich, Deployment mechanisms on the fast satellite: magnetometer, radial wire, and axial booms. Space Sci. Rev. 98(1/2), 93–111 (2001) CrossRefADSGoogle Scholar
  35. C.M.C. Nairn, R. Grard, A. Skalsky, J.G. Trotignon, Waves and cold plasma observations near Mars. Adv. Space Res. 11(9), 87–91 (1991) CrossRefADSGoogle Scholar
  36. M.K. Wahlström, E. Johansson, E. Veszelei, P. Bennich, M. Olsson, S. Hogmark, Improved Langmuir probe surface coatings for the Cassini satellite. Thin Solid Films 220(1–2), 315–320 (1992). doi:10.1016/0040-6090(92)90591-X CrossRefADSGoogle Scholar
  37. J.-E. Wahlund, R. Boström Gustafsson, D.A. Gurnett, W.S. Kurth, A. Pedersen, T.F. Averkamp, G.B. Hospodarsky, A.M. Persoon, P. Canu, F.M. Neubauer, M.K. Dougherty, A.I. Eriksson, M.W. Morooka, R. Gill, M. André, L. Eliasson, I. Müller-Wodarg, Cassini measurements of cold plasma in the ionosphere of Titan. Science 308(5724), 986–989 (2005). doi:10.1126/science.1109807 CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.LASPUniversity of ColoradoBoulderUSA
  2. 2.APSUniversity of ColoradoBoulderUSA
  3. 3.SSLUniversity of CaliforniaBerkeleyUSA
  4. 4.Swedish Institute for Space PhysicsUppsalaSweden

Personalised recommendations