Space Science Reviews

, Volume 197, Issue 1–4, pp 101–150 | Cite as

Laboratory Studies Towards Understanding Comets

  • Murthy S. Gudipati
  • Ninette Abou Mrad
  • Jürgen Blum
  • Steven B. Charnley
  • Thierry Chiavassa
  • Martin A. Cordiner
  • Olivier Mousis
  • Grégoire Danger
  • Fabrice Duvernay
  • Bastian Gundlach
  • Paul Hartogh
  • Ulysse Marboeuf
  • Irakli Simonia
  • Tsitsino Simonia
  • Patrice Theulé
  • Rui Yang


This review presents some of the recent advancements in our understanding of comets facilitated by laboratory studies, need for new laboratory simulations, and predictions for future explorations. With the spacecraft Rosetta at the comet 67P/Churyumov–Gerasimenko, a large volume of science data is expected to follow early results that have been published recently. The most surprising of them being hard ice shell that bounced the lander Philae a couple of times before settling on the comet. Long evaded molecular nitrogen has now been detected in the comet 67P/CG. The observed density of \(470~\mbox{kg}\,\mbox{m}^{- 3}\) is in line with other comet observations, whereas the nature and composition of hydrocarbons detected on the surface are still a puzzle. Observation of D/H ratio that deviates significantly from Earth’s water D/H ratio brings back to the table the long-standing question whether or not water on Earth was delivered by comet impacts. Our review summarizes some of the critical laboratory work that helps improve our understanding of cometary interior (whether amorphous or crystalline or containing clathrates), cometary surface (rich of complex organics), cometary coma and tail (D/H ratio, negative ions, and photoluminescence). Outstanding questions are also discussed.


Comets Laboratory Experimental Ice Volatiles Clathrates Origin of life Organics Review Isotope ratios Negative ions Coma Outgassing Origin of solar systems 



Murthy Gudipati thanks partial funding from the following NASA programs: Planetary Atmospheres, Cassini Data Analysis Programs, Spitzer Science Center, and Astrobiology Institute Node Early Habitable Environments (NASA Ames). JPL’s DRDF and R&TD funding for infrastructure of the “ice spectroscopy laboratory” is also gratefully acknowledged. This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. Olivier Mousis thanks the support of the \(\mbox{A}*\)MIDEX project (no. ANR-11-IDEX-0001-02) funded by the “Investissements d’Avenir” French Government program, managed by the French National Research Agency (ANR). Grégoire Danger and collaborators thank funding by the French national programs “Physique Chimie du Milieu Interstellaire” (P.C.M.I, INSU), “Programme National de Planétologie” (P.N.P, INSU), “Environnements Planetaires et Origines de la Vie” (E.P.O.V, CNRS) and the “Centre National d’Etudes Spatiales” (C.N.E.S) from its exobiology program as well as the ANR project VAHIIA (Grant ANR-12-JS08-0001-01) of the French Agence Nationale de la Recherche. Ulysse Marboeuf thanks funding from the Swiss National Science Foundation. The work of Steven B. Charnley and Martin A. Cordiner was supported by NASA’s Planetary Atmospheres Program and the Goddard Center for Astrobiology.


  1. M.F. A’Hearn, Comets as building block, in Annual Review of Astronomy and Astrophysics, vol. 49, ed. by S.M. Faber, E. VanDishoeck (2011), pp. 281–299 Google Scholar
  2. M.F. A’Hearn, D.D. Wellnitz, R. Meier, \(\lambda4430\) emission by comet Hyakutake. The diffuse interstellar bands, in Proceedings of the International Astronomical Union. IAU Symposium, vol. 297 (2014), pp. 216–218 Google Scholar
  3. T. Albertsson, D. Semenov, T. Henning, Chemodynamical deuterium fractionation in the early solar nebular: the origin of water on earth and in asteroids and comets. Astrophys. J. 784, L39 (2014) ADSCrossRefGoogle Scholar
  4. J. Aléon, F. Robert, Interstellar chemistry recorded by nitrogen isotopes in solar system organic matter. Icarus 167(2), 424–430 (2004) ADSCrossRefGoogle Scholar
  5. C.M.O. Alexander, S.D. Newsome, M.L. Fogel, L.R. Nittler, H. Busemann, G.D. Cody, Deuterium enrichments in chondritic macromolecular material-implications for the origin and evolution of organics, water and asteroids. Geochim. Cosmochim. Acta 74(15), 4417–4437 (2010) ADSCrossRefGoogle Scholar
  6. L.J. Allamandola, S.A. Sandford, G.J. Valero, Photochemical and thermal evolution of interstellar/precometary ice analogs. Icarus 76, 225 (1988) ADSCrossRefGoogle Scholar
  7. M.A. Allodi, R.A. Baragiola, G.A. Baratta, M.A. Barucci, G.A. Blake, P. Boduch, J.R. Brucato, C. Contreras, S.H. Cuylle, D. Fulvio, M.S. Gudipati, S. Ioppolo, Z. Kanuchova, A. Lignell, H. Linnartz, M.E. Palumbo, U. Raut, H. Rothard, F. Salama, E.V. Savchenko, E. Sciamma-O’Brien, G. Strazzulla, Complementary and emerging techniques for astrophysical ices processed in the laboratory. Space Sci. Rev. 180(1–4), 101–175 (2013) ADSCrossRefGoogle Scholar
  8. K. Altwegg, H. Balsiger, J. Geiss, Composition of the volatile material in Halley’s coma from in situ measurements. Space Sci. Rev. 90, 3–18 (1999) ADSCrossRefGoogle Scholar
  9. K. Altwegg, H. Balsiger, A. Bar-Nun, J.J. Berthelier, A. Bieler, P. Bochsler, C. Briois, U. Calmonte, M. Combi, J. De Keyser, P. Eberhardt, B. Fiethe, S. Fuselier, S. Gasc, T.I. Gombosi, K.C. Hansen, M. Hassig, A. Jackel, E. Kopp, A. Korth, L. Leroy, U. Mall, B. Marty, O. Mousis, E. Neefs, T. Owen, H. Reme, M. Rubin, T. Semon, C.Y. Tzou, H. Waite, P. Wurz, 67p/Churyumov-Gerasimenko, a Jupiter family comet with a high d/h ratio. Science 347, 1261952 (2015) CrossRefGoogle Scholar
  10. O. Andersson, A. Inaba, Thermal conductivity of crystalline and amorphous ices and its implications on amorphization and glassy water. Phys. Chem. Chem. Phys. 7(7), 1441–1449 (2005) CrossRefGoogle Scholar
  11. O. Andersson, H. Suga, Thermal conductivity of amorphous ices. Phys. Rev. B 65(14), 4 (2002) CrossRefGoogle Scholar
  12. S. Andersson, T.P.M. Goumans, A. Arnaldsson, Tunneling in hydrogen and deuterium atom addition to CO at low temperatures. Chem. Phys. Lett. 513(1–3), 31–36 (2011) ADSCrossRefGoogle Scholar
  13. C. Arpigny, Spectra of comets: ultraviolet and optical regions, in Workshop on Laboratory and Astronomical High Resolution Spectra, Proceedings of ASP Conference no. 81 held in Brussels. Astronomical Society of the Pacific Conference Series, vol. 81 (1995), pp. 362–382 Google Scholar
  14. H. Balsiger, K. Altwegg, J. Geiss, D/H and O-18/O-16 Ratio in the hydronium ion and in neutral water from in-situ ion measurements in comet Halley. J. Geophys. Res. Space Phys. 100, 5827–5834 (1995) ADSCrossRefGoogle Scholar
  15. A. Bar-Nun, D. Laufer, First experimental studies of large samples of gas-laden amorphous “cometary” ices. Icarus 161(1), 157–163 (2003) ADSCrossRefGoogle Scholar
  16. A. Bar-Nun, D. Laufer, CO2 as the driving force of comet Hartley 2’s activity—an experimental study. Planet. Space Sci. 86, 160 (2013) ADSCrossRefGoogle Scholar
  17. A. Bar-Nun, D. Laufer, O. Rebolledo, S. Malyk, H. Reisler, C. Wittig, Gas trapping in ice and its release upon warming, in The Science of Solar System Ices (2013), p. 487 CrossRefGoogle Scholar
  18. R.M. Barrer, A.V.J. Edge, Gas hydrates containing argon, krypton and xenon: kinetics and energetics of formation and equilibria. Proc. R. Soc. Lond. A 300, 1–24 (1967) ADSCrossRefGoogle Scholar
  19. C.J. Bennett, T. Hama, Y.S. Kim, M. Kawasaki, R.I. Kaiser, Laboratory studies on the formation of formic acid (HCOOH) in interstellar and cometary ices. Astrophys. J. 727(1), 27 (2011). doi: 10.1088/0004-637x/727/1/27 ADSCrossRefGoogle Scholar
  20. J. Berkowitz, Photoabsorption, Photoionization, and Photoelectron Spectroscopy (Academic Press, San Diego, 1979) Google Scholar
  21. J. Berkowitz, W.A. Chupka, T.A. Walter, Photoionization of HCN: the electron affinity and heat of formation of CN. J. Chem. Phys. 50, 1497–1500 (1969) ADSCrossRefGoogle Scholar
  22. M.P. Bernstein, S.A. Sandford, L.J. Allamandola, S. Chang, M.A. Scharberg, Organic compounds produced by photolysis of realistic interstellar and cometary ice analogs containing methanol. Astrophys. J. 454, 327–344 (1995) ADSCrossRefGoogle Scholar
  23. M.P. Bernstein, S.A. Sandford, L.J. Allamandola, J.S. Gillette, S.J. Clemett, R.N. Zare, UV irradiation of polycyclic aromatic hydrocarbons in ices: production of alcohols, quinones, and ethers. Science 283(5405), 1135–1138 (1999) ADSCrossRefGoogle Scholar
  24. M.P. Bernstein, J.P. Dworkin, S.A. Sandford, G.W. Cooper, L.J. Allamandola, Racemic amino acids from the ultraviolet photolysis of interstellar ice analogues. Nature 416, 401 (2002) ADSCrossRefGoogle Scholar
  25. J.E. Bertie, M. Refaat Shehata, Ammonia dihydrate: preparation, x-ray powder diffraction pattern and infrared spectrum of \(\mbox{NH}3\cdot 2\mbox{H}2\mbox{O}\) at 100 K. J. Chem. Phys. 81, 27–30 (1984) ADSCrossRefGoogle Scholar
  26. N. Biver, D. Bockelée-Morvan, J. Crovisier, D.C. Lis, R. Moreno, P. Colom, F. Henry, F. Herpin, G. Paubert, M. Womack, Radio wavelengths observations of comets C/1999 T1 (Mc Naught-Hartley), C/2001 A2 (LINEAR), C/2000 WM1 (LINEAR) and 153P/Ikeya-Zhang. Astron. Astrophys. 449, 1255–1270 (2006) ADSCrossRefGoogle Scholar
  27. D. Blake, L.J. Allamandola, S.A. Sandford, D. Hudgins, F. Freund, Clathrate hydrate formation in amorphous cometary ice analogs in vacuo. Science 254, 548–551 (1991) ADSCrossRefGoogle Scholar
  28. J. Blum, B. Gundlach, S. Mühle, J.M. Trigo-Rodriguez, Comets formed in solar-nebula instabilities! An experimental and modeling attempt to relate the activity of comets to their formation process. Icarus 235, 156–169 (2014) ADSCrossRefGoogle Scholar
  29. N.T. Bobrovnikoff, On the spectra of comets. Astrophys. J. 66, 439–464 (1927a) ADSCrossRefGoogle Scholar
  30. N.T. Bobrovnikoff, On the spectrum of Halley’s comet. Astrophys. J. 66, 145–169 (1927b) ADSCrossRefGoogle Scholar
  31. D. Bockelée-Morvan, Comets, tracers of the early solar nebula, in Physics and Astrophysics of Planetary Systems, vol. 41, ed. by T. Montmerle, D. Ehrenreich, A.M. Lagrange (2010), pp. 313–324 Google Scholar
  32. D. Bockelée-Morvan, D. Gautier, D.C. Lis, K. Young, J. Keene, T. Phillips, T. Owen, J. Crovisier, P.F. Goldsmith, E.A. Bergin, D. Despois, A. Wootten, Deuterated water in comet C/1996 B2 (Hyakutake) and its implications for the origin of comets. Icarus 133, 147–162 (1998) ADSCrossRefGoogle Scholar
  33. D. Bockelée-Morvan, J. Crovisier, M.J. Mumma, H.A. Weaver, The composition of cometary volatiles, in Comets II (2004), pp. 391–423 Google Scholar
  34. D. Bockelée-Morvan, N. Biver, B. Swinyard, M. de Val-Borro, J. Crovisier, P. Hartogh, D.C. Lis, R. Moreno, S. Szutowicz, E. Lellouch, E. Emprechtinger, G.A. Blake, R. Courtin, C. Jarchow, M. Kidger, M. Küppers, M. Rengel, G.R. Davis, T. Fulton, D. Naylor, S. Sidher, H. Walker, Herschel measurements of the D/H and \({}^{16}\mbox{O}/{}^{18}\mbox{O}\) ratios in water in the Oort-cloud comet C/2009 P1 (Garradd). Astron. Astrophys. 544, L15 (2012) ADSCrossRefGoogle Scholar
  35. J.B. Bossa, F. Duvernay, P. Theule, F. Borget, L. d’Hendecourt, T. Chiavassa, Methylammonium methylcarbamate thermal formation in interstellar ice analogs: a glycine salt precursor in protostellar environments. Astron. Astrophys. 506, 601–608 (2009a) ADSCrossRefGoogle Scholar
  36. J.B. Bossa, P. Theule, F. Duvernay, T. Chiavassa, NH2CH2OH thermal formation in interstellar ices contribution to the 5–8 mu m region toward embedded protostars. Astrophys. J. 707, 1524 (2009b) ADSCrossRefGoogle Scholar
  37. J.B. Bossa, F. Borget, F. Duvernay, P. Theulé, T. Chiavassa, How a usual carbamate can become an unusual intermediate: a new chemical pathway to form glycinate in the interstellar medium. J. Phys. Org. Chem. 23, 333–339 (2010) CrossRefGoogle Scholar
  38. W.F. Bottke, D. Vokrouhlicky, D. Minton, D. Nesvorny, A. Morbidelli, R. Brasser, B. Simonson, H.F. Levison, An archaean heavy bombardment from a destabilized extension of the asteroid belt. Nature 485(7396), 78–81 (2012) ADSCrossRefGoogle Scholar
  39. M.E. Brown, A.H. Boucher, H. Spinrad, E.M. Jons-Krull, A high-resolution catalog of cometary emission lines. Astron. J. 112, 1197–1225 (1996) ADSCrossRefGoogle Scholar
  40. R.H. Brown, D.S. Lauretta, B. Schmidt, J. Moores, Experimental and theoretical simulations of ice sublimation with implications for the chemical, isotopic, and physical evolution of icy objects. Planet. Space Sci. 60(1), 166–180 (2012a). doi: 10.1016/j.pss.2011.07.023 ADSCrossRefGoogle Scholar
  41. M.E. Brown, E.L. Schaller, W.C. Fraser, Water ice in the Kuiper Belt. Astron. J. 143(6) (2012b). doi: 10.1088/0004-6256/143/6/146
  42. M. Broz, A. Morbidelli, W.F. Bottke, J. Rozehnal, D. Vokrouhlicky, D. Nesvorny, Constraining the cometary flux through the asteroid belt during the late heavy bombardment. Astron. Astrophys. 551 (2013). doi: 10.1051/0004-6361/201219296
  43. J.L. Burch, R. Goldstein, T.E. Cravens, W.C. Gibson, R.N. Lundin, C.J. Pollock, J.D. Winningham, D.T. Young, RPC-IES: the ion and electron sensor of the Rosetta Plasma Consortium. Space Sci. Rev. 128(1–4), 697–712 (2007). doi: 10.1007/s11214-006-9002-4 ADSCrossRefGoogle Scholar
  44. H.M. Butner, S.B. Charnley, C. Ceccarelli, S.D. Rodgers, J.R. Pardo, B. Parise, J. Cernicharo, G.R. Davis, Discovery of interstellar heavy water. Astrophys. J. 659, L137–L140 (2007) ADSCrossRefGoogle Scholar
  45. F. Carelli, M. Satta, T. Grassi, F.A. Gianturco, Carbon-rich molecular chains in protoplanetary and planetary atmospheres: quantum mechanisms and electron attachment rates for anion formation. Astrophys. J. 774(2), 97 (2013a). doi: 10.1088/0004-637X/774/2/97 ADSCrossRefGoogle Scholar
  46. F. Carelli, T. Grassi, F. Sebastianelli, F.A. Gianturco, Electron-attachment rates for carbon-rich molecules in protoplanetary atmospheres: the role of chemical differences. Mon. Not. R. Astron. Soc. 428(2), 1181–1184 (2013b). doi: 10.1093/mnras/sts100 ADSCrossRefGoogle Scholar
  47. F. Carelli, T. Grassi, F.A. Gianturco, Electron attachment rates for PAH anions in the ISM and dark molecular clouds: dependence on their chemical properties. Astron. Astrophys. 549, A103 (2013c). doi: 10.1051/0004-6361/201219990 ADSCrossRefGoogle Scholar
  48. C. Ceccarelli, C. Dominik, E. Caux, B. Lefloch, P. Caselli, Discovery of deuterated water in a young protoplanetary disk. Astrophys. J. 631, L81–L84 (2005) ADSCrossRefGoogle Scholar
  49. J. Cernicharo, M. Guélin, M. Agündez, K. Kawaguchi, M. McCarthy, P. Thaddeus, Astronomical detection of C4H-, the second interstellar anion. Astron. Astrophys. 467(2), L37–L40 (2007). doi: 10.1051/0004-6361:20077415 ADSCrossRefGoogle Scholar
  50. P. Chaizy, H. Reme, J.A. Sauvaud, C. D’Uston, R.P. Lin, D.E. Larson, D.L. Mitchell, K.A. Anderson, C.W. Carlson, A. Korth, D.A. Mendis, Negative ions in the coma of comet Halley. Nature 349, 393–396 (1991). doi: 10.1038/349393a0 ADSCrossRefGoogle Scholar
  51. Y.J. Chen, M. Nuevo, C.C. Chu, Y.G. Fan, T.S. Yih, W.H. Ip, H.S. Fung, C.Y.R. Wu, Photo-desorbed species produced by the UV/euv irradiation of an \(\mbox{H}_{2}\mbox{O}:\mbox{CO}_{2}:\mbox{NH}_{3}\) ice mixture. Adv. Space Res. 47(9), 1633–1644 (2011) ADSCrossRefGoogle Scholar
  52. M. Choukroun, G. Tobie, O. Grasset, Ammonia, a methane hydrate inhibitor—implications for Titan’s atmospheric methane, in 37th Annual Lunar and Planetary Science Conference, vol. 37 (2006). Abstract 1640 Google Scholar
  53. M. Choukroun, O. Grasset, G. Tobie, C. Sotin, Stability of methane clathrate hydrates under pressure: influence on outgassing processes of methane on Titan. Icarus 205(2), 581–593 (2010). doi: 10.1016/j.icarus.2009.08.011 ADSCrossRefGoogle Scholar
  54. K.I. Churyumov, V.V. Kleshchenok, Parameters of luminescence cometary continuum in spectra of comets Schaumasse (24P), Scoritchenko-George (C/1989 Y1), and Hale-Bopp (C/1995 O1), in AAS, DPS Meeting, vol. 31 (1999), p. 17.13 Google Scholar
  55. K.I. Churyumov, G.F. Chernyi, A.I. Shapovalova, Discovery of emission from the negative carbon ion C2 in comet Scorichenko-George (1990 VI). Astron. Lett. 19(5), 332–334 (1993) ADSGoogle Scholar
  56. K.I. Churyumov, I.V. Luk’yanyk, A.A. Berezhnoi, V.H. Chavushyan, L.S. Sandoval, A.A. Palma, Optical spectroscopy of comet C/2000 WM1 (LINEAR) at the Guillermo Harro Astrophysical Observatory in Mexico. Earth Moon Planets 90(1), 361–368 (2002) ADSCrossRefGoogle Scholar
  57. K.I. Churyumov, V.A. Ponomarenko, V.V. Kleshchonok, A.R. Baranski, Luminescent continuum in spectra of the comet C/2007 N3 (Lulin). Astron. Circ. 1603, 1–4 (2013) ADSGoogle Scholar
  58. J. Clairemidi, P. Brechignac, G. Moreels, D. Pautet, Tentative identification of pyrene as a polycyclic aromatic molecule in UV spectra of comet P/Halley: an emission from 368 to 384 nm. Planet. Space Sci. 57, 761–772 (2004) ADSCrossRefGoogle Scholar
  59. L.I. Cleeves, E.A. Bergin, C.M.O.D. Alexander, F. Du, D. Graninger, K.I. Öberg, T.J. Harries, The ancient heritage of water ice in the solar system. Science 345(6204), 1590–1593 (2014). doi: 10.1126/science.1258055 ADSCrossRefGoogle Scholar
  60. S.J. Clemett, L.J. Kovalenko, C.R. Maechling, R.N. Zare, 2-step laser mass-spectrometry—analysis at high spatial-resolution of cosmochemical samples. Meteoritics 26(4), 328–329 (1991) ADSGoogle Scholar
  61. A.L. Cochran, W.D. Cochran, A high spectral resolution atlas of comet 122P/de Vico. Icarus 157, 297–308 (2002) ADSCrossRefGoogle Scholar
  62. A. Cochran, E.S. Barker, W. Cochran, Spectrophotometric observations of P/Schwassmann-Wachmann 1 during outburst. Astron. J. 85, 474–477 (1980) ADSCrossRefGoogle Scholar
  63. A.L. Cochran, E.S. Barker, C.L. Gray, Thirty years of cometary spectroscopy from McDonald Observatory. Icarus 218, 144–168 (2012) ADSCrossRefGoogle Scholar
  64. M.P. Collings, J.W. Dever, H.J. Fraser, M.R.S. McCoustra, D.A. Williams, Carbon monoxide entrapment in interstellar ice analogs. Astrophys. J. 583, 1058 (2003) ADSCrossRefGoogle Scholar
  65. M.P. Collings, M.A. Anderson, R. Chen, J.W. Dever, S. Viti, D.A. Williams, M.R.S. McCoustra, A laboratory survey of the thermal desorption of astrophysically relevant molecules. Mon. Not. R. Astron. Soc. 354, 1133 (2004) ADSCrossRefGoogle Scholar
  66. M.A. Cordiner, S.B. Charnley, Negative ion chemistry in the coma of comet 1P/Halley. Meteorit. Planet. Sci. 49, 21–27 (2014) ADSCrossRefGoogle Scholar
  67. M.A. Cordiner, J.V. Buckle, E.S. Wirström, A.O.H. Olofsson, S.B. Charnley, On the ubiquity of negative ions in the dense interstellar medium. Astrophys. J. 770, 48–57 (2013) ADSCrossRefGoogle Scholar
  68. H. Cottin, M.C. Gazeau, J.F. Doussin, F. Raulin, An experimental study of the degradation of polyoxymethylene at 122, 147, and 193 nm. Photochem. Photobiol. 135, 53 (2000) CrossRefGoogle Scholar
  69. H. Cottin, C. Szopa, M.H. Moore, Production of hexamethylenetetramine in photolyzed and irradiated interstellar cometary ice analogs. Astrophys. J. Lett. 561, 139 (2001) ADSCrossRefGoogle Scholar
  70. H. Cottin, B. Souleyman, F. Raulin, M.C. Gazeau, Photodegradation of hexamethylenetetramine by VUV and its relevance for CN and HCN extended sources in comets. Adv. Space Res. 30, 1481 (2002) ADSCrossRefGoogle Scholar
  71. G. Cremonese, M.T. Capria, M.C. De Sanctis, Catalog of the emission lines in the visible spectrum of comet 153P/Ikeya-Zhang. Astron. Astrophys. 461, 789–792 (2007) ADSCrossRefGoogle Scholar
  72. J. Crovisier, D. Bockelée-Morvan, A search for PAHs in the ISO spectra of comet Hale-Bopp, in Molecules in Space and Laboratory, Meeting in Paris, France, May 14–18, vol. 19, ed. by J.L. Lemaire, F. Combes (2007) Google Scholar
  73. A. Dalgarno, R.A. McCray, The formation of interstellar molecules from negative ions. Astrophys. J. 181, 95–100 (1973) ADSCrossRefGoogle Scholar
  74. G. Danger, L. Le Sergeant d’Hendecourt, From astrochemistry to prebiotic chemistry: an hypothetical approach toward astrobiology, in SF2A-2012 Proc. Annu. Meet. French Soc. Astron. Astrophys., ed. by S. Boissier (2012), pp. 263–267 Google Scholar
  75. G. Danger, F. Borget, M. Chomat, F. Duvernay, P. Theulé, J.C. Guillemin, S. Le Sergeant d’Hendecourt, T. Chiavassa, Experimental investigation of aminoacetonitrile formation through the Strecker synthesis in astrophysical-like conditions: reactivity of methanimine (CH2NH), ammonia (NH3), and hydrogen cyanide (HCN). Astron. Astrophys. 535, A47 (2011a) ADSCrossRefGoogle Scholar
  76. G. Danger, J.B. Bossa, P. de Marcellus, F. Borget, F. Duvernay, P. Theule, T. Chiavassa, L. D’Hendecourt, Experimental investigation of nitrile formation from VUV photochemistry of interstellar ices analogs: acetonitrile and amino acetonitrile. Astron. Astrophys. 525, A30 (2011b) ADSCrossRefGoogle Scholar
  77. G. Danger, F. Duvernay, P. Theule, F. Borget, T. Chiavassa, Hydroxyacetonitrile (HOCH2CN) Formation in astrophysical conditions. Competition with the aminomethanol, a glycine precursor. Astrophys. J. 756, 11 (2012) ADSCrossRefGoogle Scholar
  78. G. Danger, F. Orthous-Daunay, P. de Marcellus, P. Modica, V. Vuitton, F. Duvernay, L. Flandinet, L. Le Sergeant d’Hendecourt, R. Thissen, T. Chiavassa, Characterization of laboratory analogs of interstellar/cometary organic residues using very high resolution mass spectrometry. Geochim. Cosmochim. Acta 118, 184–201 (2013) ADSCrossRefGoogle Scholar
  79. G. Danger, A. Rimola, N. Abou Mrad, F. Duvernay, G. Roussin, P. Theule, T. Chiavassa, Formation of hydroxyacetonitrile (HOCH2CN) and polyoxymethylene (POM)-derivatives in comets from formaldehyde (CH2O) and hydrogen cyanide (HCN) activated by water. Phys. Chem. Chem. Phys. 16, 3360 (2014) CrossRefGoogle Scholar
  80. E. Dartois, D. Deboffle, Methane clathrate hydrate FTIR spectrum implications for its cometary and planetary detection. Astron. Astrophys. 490(3), L19–L22 (2008) ADSCrossRefGoogle Scholar
  81. E. Dartois, M. Bouzit, B. Schmitt, Clathrate hydrates: FTIR spectroscopy for astrophysical remote detection, in ECLA: European Conference on Laboratory Astrophysics, vol. 58, ed. by C. Stehle, C. Joblin, L. Dhendecourt (2013), pp. 219–224 Google Scholar
  82. J.L. Daschbach, G.K. Schenter, P. Ayotte, R.S. Smith, B.D. Kay, Helium diffusion through H2O and D2O amorphous ice: observation of a lattice inverse isotope effect. Phys. Rev. Lett. 92, 198306 (2004) ADSCrossRefGoogle Scholar
  83. B.J.R. Davidsson, P.J. Gutierrez, O. Groussin, M.F. A’Hearn, T. Farnham, L.M. Feaga, M.S. Kelley, K.P. Klaasen, F. Merlin, S. Protopapa, H. Rickman, J.M. Sunshine, P.C. Thomas, Thermal inertia and surface roughness of comet 9p/Tempel 1. Icarus 224(1), 154–171 (2013) ADSCrossRefGoogle Scholar
  84. P. de Marcellus, M. Bertrand, M. Nuevo, F. Westall, L. Le Sergeant d’Hendecourt, Prebiotic significance of extraterrestrial ice photochemistry: detection of hydantoin in organic residues. Astrobiology 11, 847 (2011a) ADSCrossRefGoogle Scholar
  85. P. de Marcellus, C. Meinert, M. Nuevo, J.-J. Filippi, G. Danger, D. Deboffle, L. Nahon, L. Le Sergeant d’Hendecourt, U.J. Meierhenrich, Non-racemic amino acid production by ultraviolet irradiation of achiral interstellar ice analogs with circularly polarized light. Astrophys. J. 727, L27 (2011b) ADSCrossRefGoogle Scholar
  86. N. Dello Russo, R.J. Vervack Jr., H.A. Weaver et al., A high-resolution infrared spectral survey of 103P/Hartley 2 on the night of the EPOXI closest approach. Icarus 222, 707–722 (2013) ADSCrossRefGoogle Scholar
  87. A. Drouart, B. Dubrulle, D. Gautier, F. Robert, Structures and transport in the solar nebula from constraints on deuterium enrichment and giant planets formation. Icarus 140(1), 129–155 (1999) ADSCrossRefGoogle Scholar
  88. J. Duprat, E. Dobrica, C. Engrand, J. Aléon, Y. Marrocchi, S. Mostefaoui, A. Meibom, H. Leroux, J.N. Rouzaud, M. Gounelle, F. Robert, Extreme deuterium excesses in ultracarbonaceous micrometeorites from central antarctic snow. Science 328(5979), 742–745 (2010) ADSCrossRefGoogle Scholar
  89. F. Duvernay, G. Danger, P. Theulé, T. Chiavassa, A. Rimola, Formaldehyde chemistry in cometary ices: on the prospective detection of NH2CH2OH, HOCH2OH, and POM by the on-board Rosina instrument of the Rosetta mission. Astrophys. J. 791, 75 (2014a) ADSCrossRefGoogle Scholar
  90. F. Duvernay, A. Rimola, P. Theule, G. Danger, T. Chiavassa, Formaldehyde chemistry in cometary ices: the case of HOCH2OH formation. Phys. Chem. Chem. Phys. 16, 24200 (2014b) CrossRefGoogle Scholar
  91. J.P. Dworkin, D.W. Deamer, S.A. Sandford, L.J. Allamandola, Self-assembling amphiphilic molecules: synthesis in simulated interstellar/precometary ices. Proc. Natl. Acad. Sci. USA 98, 815 (2001) ADSCrossRefGoogle Scholar
  92. J.P. Dworkin, J.S. Gillette, M.P. Bernstein, S.A. Sandford, L.J. Allamandola, J.E. Elsila, D.R. McGlothlin, R.N. Zare, An evolutionary connection between interstellar ices and IDPs? Clues from mass spectroscopy measurements of laboratory simulations. Adv. Space Res. 33, 67 (2004) ADSCrossRefGoogle Scholar
  93. P. Eberhardt, M. Reber et al., The D/H and O-18/O-16 ratios in water from comet P/Halley. Astron. Astrophys. 302(1), 301–316 (1995) ADSGoogle Scholar
  94. P. Ehrenfreund, S.B. Charnley, Organic molecules in the interstellar medium, comets, and meteorites: a voyage from dark clouds to the Early Earth. Annu. Rev. Astron. Astrophys. 38, 427–483 (2000) ADSCrossRefGoogle Scholar
  95. D.J. Eicher, Comets! Visitors from Deep Space (2013) CrossRefGoogle Scholar
  96. J.E. Elsila, J.P. Dworkin, M.P. Bernstein, M.P. Martin, S.A. Sandford, Mechanisms of amino acid formation in interstellar ice analogs. Astrophys. J. 660, 911 (2007) ADSCrossRefGoogle Scholar
  97. N.J. English, J.S. Tse, R. Gallagher, Thermal conductivity in amorphous ices from molecular dynamics. Phys. Rev. B 82(9), 4 (2010) CrossRefGoogle Scholar
  98. A. Falenty, G. Genov, T.C. Hansen, W.H. Kuhs, A.N. Salamatin, Kinetics of CO 2 hydrate formation from water frost at low temperatures: experimental results and theoretical model. J. Phys. Chem. C 115, 4022–4032 (2011) CrossRefGoogle Scholar
  99. C.M. Fedo, M.J. Whitehouse, B.S. Kamber, Geological constraints on detecting the earliest life on earth: a perspective from the early archaean (older than 3.7 gyr) of Southwest Greenland. Philos. Trans. R. Soc. Lond. B, Biol. Sci. 361(1470), 851–867 (2006) CrossRefGoogle Scholar
  100. M.C. Festou, U. Keller, H.A. Weaver (eds.), Comets II. Space Science Series (University of Arizona Press, Tucson, 2004) Google Scholar
  101. H. Feuchtgruber, E. Lellouch, G. Orton, T. de Graauw, B. Vandenbussche, B. Swinyard, R. Moreno, C. Jarchow, F. Billebaud, T. Cavalie, S. Sidher, P. Hartogh, The d/h ratio in the atmospheres of uranus and neptune from Herschel-PACS observations. Astron. Astrophys. 551 (2013) Google Scholar
  102. A.D. Fortes, M. Choukroun, Phase behavior of ices and hydrates. Space Sci. Rev. 153, 185 (2010) ADSCrossRefGoogle Scholar
  103. N. Fray, U. Marboeuf, O. Brissaud, B. Schmitt, Equilibrium data of methane, carbon dioxide, and xenon clathrate hydrates below the freezing point of water. Applications to astrophysical environments. J. Chem. Eng. Data 55, 5101–5108 (2010) CrossRefGoogle Scholar
  104. A. Fresneau, G. Danger, A. Rimola, P. Theule, F. Duvernay, T. Chiavassa, Trapping in water—an important prerequisite for complex reactivity in astrophysical ices: the case of acetone \(\mbox{(CH3)2C}=\mbox{O}\) and ammonia NH3. Mon. Not. R. Astron. Soc. 443, 2991 (2014) ADSCrossRefGoogle Scholar
  105. D. Gautier, F. Hersant, O. Mousis, J.I. Lunine, Enrichments in volatiles in Jupiter: a new interpretation of the Galileo measurements. Astrophys. J. 550, L227–L230 (2001) ADSCrossRefGoogle Scholar
  106. J. Geiss et al., Rare atoms, molecules and radicals in the coma of 1P/Halley. Space Sci. Rev. 90, 253–268 (1999) ADSCrossRefGoogle Scholar
  107. P.A. Gerakines, W.A. Schutte, P. Ehrenfreund, Ultraviolet processing of interstellar ice analogs. Astron. Astrophys. 312, 289 (1996) ADSGoogle Scholar
  108. L. Gibb et al., An inventory of interstellar ices toward the embedded protostar W33A. Astrophys. J. 536, 347–356 (2000) ADSCrossRefGoogle Scholar
  109. E.L. Gibb, D.C.B. Whittet, A.C.A. Boogert, A.G.G.M. Tielens, Interstellar ice: the infrared space observatory legacy. Astrophys. J. Suppl. Ser. 151, 35–73 (2004) ADSCrossRefGoogle Scholar
  110. R. Goldstein, D.C. Boice, J.L. Burch, T.W. Hill, Are charged nanograins at Enceladus a model for 67P/Churyumov-Gerasimenko? AGU abstract #P43C-1935 (2012) Google Scholar
  111. R. Gomes, H.F. Levison, K. Tsiganis, A. Morbidelli, Origin of the cataclysmic late heavy bombardment period of the terrestrial planets. Nature 435(7041), 466–469 (2005) ADSCrossRefGoogle Scholar
  112. N. Gortsas, E. Kuhrt, U. Motschmann, H.U. Keller, Thermal model of water and CO activity of comet c/1995 o1 (Hale-Bopp). Icarus 212(2), 858–866 (2011) ADSCrossRefGoogle Scholar
  113. J.M. Greenberg, Interstellar grains. Annu. Rev. Astron. Astrophys. 1, 267 (1963) ADSCrossRefGoogle Scholar
  114. O. Groussin, M.F. A’Hearn, J.Y. Li, P.C. Thomas, J.M. Sunshine, C.M. Lisse, K.J. Meech, T.L. Farnham, L.M. Feaga, W.A. Delamere, Surface temperature of the nucleus of comet 9p/Tempel 1. Icarus 187(1), 16–25 (2007) ADSCrossRefGoogle Scholar
  115. O. Groussin, J.M. Sunshine, L.M. Feaga, L. Jorda, P.C. Thomas, J.Y. Li, M.F.A. ÄôHearn, M.J.S. Belton, S. Besse, B. Carcich, T.L. Farnham, D. Hampton, K. Klaasen, C. Lisse, F. Merlin et al., The temperature, thermal inertia, roughness and color of the nuclei of comets 103p/Hartley 2 and 9p/Tempel 1. Icarus 222(2), 580–594 (2013) ADSCrossRefGoogle Scholar
  116. M.S. Gudipati, L.J. Allamandola, Facile generation and storage of polycyclic aromatic hydrocarbon ions in astrophysical ices. Astrophys. J. 596(5), L195–L198 (2003) ADSCrossRefGoogle Scholar
  117. M.S. Gudipati, R. Yang, In-situ probing of radiation-induced processing of organics in astrophysical ice analogs: novel laser desorption laser ionization time-of-flight mass spectroscopic studies. Astrophys. J. Lett. 756(1), L24 (2012), 25 pp. ADSCrossRefGoogle Scholar
  118. S. Gulkis, M. Allen, P. von Allmen, G. Beaudin, N. Biver, D. Bockelée-Morvan, M. Choukroun, J. Crovisier, B.J.R. Davidsson, P. Encrenaz, T. Encrenaz, M. Frerking, P. Hartogh, M. Hofstadter, W.H. Ip, M. Janssen, C. Jarchow, S. Keihm, S. Lee, E. Lellouch, C. Leyrat, L. Rezac, F.P. Schloerb, T. Spilker, Subsurface properties and early activity of comet 67p/Churyumov-Gerasimenko. Science 347, 6220 (2015) CrossRefGoogle Scholar
  119. B. Gundlach, J. Blum, Outgassing of icy bodies in the solar system—II. Heat transport in dry, porous surface dust layers. Icarus 219, 618–629 (2012) ADSCrossRefGoogle Scholar
  120. B. Gundlach, J. Blum, The stickiness of micrometer-sized water-ice particles. Astrophys. J. 798, 34 (2015). doi: 10.1088/0004-637X/798/1/34 ADSCrossRefGoogle Scholar
  121. B. Gundlach, Y.V. Skorov, J. Blum, Outgassing of icy bodies in the solar system—I. The sublimation of hexagonal water ice through dust layers. Icarus 213, 710–719 (2011a) ADSCrossRefGoogle Scholar
  122. B. Gundlach, S. Kilias, E. Beitz, J. Blum, Micrometer-sized ice particles for planetary-science experiments—I. Preparation, critical rolling friction force, and specific surface energy. Icarus 214, 717–723 (2011b) ADSCrossRefGoogle Scholar
  123. A. Hachikubo, T. Kosaka, M. Kida, A. Krylov, H. Sakagami, H. Minami, N. Takahashi, H. Shoji, Isotopic fractionation of methane and ethane hydrates between gas and hydrate phases. Geophys. Res. Lett. 34, L21502–L21506 (2007) ADSCrossRefGoogle Scholar
  124. A. Hachikubo, R. Nakagawa, D. Kubota, H. Sakagami, N. Takahashi, H. Shoji, Dissociation heat of mixed-gas hydrate composed of methane and ethane, in Proceedings of the 6th International Conference on Gas Hydrates (ICGH-2008) (2008) Google Scholar
  125. T. Hama, N. Watanabe, Surface processes on interstellar amorphous solid water: adsorption, diffusion, tunneling reactions, and nuclear-spin conversion. Chem. Rev. 113(12), 8783–8839 (2013) CrossRefGoogle Scholar
  126. T. Hama, H. Ueta, A. Kouchi, N. Watanabe, H. Tachikawa, Quantum tunneling hydrogenation of solid benzene and its control via surface structure. J. Phys. Chem. Lett. 5(21), 3843–3848 (2014) CrossRefGoogle Scholar
  127. Y.P. Handa, O. Mishima, E. Whalley, High-density amorphous ice. 3. Thermal-properties. J. Chem. Phys. 84(5), 2766–2770 (1986) ADSCrossRefGoogle Scholar
  128. G.B. Hansen, T.B. McCord, Amorphous and crystalline ice on the galilean satellites: a balance between thermal and radiolytic processes. J. Geophys. Res. 109, E01012-01019 (2004) ADSGoogle Scholar
  129. P. Hartogh, D.C. Lis, D. Bockelée-Morvan, M. de Val-Borro, N. Biver, M. Küppers, M. Emprechtinger, E.A. Bergin, J. Crovisier, M. Rengel, R. Moreno, S. Szutowicz, G.A. Blake, Ocean-like water in the Jupiter-family comet 103P/Hartley 2. Nature 478(7368), 218–220 (2011) ADSCrossRefGoogle Scholar
  130. S. Hegler, C. Statz, R. Hahnel, D. Plettemeier, A. Herique, W. Kofman, Operation of consert aboard Rosetta during the descent of philae. Planet. Space Sci. 89151, 158 (2013) Google Scholar
  131. B.L. Henderson, M.S. Gudipati, Plume composition and evolution in multicomponent ices using resonant two-step laser ablation and ionization mass spectrometry. J. Phys. Chem. A 118(29), 5454–5463 (2014) CrossRefGoogle Scholar
  132. B.L. Henderson, M.S. Gudipati, Direct detection of complex organic products in ultraviolet (Ly alpha) and electron-irradiated astrophysical and cometary ice analogs using two-step laser ablation and ionization mass spectrometry. Astrophys. J. 800(1), 66 (2015) ADSCrossRefGoogle Scholar
  133. E. Herbst, Can negative molecular ions be detected in dense interstellar clouds? Nature 289, 656–657 (1981) ADSCrossRefGoogle Scholar
  134. E. Herbst, Y. Osamura, Calculations on the formation rates and mechanisms for CnH anions in interstellar and circumstellar media. Astrophys. J. 679, 1670–1679 (2008) ADSCrossRefGoogle Scholar
  135. F. Hersant, D. Gautier, J.I. Lunine, Enrichment in volatiles in the giant planets of the Solar System. Planet. Space Sci. 52, 623–641 (2004) ADSCrossRefGoogle Scholar
  136. F. Hersant, D. Gautier, G. Tobie, J.I. Lunine, Interpretation of the carbon abundance in Saturn measured by Cassini. Planet. Space Sci. 56, 1103–1111 (2008) ADSCrossRefGoogle Scholar
  137. M.R. Hogerheijde, E.A. Bergin, C. Brinch, L.I. Cleeves, J.K.J. Fogel, G.A. Blake, C. Dominik, D.C. Lis, G. Melnick, D. Neufeld, O. Panic, J.C. Pearson, L. Kristensen, U.A. Yildiz, E.F. van Dishoeck, Detection of the water reservoir in a forming planetary system. Science 334(6054), 338–340 (2011) ADSCrossRefGoogle Scholar
  138. H.D. Holder, G. Corbin, K.D. Papadopoulos, Thermodynamic and molecular properties of gas hydrates from mixtures containing methane, argon, and krypton. Ind. Eng. Chem. Fundam. 19, 280–286 (1980) CrossRefGoogle Scholar
  139. J. Horner, O. Mousis et al., Constraints on the formation regions of comets from their D:H ratios. Earth Moon Planets 100(1–2), 43–56 (2007) ADSCrossRefGoogle Scholar
  140. Q.J. Hu, Q. Zhang, J.W. Hepburn, Threshold ion-pair production spectroscopy of HCN. J. Chem. Phys. 124, 074310 (2006) ADSCrossRefGoogle Scholar
  141. W.B. Huebner, First polymer in space identified in comet Halley. Science 237, 628 (1987) ADSCrossRefGoogle Scholar
  142. D. Hutsemékers, J. Manfroid, E. Jehin, J.-M. Zucconi, C. Arpigny, The 16OH/18OH and OD/OH isotope ratios in comet C/2002 T7 (LINEAR). Astron. Astrophys. 490(3), L31–L34 (2008) ADSCrossRefGoogle Scholar
  143. N. Iro, D. Gautier, F. Hersant, D. Bockelée-Morvan, J.I. Lunine, An interpretation of the nitrogen deficiency in comets. Icarus 161, 511–532 (2003) ADSCrossRefGoogle Scholar
  144. W.M. Irvine, D. Bockelée-Morvan, D.C. Lis, H.E. Matthews, N. Biver, J. Crosivier, J.K. Davies, W.R.F. Dent, D. Gaultier, P.D. Godfrey, J. Keene, A.J. Lovell, T.C. Owen, T.G. Phillips, H. Rauer, F.P. Schloerb, M. Senay, K. Young, Spectroscopic evidence for interstellar ices in comet Hyakutake. Nature 383, 418–420 (1996) ADSCrossRefGoogle Scholar
  145. F.G.A. Islam, G.A. Baratta, M.E. Palumbo, Simultaneous UV- and ion processing of astrophysically relevant ices. The case of CH3OH:N2 solid mixtures. Astron. Astrophys. 561, A73 (2014) ADSCrossRefGoogle Scholar
  146. P. Jenniskens, D.F. Blake, Structural transitions in amorphous water ice and astrophysical implications. Science 265, 753 (1994) ADSCrossRefGoogle Scholar
  147. B. Jost, B. Gundlach, A. Pommerol, J. Oesert, S.N. Gorb, J. Blüm, N. Thomas, Micrometer-sized ice particles for planetary-science experiments—II. Bidirectional reflectance. Icarus 225, 352–366 (2013) ADSCrossRefGoogle Scholar
  148. S.-P. Kang, H. Lee, B.-J. Ryu, Enthalpies of dissociation of clathrate hydrates of carbon dioxide, nitrogen, (carbon dioxide + nitrogen), and (carbon dioxide + nitrogen + tetrahydrofuran). J. Chem. Thermodyn. 33, 513–521 (2001) CrossRefGoogle Scholar
  149. J.J. Kavelaars, O. Mousis et al., On the formation location of Uranus and Neptune as constrained by dynamical and chemical models of comets. Astrophys. J. Lett. 734(2), L30 (2011) ADSCrossRefGoogle Scholar
  150. H. Kawakita, J. Watanabe, Unidentified bands in comet Ikeya-Zhang (C/2002 C1): the correlation between unidentified bands and \(\mbox{H2O}+\). Astrophys. J. 574, L183–L185 (2002) ADSCrossRefGoogle Scholar
  151. K.J. Kim, S.H. Lee, J. Ulrich, Experimental thermal conductivity of ice crystalline layer in layer melt crystallization. J. Ind. Eng. Chem. 9, 111–116 (2003) Google Scholar
  152. G.F. Kirkbright, C.G. Lima, The detection and determination of polynuclear aromatic hydrocarbons by luminescence spectrometry utilizing the Shpol’skii effect at 77 K. Analyst 99, 338–354 (1974) ADSCrossRefGoogle Scholar
  153. H. Kobayashi, H. Kawakita, Formation conditions of icy materials in comet C/2004 Q2 (Machholz). I. Mixing ratios of organic volatiles. Astrophys. J. 703, 121–130 (2009) ADSCrossRefGoogle Scholar
  154. K.J. Kossacki, W.J. Markiewicz, Y.V. Skorov, N.I. Kömle, Sublimation coefficient of water ice under simulated cometary-like conditions. Planet. Space Sci. 47, 1521–1530 (1999) ADSCrossRefGoogle Scholar
  155. A. Kouchi, S. Sirono, Crystallization heat of impure amorphous H(2)O ice. Geophys. Res. Lett. 28(5), 827–830 (2001) ADSCrossRefGoogle Scholar
  156. A. Kouchi, J.M. Greenberg, T. Yamamoto, T. Mukai, Z.F. Xing, Extremely low thermal conductivity of amorphous ice—relevance to comet evolution. Astrophys. J. 388(2), L73–L76 (1992) ADSCrossRefGoogle Scholar
  157. M. Krause, J. Blum, Y.V. Skorov, M. Trieloff, Thermal conductivity measurements of porous dust aggregates: I. Technique, model and first results. Icarus 214, 286–296 (2011) ADSCrossRefGoogle Scholar
  158. E. Kuhrt, H2O-activity of comet Hale-Bopp. Space Sci. Rev. 90(1–2), 75–82 (1999) ADSCrossRefGoogle Scholar
  159. W.F. Kuhs, D.K. Staykova, A.N. Salamatin, Formation of methane hydrate from polydisperse ice powders. J. Phys. Chem. B 110, 13283–13295 (2006) CrossRefGoogle Scholar
  160. D. Laufer, E. Kochavi, A. Bar-Nun, Structure and dynamics of amorphous water ice. Phys. Rev. B 36(17), 9219–9227 (1987) ADSCrossRefGoogle Scholar
  161. D. Laufer, A. Bar-Nun, I. Pat-El, R. Jacovi, Experimental studies of ice grain ejection by massive gas flow from ice and implications to comets, Triton and Mars. Icarus 222(1), 73–80 (2013) ADSCrossRefGoogle Scholar
  162. C. Lecluse, F. Robert, D. Gautier, M. Guirand, Deuterium enrichment in giant planets. Planet. Space Sci. 44(12), 1579–1592 (1996) ADSCrossRefGoogle Scholar
  163. J.S. Lewis, Low temperature condensation from the solar nebula. Icarus 16, 241–252 (1972) ADSCrossRefGoogle Scholar
  164. A. Li, PAHs in comets: an overview, in Deep Impact as a World Observatory Event: Synergies in Space, Time, and Wavelength. ESO Astrophysics Symposia (Springer, Berlin, 2009), pp. 161–175 CrossRefGoogle Scholar
  165. J. Licandro, N. Pinilla-Alonso, M. Pedani, E. Oliva, G.P. Tozzi, W.M. Grundy, The methane ice rich surface of large TNO 2005 FY9: a Pluto-twin in the trans-Neptunian belt? Astron. Astrophys. 445(3), L35–L38 (2006) ADSCrossRefGoogle Scholar
  166. A. Lignell, M.S. Gudipati, Mixing of the immiscible: hydrocarbons in water-ice near the ice crystallization temperature. J. Phys. Chem. A 119, 2607–2613 (2015). doi: 10.1021/jp509513s CrossRefGoogle Scholar
  167. P. Linga, R. Kumar, P. Englezos, Gas hydrate formation from hydrogen/carbon dioxide and nitrogen/carbon dioxide gas mixtures. Chem. Eng. Sci. 62, 4268–4276 (2007) CrossRefGoogle Scholar
  168. D.C. Lis, N. Biver, D. Bockelée-Morvan, P. Hartogh, E.A. Bergin, G.A. Blake, J. Crovisier, M. de Val-Borro, E. Jehin, M. Küppers, J. Manfroid, R. Moreno, M. Rengel, S. Szutowicz, A Herschel study of D/H in water in the Jupiter-family comet 45P/Honda-Mrkos-Pajdusáková and prospects for D/H measurements with CCAT. Astrophys. J. Lett. 774(1), L3 (2013) ADSCrossRefGoogle Scholar
  169. C.M. Lisse, M.F. A’Hearn, T.L. Farnham, O. Groussin, K.J. Meech, U. Fink, D.G. Schleicher, The coma of comet 9P/Tempel 1. Space Sci. Rev. 117(1–2), 161–192 (2005) ADSCrossRefGoogle Scholar
  170. C.M. Lisse, A. Bar-Nun, D. Laufer, M. Belton, W. Harris, H. Hsieh, D. Jewitt, Cometary ices, in The Science of Solar System Ices, vol. 356, ed. by M.S. Gudipati, J. Castillo-Rogez (Springer, New York, 2013), pp. 455–485 CrossRefGoogle Scholar
  171. F.E. Livingston, J.A. Smith, S.M. George, General trends for bulk diffusion measurments in ice films using infrared laser resonant desorption. J. Phys. Chem. A 106, 6309 (2002) CrossRefGoogle Scholar
  172. K. Lodders, H. Palme, H.-P. Gail, Abundances of the Elements in the Solar System. Landolt Börnstein, vol. 44 (2009) Google Scholar
  173. J.I. Lunine, D.J. Stevenson, Thermodynamics of clathrate hydrate at low and high pressures with application to the outer solar system. Astrophys. J. Suppl. Ser. 58, 493–531 (1985) ADSCrossRefGoogle Scholar
  174. J.I. Lunine, D.J. Stevenson, Clathrate and ammonia hydrates at high pressure—application to the origin of methane on Titan. Icarus 70, 61–77 (1987) ADSCrossRefGoogle Scholar
  175. T. Maekawa, Equilibrium conditions for gas hydrates of methane and ethane mixtures in pure water and sodium chloride solution. Geochem. J. 35, 59–66 (2001) CrossRefGoogle Scholar
  176. S. Maity, R.I. Kaiser, B.M. Jones, Formation of complex organic molecules in methanol and methanol-carbon monoxide ices exposed to ionizing radiation—a combined FTIR and reflectron time-of-flight mass spectrometry study. Phys. Chem. Chem. Phys. 17(5), 3081–3114 (2015) CrossRefGoogle Scholar
  177. U. Marboeuf, B. Schmitt, How to link the relative abundances of gas species in coma of comets to their initial chemical composition? Icarus 242, 225–248 (2014) ADSCrossRefGoogle Scholar
  178. U. Marboeuf, O. Mousis, D. Ehrenreich, Y. Alibert, A. Cassan, V. Wakelam, J.-P. Beaulieu, Composition of ices in low-mass extrasolar planets. Astrophys. J. 681, 1624–1630 (2008) ADSCrossRefGoogle Scholar
  179. U. Marboeuf, N. Fray, O. Brissaud, B. Schmitt, D. Bockelée-Morvan, D. Gautier, Equilibrium pressure of ethane, acetylene, and krypton clathrate hydrates below the freezing point of water. J. Chem. Eng. Data 57, 3408–3415 (2012a) CrossRefGoogle Scholar
  180. U. Marboeuf, B. Schmitt, J.-M. Petit, O. Mousis, N. Fray, A cometary nucleus model taking into account all phase changes of water ice: amorphous, crystalline, and clathrate. Astron. Astrophys. 542, A82–A105 (2012b) ADSCrossRefGoogle Scholar
  181. U. Marboeuf, A. Thiabaud, N. Cabral, Y. Alibert, W. Benz, From stellar nebula to planetesimals. Astron. Astrophys. 570, A35–A55 (2014) ADSCrossRefGoogle Scholar
  182. R. Martin-Domenech, G.M. Muñoz-Caro, J. Bueno, F. Goesmann, Thermal desorption of circumstellar and cometary ice analogs. Astron. Astrophys. 564, A8 (2014) ADSCrossRefGoogle Scholar
  183. B. Marty, R.L. Palma, R.O. Pepin, L. Zimmermann, D.J. Schlutter, P.G. Burnard, A.J. Westphal, C.J. Snead, S. Bajt, R.H. Becker, J.E. Simones, Helium and neon abundances and compositions in cometary matter. Science 319(5859), 75–78 (2008) ADSCrossRefGoogle Scholar
  184. H. Massey, Negative Ions (Cambridge University Press, Cambridge, 1976) zbMATHGoogle Scholar
  185. C.K. Materese, D.P. Cruikshank, S.A. Sandford, H. Imanaka, M. Nuevo, D.W. Douglas, Ice chemistry on outer solar system bodies: carboxylic acids, nitriles, and urea detected in refractory residues produced from the UV photolysis of N2:CH4:CO-containing ices. Astrophys. J. 788, 111–121 (2014) ADSCrossRefGoogle Scholar
  186. C.N. Matthews, R.D. Minard, Hydrogen cyanide polymers, comets and the origin of life. Faraday Discuss. 133, 393–401 (2006) ADSCrossRefGoogle Scholar
  187. A.R. May, S.R. Smith, B.D. Kay, The release of trapped gases from amorphous solid water films. II. “Bottom-up” induced desorption pathways. J. Chem. Phys. 138, 104502 (2013a) ADSCrossRefGoogle Scholar
  188. R.A. May, R.S. Smith, B.D. Kay, The release of trapped gases from amorphous solid water films. I. “Top-down” crystallization-induced crack propagation probed using the molecular volcano. J. Phys. Chem. 138, 104501 (2013b) CrossRefGoogle Scholar
  189. M.C. McCarthy, C.A. Gottlieb, H. Gupta, P. Thaddeus, Laboratory and astronomical identification of the negative molecular Ion C6H-. Astrophys. J. 652, L141–L144 (2006) ADSCrossRefGoogle Scholar
  190. K.J. Meech et al., Deep impact: observations from a worldwide earth-based campaign. Science 310(5746), 265–269 (2005) ADSCrossRefGoogle Scholar
  191. R. Meier, T.C. Owen, D.C. Jewitt, H.E. Matthews, M. Senay, N. Biver, D. Bockelée-Morvan, J. Crovisier, D. Gautier, Science 279(6054), 942 (1998) Google Scholar
  192. U.J.L. Meierhenrich, G.M. Muñoz-Caro, W.A. Schutte, W.H.-P.P. Thiemann, B. Barbier, A. Brack, G.M. Muñoz-Caro, Precursors of biological cofactors from ultraviolet irradiation of circumstellar/interstellar ice analogues. Eur. J. Chem. 11, 4895–4900 (2005) CrossRefGoogle Scholar
  193. C. Meinert, J.J. Filippi et al., N-(2-Aminoethyl)glycine and amino acids from interstellar ice analogues. Chem. Plus Chem. 77, 186–191 (2012) Google Scholar
  194. T.J. Millar, E. Herbst, R.P.A. Bettens, Large molecules in the envelope surrounding IRC+10216. Mon. Not. R. Astron. Soc. 316, 195–203 (2000) ADSCrossRefGoogle Scholar
  195. T.J. Millar, C. Walsh, M.A. Cordiner, R. Ni Chuimin, E. Herbst, Hydrocarbon anions in interstellar clouds and circumstellar envelopes. Astrophys. J. 662, L87–L90 (2007) ADSCrossRefGoogle Scholar
  196. F. Mispelaer, P. Theule, H. Aouididi, J. Noble, F. Duvernay, G. Danger, P. Roubin, O. Morata, T. Hasegawa, T. Chiavassa, Diffusion measurments of CO, HNCO, H2CO and NH3 in amorphous water ice. Astron. Astrophys. 555, A13 (2013) ADSCrossRefGoogle Scholar
  197. D.L. Mitchell, R.P. Lin, C.W. Carlson, A. Korth, H. Reme, D.A. Mendis, The origin of complex organic ions in the coma of comet Halley. Icarus 98, 125–133 (1992) ADSCrossRefGoogle Scholar
  198. P. Modica, P. de Marcellus, D. Baklouti, R. Brunetto, M. Noun, S. Della Negra, L. Le Sergeant d’Hendecourt, Organic residues from ultraviolet irradiation of interstellar ice analogs. EAS Publ. Ser. 58, 343 (2013) CrossRefGoogle Scholar
  199. P. Modica, C. Meinert, P. de Marcellus, L. Nahon, U.J. Meierhenrich, L. Le Sergeant d’Hendecourt, Enantiomeric excesses induced in amino acids by ultraviolet circularly polarized light irradiation of extraterrestrial ice analogs: a possible source of asymmetry for prebiotic chemistry. Astrophys. J. 788, 79 (2014) ADSCrossRefGoogle Scholar
  200. A.H. Mohammadi, R. Anderson, Phase equilibria of clathrate hydrates of tetrahydrofuran + hydrogen sulfide and tetrahydrofuran + methane. Ind. Eng. Chem. Res. 48, 7838–7841 (2009) CrossRefGoogle Scholar
  201. A.H. Mohammadi, R. Anderson, Ice—Clathrate hydrate—Gas phase equilibria for air, oxygen, nitrogen, carbon monoxide, methane, or ethane + water system. Ind. Eng. Chem. Res. 49, 3976–3979 (2010) CrossRefGoogle Scholar
  202. A.H. Mohammadi, R. Anderson, Ice—Clathrate hydrate—Gas phase equilibria for argon + water and carbon dioxide + water systems. Ind. Eng. Chem. Res. 50, 1452–1454 (2011) Google Scholar
  203. A.H. Mohammadi, D. Richon, Clathrate hydrate phase equilibria for carbonyl sulfide, hydrogen sulfide, ethylene or propane + water system below the freezing point. Chem. Eng. Commun. 200(12), 1635–1644 (2013) CrossRefGoogle Scholar
  204. A.H. Mohammadi, R. Anderson, B. Tohidi, Carbon monoxide clathrate hydrates: equilibrium data and thermodynamic modeling. AIChE J. 51(10), 2825–2833 (2005) CrossRefGoogle Scholar
  205. M.H. Moore, R.F. Ferrante, R.L. Hudson, J.N. Stone, Ammonia water ice laboratory studies relevant to outer Solar System surfaces. Icarus 190, 260–273 (2007) ADSCrossRefGoogle Scholar
  206. G. Moreels, J. Clairemidi, P. Hermine, P. Bréchignac, P. Rousselot, Detection of a polycyclic aromatic molecule in comet P/Halley. Astron. Astrophys. 282, 643–656 (1994) ADSGoogle Scholar
  207. F. Moreno, L.M. Lara, J.J. Lopez-Moreno, O. Munoz, A. Molina, J. Licandro, The dust tail of comet c/1999 t1 Mcnaught-Hartley. Astron. Astrophys. 399(2), 789–794 (2003) ADSCrossRefGoogle Scholar
  208. N.D. Morrison, D.C. Knauth, C.L. Mulliss, W. Lee, High-Resolution Optical Spectra of the Head of the Comet C/1996 B2 (Hyakutake). Publ. Astron. Soc. Pac. 109, 676–681 (1997) ADSCrossRefGoogle Scholar
  209. O. Mousis, Y. Alibert, Modeling the Jovian subnebula. II. Composition of regular satellite ices. Astron. Astrophys. 448, 771–778 (2006) ADSCrossRefGoogle Scholar
  210. O. Mousis, D. Gautier, D. Bockelée-Morvan, F. Robert, B. Dubrulle, A. Drouart, Constraints on the formation of comets from D/H ratios measured in H2O and HCN. Icarus 148(2), 513–525 (2000) ADSCrossRefGoogle Scholar
  211. O. Mousis, D. Gautier, D. Bockelée-Morvan, An evolutionary turbulent model of Saturn’s subnebula: implications for the origin of the atmosphere of Titan. Icarus 156, 162–175 (2002) ADSCrossRefGoogle Scholar
  212. O. Mousis, Y. Alibert, D. Hestroffer, U. Marboeuf, C. Dumas, B. Carry, J. Horner, F. Selsis, Origin of volatiles in the main belt. Mon. Not. R. Astron. Soc. 383, 1269–1280 (2008) ADSCrossRefGoogle Scholar
  213. O. Mousis, J.I. Lunine, C. Thomas, M. Pasek, U. Marboeuf, Y. Alibert, V. Ballenegger, D. Cordier, Y. Ellinger, F. Pauzat, S. Picaud, Clathration of volatiles in the solar nebula and implications for the origin of Titan’s atmosphere. Astrophys. J. 691, 1780–1786 (2009a) ADSCrossRefGoogle Scholar
  214. O. Mousis, U. Marboeuf, J.I. Lunine, Y. Alibert, L.N. Fletcher, G.S. Orton, F. Pauzat, Y. Ellinger, Determination of the minimum masses of heavy elements in the envelopes of Jupiter and Saturn. Astrophys. J. 696, 1348–1354 (2009b) ADSCrossRefGoogle Scholar
  215. O. Mousis, J.I. Lunine, S. Picaud, D. Cordier, J.H. Waite, K.E. Mandt, Removal of Titan’s atmospheric noble gases by their sequestration in surface clathrates. Astrophys. J. 740, L9 (2011) ADSCrossRefGoogle Scholar
  216. O. Mousis, J.I. Lunine, N. Madhusudhan, T.V. Johnson, Nebular water depletion as the cause of Jupiter’s low oxygen abundance. Astrophys. J. 751, L7 (2012a) ADSCrossRefGoogle Scholar
  217. O. Mousis, J.I. Lunine, E. Chassefière, F. Montmessin, A. Lakhlifi, S. Picaud, J.-M. Petit, D. Cordier, Mars cryosphere: a potential reservoir for heavy noble gases? Icarus 218, 80–87 (2012b) ADSCrossRefGoogle Scholar
  218. O. Mousis, J.I. Lunine, K.E. Mandt, E. Schindhelm, H.A. Weaver, S.A. Stern, J.H. Waite, R. Gladstone, A. Moudens, On the possible noble gas deficiency of Pluto’s atmosphere. Icarus 225, 856–861 (2013a) ADSCrossRefGoogle Scholar
  219. O. Mousis, A. Lakhlifi, S. Picaud, M. Pasek, E. Chassefière, On the abundances of noble and biologically relevant gases in Lake Vostok. Antarct. Astrobiol. 13, 380–390 (2013b) ADSCrossRefGoogle Scholar
  220. O. Mousis, J.I. Lunine, L.N. Fletcher, K.E. Mandt, M. Ali-Dib, D. Gautier, S. Atreya, New insights on Saturn’s formation from its nitrogen isotopic composition. Astrophys. J. Lett. 796(2), L28 (2014) ADSCrossRefGoogle Scholar
  221. O. Mousis, E. Chassefiere, N.G. Holm, A. Bouquet, J.H. Waite, W.D. Geppert, S. Picaud, Y. Aikawa, M. Ali-Dib, J.-L. Charlou, P. Rousselot, Methane clathrates in the solar system. Astrobiology 15(4), 308–326 (2015) ADSCrossRefGoogle Scholar
  222. N. Abou Mrad, F. Duvernay, P. Theulé, T. Chiavassa, G. Danger, Development and optimization of an analytical system for volatile organic compound analysis coming from the heating of interstellar/cometary ice analogues. Anal. Chem. 86, 8391 (2014) CrossRefGoogle Scholar
  223. M.J. Mumma, S.B. Charnley, The chemical composition of comets-emerging taxonomies and natal heritage, in Annual Review of Astronomy and Astrophysics, Palo Alto, vol. 49, ed. by S.M. Faber, E. Van Dishoeck (2011), pp. 471–524 Google Scholar
  224. G.M. Muñoz-Caro, U.J. Meierhenrich, W.A. Schutte, B. Barbier, A. Arcones Segovia, H. Rosenbauer, W.H.-P. Thiemann, A. Brack, J.M. Greenberg, Amino acids from ultraviolet irradiation of interstellar ice analogues. Nature 416, 403–406 (2002) ADSCrossRefGoogle Scholar
  225. G.M. Muñoz-Caro, E. Dartois, P. Boduch, H. Rothard, A. Domaracka, A. Jiménez-Escobar, Comparison of UV and high-energy ion irradiation of methanol: ammonia ice. Astron. Astrophys. 566, A93 (2014) ADSCrossRefGoogle Scholar
  226. G.M. Muñoz-Caro, W.A. Schutte, UV-photoprocessing of interstellar ice analogs: new infrared spectroscopic results. Astron. Astrophys. 412, 121–132 (2003) ADSCrossRefGoogle Scholar
  227. G.M. Muñoz-Caro, U. Meierhenrich, W.A. Schutte, W.H.-P. Thiemann, J.M. Greenberg, UV-photoprocessing of interstellar ice analogs: detection of hexamethylenetetramine-based species. Astron. Astrophys. 413, 209–216 (2004) ADSCrossRefGoogle Scholar
  228. L.A. Nakhimovsky, M. Lamotte, J. Joussot-Dubien, Handbook of low temperature electronic spectra of polycyclic aromatic. Hydrocarbons. Phys. Sci. Data, vol. 40 (Elsevier, Amsterdam, 1989) Google Scholar
  229. C.D. Neish, Á. Somogyi, M.A. Smith, Titan’s primordial soup: formation of amino acids via low-temperature hydrolysis of Tholins. Astrobiology 10, 337–347 (2010) ADSCrossRefGoogle Scholar
  230. J.A. Noble, P. Theule, F. Mispelaer, F. Duvernay, G. Danger, E. Congiu, F. Dulieu, T. Chiavassa, The desorption of H2CO from interstellar grains analogues. Astron. Astrophys. 543, A5 (2012) ADSCrossRefGoogle Scholar
  231. G. Notesco, A. Bar-Nun, The effect of methanol clathrate–hydrate formation and other gas-trapping mechanisms on the structure and dynamics of cometary ices. Icarus 148, 456–463 (2000) ADSCrossRefGoogle Scholar
  232. G. Notesco, A. Bar-Nun, T. Owen, Gas trapping in water ice at very low deposition rates and implications for comets. Icarus 162, 183–189 (2003) ADSCrossRefGoogle Scholar
  233. M. Nuevo, J.H. Bredehoft, U. Meierhenrich, L. D’Hendecourt, W.H.P. Thiemann, J. Bredehöft Urea, Glycolic acid, and glycerol in an organic residue produced by ultraviolet irradiation of interstellar = pre-cometary ice analogs. Astrobiology 10, 245–256 (2010) ADSCrossRefGoogle Scholar
  234. M. Nuevo, S. Milam, S. Sandford, Nucleobases and prebiotic molecules in organic residues produced from the ultraviolet photo-irradiation of pyrimidine in NH3 and \(\mbox{H2O}+\mbox{NH3}\) ices. Astrobiology 12, 192 (2012) CrossRefGoogle Scholar
  235. M. Nuevo, Y.-J. Chen, W.-J. Hu, J.-M. Qiu, S.-R. Wu, H.-S. Fung, C.-C. Chu, T.-S. Yih, W.-H. Ip, C.-Y.R. Wu, Irradiation of pyrimidine in pure H2O ice with high-energy ultraviolet photons. Astrobiology 14, 119 (2014) ADSCrossRefGoogle Scholar
  236. K.I. Öberg, A.C.A. Boogert, K.M. Pontoppidan, S. van den Broek, E.F. van Dishoeck, S. Bottinelli, G.A. Blake, N.J. Evans, The spitzer ice legacy: ice evolution from cores to protostars. Astrophys. J. 740(2), 109 (2011) ADSCrossRefGoogle Scholar
  237. W.R. Parrish, J.M. Prausnitz, Dissociation pressures of gas hydrates formed by gas mixtures. Ind. Eng. Chem. Process Des. Dev. 11, 26–35 (1972) CrossRefGoogle Scholar
  238. T. Poppe, J. Blum, T. Henning, Analogous experiments on the stickiness of micronsized preplanetary dust. Astrophys. J. 533, 454–471 (2000) ADSCrossRefGoogle Scholar
  239. D. Prialnik, Modeling the comet nucleus interior: application to comet c/1995 o1 Hale-Bopp. Earth Moon Planets 89(1–4), 27–52 (2002) ADSGoogle Scholar
  240. A.J. Remijan, J.M. Hollis, F.J. Lovas, M.A. Cordiner, T.J. Millar, A.J. Markwick-Kemper, P.R. Jewell, Detection of C8H- and comparison with C8H toward IRC+10216. Astrophys. J. 664, L47–L50 (2007) ADSCrossRefGoogle Scholar
  241. F. Robert, D. Gautier, B. Dubrulle, The solar system d/h ratio: observations and theories. Space Sci. Rev. 92(1–2), 201–224 (2000) ADSCrossRefGoogle Scholar
  242. S.D. Rodgers, S.B. Charnley, W.F. Huebner, D.C. Boice, Physical processes and chemical reactions in cometary comae, in Comets II, ed. by M. Festou, H.U. Keller, H.A. Weaver (University of Arizona Press, Tucson, 2004), pp. 505–522 Google Scholar
  243. M. Rubin, K. Altwegg, H. Balsiger, A. Bar-Nun, J.J. Berthelier, A. Bieler, P. Bochsler, C. Briois, U. Calmonte, M. Combi, J. De Keyser, F. Dhooghe, P. Eberhardt, B. Fiethe, S.A. Fuselier, S. Gasc, T.I. Gombosi, K.C. Hansen, M. Haessig, A. Jaeckel, E. Kopp, A. Korth, L. Le Roy, U. Mall, B. Marty, O. Mousis, T. Owen, H. Reme, T. Semon, C.Y. Tzou, J.H. Waite, P. Wurz, Molecular nitrogen in comet 67p/Churyumov-Gerasimenko indicates a low formation temperature. Science 348(6231), 232–235 (2015) ADSCrossRefGoogle Scholar
  244. M.B. Rydzy, J.M. Schicks, R. Naumann, J. Erzinger, Dissociation enthalpies of synthesized multicomponent gas hydrates with respect to the guest composition and cage occupancy. J. Phys. Chem. B 111, 9539–9545 (2007) CrossRefGoogle Scholar
  245. S.A. Sandfordet et al., Organics captured from comet 81P/Wild 2 by the Stardust spacecraft. Science 314, 1720–1724 (2006) ADSCrossRefGoogle Scholar
  246. E.L. Schaller, M.E. Brown, Volatile loss and retention on Kuiper belt objects. Astrophys. J. 659, L61 (2007) ADSCrossRefGoogle Scholar
  247. D.G. Schleicher, T.L. Farnham, Photometry and imaging of the coma with narrowband filters, in Comets II, ed. by M. Festou, H.U. Keller, H.A. Weaver (University of Arizona Press, Tucson, 2004), pp. 449–469 Google Scholar
  248. B. Schmitt, S. Espinasse, R.J.A. Grim, J.M. Greenberg, J. Klinger, Laboratory studies of cometary ice analogues, in Physics and Mechanics of Cometary Materials. ESA Spec. Publ., vol. 302 (1989), pp. 65–69 Google Scholar
  249. P. Schmitt-kopplin, Z. Gabelica, R.D. Gougeon, A. Fekete, B. Kanawati, M. Harir, I. Gebefuegi, G. Eckel, N. Hertkorn, High molecular diversity of extraterrestrial organic matter in Murchison meteorite revealed 40 years after its fall. Proc. Natl. Acad. Sci. USA 107, 2763 (2010) ADSCrossRefGoogle Scholar
  250. W.A. Schutte, The formation of organic molecules in astronomical ices. Adv. Space Res. 16, 53 (1995) ADSCrossRefGoogle Scholar
  251. W. Schutte, L. Allamandola, S. Sandford, An experimental study of the organic molecules produced in cometary and interstellar ice analogs by thermal formaldehyde reactions. Icarus 104, 118–137 (1993a) ADSCrossRefGoogle Scholar
  252. W.A. Schutte, L.J. Allamandola, S.A. Sandford, Formaldehyde and organic molecule production in astrophysical ices at cryogenic temperatures. Science 259, 1143–1145 (1993b) ADSCrossRefGoogle Scholar
  253. K. Shin, R. Kumar, K.A. Udachin, S. Alavi, J.A. Ripmeester, Ammonia clathrate hydrates as new solid phases for Titan, Enceladus, and other planetary systems. Proc. Natl. Acad. Sci. 109, 14785–14790 (2012) ADSCrossRefGoogle Scholar
  254. E. Shpolskii, Emission spectroscopic analysis of organic compounds. Usp. Fiz. Nauk 68(1), 51–69 (1959) CrossRefGoogle Scholar
  255. E. Shpolskii, Line fluorescence spectra of organic compounds and their applications. Usp. Fiz. Nauk 71(2), 215–242 (1960) CrossRefGoogle Scholar
  256. H. Sierks, C. Barbieri, P.L. Lamy, R. Rodrigo, D. Koschny, H. Rickman et al., On the nucleus structure and activity of comet 67P/Churyumov-Gerasimenko. Science 347, 6220 (2015) CrossRefGoogle Scholar
  257. I.A. Simonia, Unidentified cometary emission lines as the photoluminescence of frozen hydrocarbon particles. Astron. Lett. 30, 863–868 (2004) ADSCrossRefGoogle Scholar
  258. I.A. Simonia, On the possible luminescence nature of unidentified cometary emissions. Astrophys. Space Sci. 312, 27–33 (2007) ADSCrossRefGoogle Scholar
  259. I. Simonia, Organic component of cometary ice. Astrophys. Space Sci. 332(1), 91–98 (2011a) ADSCrossRefGoogle Scholar
  260. I. Simonia, Frozen hydrocarbons in comets. Astron. J. 141, 56–61 (2011b) ADSCrossRefGoogle Scholar
  261. I. Simonia, Organic molecules of cometary substance. AIP Conf. Proc. 1543, 99–114 (2013) ADSCrossRefGoogle Scholar
  262. I. Simonia, Ts. Simonia, Relict substance of comets, in European Planetary Science Congress University College London, September 8–13 (2013). EPSC 2013-108 Google Scholar
  263. I. Simonia, Ts. Simonia, Complex organic and possible prebiotics in the cometary matter in International Cometary Workshop Toulouse, France, April 1–3 (2014) Google Scholar
  264. Y.V. Skorov, J. Blum, Dust release and tensile strength of the non-volatile layer of cometary nuclei. Icarus 221, 1–11 (2012) ADSCrossRefGoogle Scholar
  265. E.D. Sloan, C.A. Koh, Clathrate Hydrates of Natural Gases, 3rd edn. (2008) Google Scholar
  266. G.P. Smith, L.C. Lee, P.C. Cosby, J.R. Peterson, J.T. Moseley, Photodissociation and photodetachment of molecular negative ions. V. Atmospheric ions from 7000 to 8400 Å. J. Chem. Phys. 68, 3818–3822 (1978) ADSCrossRefGoogle Scholar
  267. R.S. Smith, C. Huang, E.K.L. Wong, B.D. Kay, The molecular volcano: abrupt CCl 4 desorption driven by the crystallization of amorphous solid water. Phys. Rev. Lett. 79, 909 (1997) ADSCrossRefGoogle Scholar
  268. J.A. Smith, F.E. Livingston, S.M. George, Isothermal desorption kinetics of crystalline H2O, (H2O)-O-18, and d2o ice multilayers. J. Phys. Chem. B 107(16), 3871–3877 (2003) CrossRefGoogle Scholar
  269. M.K. Spencer, M.R. Hammond, R.N. Zare, Laser mass spectrometric detection of extraterrestrial aromatic molecules: mini-review and examination of pulsed heating effects. Proc. Natl. Acad. Sci. USA 105, 18096 (2008) ADSCrossRefGoogle Scholar
  270. T. Spohn, J. Benkhoff, Thermal history models for kosi sublimation experiments. Icarus 87(2), 358–371 (1990) ADSCrossRefGoogle Scholar
  271. D.K. Staykova, W.F. Kuhs, A.N. Salamatin, T. Hansen, Formation of porous gas hydrates from ice powders: diffraction experiments and multistage model. J. Phys. Chem. B 107, 10299–10311 (2003) CrossRefGoogle Scholar
  272. A.G. Suits, J.W. Hepburn, Ion pair dissociation: spectroscopy and dynamics. Annu. Rev. Phys. Chem. 57, 431–465 (2006) ADSCrossRefGoogle Scholar
  273. C. Szopa, R. Sternberg, D. Coscia, H. Cottin, F. Raulin, F. Goesmann, H. Rosenbauer, Gas chromatography for in situ analysis of a cometary nucleus: characterization and optimization of diphenyl/dimethylpolysiloxane stationary phases. J. Chromatogr. A 863, 157 (1999) ADSCrossRefGoogle Scholar
  274. C. Szopa, U.J. Meierhenrich, D. Coscia, L. Janin, F. Goesmann, R. Sternberg, Gas chromatography for in situ analysis of a cometary nucleus IV. Study of capillary column robustness for space application. J. Chromatogr. A 982, 303 (2002a) CrossRefGoogle Scholar
  275. C. Szopa, R. Sternberg, D. Coscia, F. Raulin, C. Vidal-Madjar, H. Rosenbauer, Gas chromatography for in situ analysis of a cometary nucleus III. Multi-capillary column system for the cometray sampling and the composition experiment of the Rosetta lander probe. J. Chromatogr. A 953, 165 (2002b) CrossRefGoogle Scholar
  276. C. Szopa, R. Sternberg, F. Raulin, H. Rosenbauer, What can we expect from the in situ chemical investigation of a cometary nucleus by gas chromatography: first results from laboratory studies. Planet. Space Sci. 51, 863–877 (2003) ADSCrossRefGoogle Scholar
  277. E. Szymanska, N.J. Mason, Dissociative electron attachment to hydrocarbons: a laboratory study. Paper #343 presented at The Molecular Universe, IAUS 280, Toledo, Spain (2011) Google Scholar
  278. E. Szymanska, B.G. Nair, N.J. Mason, E. Krishnakumar, Dissociative electron attachment to formamide. XXVII International Conference on photonic, electronic and atomic collisions. J. Phys. Conf. Ser. 388, 052085 (2014a) ADSCrossRefGoogle Scholar
  279. E. Szymanska, I. Cadez, E. Krishnakumar, N.J. Mason, Electron impact induced anion production in acetylene. Phys. Chem. Chem. Phys. 16, 3425–3432 (2014b) CrossRefGoogle Scholar
  280. T.A. Teplitskaiya, T.A. Alekseeva, M.M. Valdman, Atlas of Quasilinear Luminescence Spectra of Aromatic Molecules (Moscow University, Moscow, 1978) Google Scholar
  281. P. Theule, F. Duvernay, G. Danger, F. Borget, J.B. Bossa, V. Vinogradoff, F. Mispelaer, T. Chiavassa, Thermal reactions in interstellar ice: a step towards molecular complexity in the interstellar medium. Adv. Space Res. 52, 1567–1579 (2013) ADSCrossRefGoogle Scholar
  282. C. Thomas, O. Mousis, V. Ballenegger, S. Picaud, Clathrate hydrates as a sink of noble gases in Titan’s atmosphere. Astron. Astrophys. 474, L17–L20 (2007) ADSCrossRefGoogle Scholar
  283. C. Thomas, S. Picaud, O. Mousis, V. Ballenegger, A theoretical investigation into the trapping of noble gases by clathrates on Titan. Planet. Space Sci. 56, 1607–1617 (2008) ADSCrossRefGoogle Scholar
  284. P.C. Thomas, M.F. A’Hearn, J. Veverka, M.J.S. Belton, J. Kissel, K.P. Klaasen, L.A. McFadden, H.J. Melosh, P.H. Schultz, S. Besse, B.T. Carcich, T.L. Farnham, O. Groussin, B. Hermalyn, J.Y. Li, D.J. Lindler, C.M. Lisse, K. Meech, J.E. Richardson, Shape, density, and geology of the nucleus of comet 103p/Hartley 2. Icarus 222(2), 550–558 (2013) ADSCrossRefGoogle Scholar
  285. A.M.F. Tomescu, L.M. Pratt, G.W. Rothwell, P.K. Strother, G.C. Nadon, Carbon isotopes support the presence of extensive land floras pre-dating the origin of vascular plants. Palaeogeogr. Palaeoclimatol. Palaeoecol. 283(1–2), 46–59 (2009) CrossRefGoogle Scholar
  286. F. Trixler, Quantum tunnelling to the origin and evolution of life. Curr. Org. Chem. 17(16), 1758–1770 (2013) CrossRefGoogle Scholar
  287. J.H. Van der Waal, J.C. Platteeuw, Clathrate solutions, in Advances in Chemical Physics, vol. 2 (Interscience, New York, 1959), pp. 1–57 CrossRefGoogle Scholar
  288. E.F. van Dishoeck, ISO spectroscopy of gas and dust: from molecular clouds to protoplanetary disks. Annu. Rev. Astron. Astrophys. 42, 119–167 (2004) ADSCrossRefGoogle Scholar
  289. C.A. Varotsos, R. Zellner, A new modeling tool for the diffusion of gases in ice or amorphous binary mixture in the polar stratosphere and the upper troposphere. Atmos. Chem. Phys. 10, 3099 (2010) ADSCrossRefGoogle Scholar
  290. G.L. Villanueva, M.J. Mumma, B.P. Bonev, M.A. Di Santi, E.L. Gibb, H. Böhnhardt, M. Lippi, A sensitive search for deuterated water in comet 8p/Tuttle. Astrophys. J. Lett. 690(1), L3–L9 (2009) ADSCrossRefGoogle Scholar
  291. V. Vinogradoff, F. Duvernay, G. Danger, P. Theule, T. Chiavassa, New insight into the formation of hexamethylenetetramine (HMT) in interstellar and cometary ice analogs. Astron. Astrophys. 530, A128 (2011) ADSCrossRefGoogle Scholar
  292. V. Vinogradoff, A. Rimola, F. Duvernay, G. Danger, P. Theule, T. Chiavassa, The mechanism of hexamethylenetetramine (HMT) formation in the solid state at low temperature. Phys. Chem. Chem. Phys. 14, 12309–12320 (2012) CrossRefGoogle Scholar
  293. V. Vinogradoff, F. Duvernay, G. Danger, P. Theulé, T. Chiavassa, Thermal evolution of interstellar ice analogues containing formaldehyde. EAS Publ. Ser. 58, 337 (2013a) CrossRefGoogle Scholar
  294. V. Vinogradoff, N. Fray, F. Duvernay, G. Briani, G. Danger, H. Cottin, P. Theule, T. Chiavassa, Importance of thermal reactivity for hexamethylenetetramine formation from simulated interstellar ices. Astron. Astrophys. 551, A128 (2013b) ADSCrossRefGoogle Scholar
  295. K.H. Walsh, A. Morbidelli, S.N. Raymond, D.P. O’Brien, A.M. Mandell, A low mass for Mars from Jupiter’s early gas-driven migration. Nature 475(7355), 206–209 (2011) ADSCrossRefGoogle Scholar
  296. I. Waluyo, D. Nordlund, L.A. Naslund, H. Ogasawara, L.G.M. Pettersson, A. Nilsson, Spectroscopic evidence for the formation of 3-d crystallites during isothermal heating of amorphous ice on pt(111). Surf. Sci. 602(11), 2004–2008 (2008) ADSCrossRefGoogle Scholar
  297. X. Wang, A.J. Schultz, Y. Halpern, Kinetics of methane hydrate formation from polycrystalline deuterated ice. J. Phys. Chem. A 106, 7304–7309 (2002) CrossRefGoogle Scholar
  298. A. Wekhof, Negative ions in comets. Moon Planets 24, 157–173 (1981) ADSCrossRefGoogle Scholar
  299. D.H. Wooden, Cometary refractory grains: interstellar and nebular sources. Space Sci. Rev. 138(1–4), 75–108 (2008) ADSCrossRefGoogle Scholar
  300. S. Wyckoff, S.C. Tegler, L. Engel, Nitrogen abundance in comet Halley. Astrophys. J. 367(2), 641–648 (1991) ADSCrossRefGoogle Scholar
  301. S. Wyckoff, R.S. Heyd, R. Fox, Unidentified molecular bands in the plasma tail of comet Hyakutake (C/1996 B2). Astrophys. J. 512(L73), L76 (1999) ADSGoogle Scholar
  302. R. Yang, M.S. Gudipati, Novel two-step laser ablation and ionization mass spectrometry (2S-LAIMS) of actor-spectator ice layers: Probing chemical composition of d2o ice beneath a H2O ice layer. J. Chem. Phys. 140(10), 202–207 (2014) Google Scholar
  303. L. Yang, F.J. Ciesla, C.M.O.D. Alexander, The D/H ratio of water in the solar nebula during its formation and evolution. Icarus 226(1), 256–267 (2013) ADSCrossRefGoogle Scholar
  304. K. Yasuda, H. Ogawa, R. Ohmura, Phase equilibrium for clathrate hydrates formed with methane + ethane + propane mixtures at temperatures below the freezing point of water. J. Chem. Eng. Data 55, 358–361 (2010) CrossRefGoogle Scholar
  305. C.Q. Yuan, J.T. Yates, Isotope effect in the photochemical decomposition of CO2 (ice) by lyman-alpha radiation. J. Chem. Phys. 138(15) (2013) Google Scholar
  306. G. Zasowski, F. Kemper, D.M. Watson, E. Furlan, C.J. Bohac, C. Hull, J.D. Green, Spitzer infrared spectrograph observations of class I/Ii objects in Taurus: composition and thermal history of the circumstellar ices. Astrophys. J. 694, 459–478 (2009) ADSCrossRefGoogle Scholar
  307. N.E.B. Zellner, V.P. McCaffrey, E. Bennett, M. Gudipati, Chemistry and astrochemistry of simple sugars: implications for asteroid, meteorite, or comet delivery, in 42nd Lunar and Planetary Science Conference, held March 7–11, 2011 at the Woodlands, Texas, vol. 1608 (2011), p. 1586 Google Scholar
  308. H.W. Zhang, G. Zhao, J.Y. Hu, A catalogue of emission lines in spectra of Comet C/1995 O1 (Hale-Bopp). Astron. Astrophys. 367, 1049–1055 (2001) ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Murthy S. Gudipati
    • 1
    • 2
  • Ninette Abou Mrad
    • 3
  • Jürgen Blum
    • 4
  • Steven B. Charnley
    • 5
  • Thierry Chiavassa
    • 3
  • Martin A. Cordiner
    • 5
  • Olivier Mousis
    • 6
  • Grégoire Danger
    • 3
  • Fabrice Duvernay
    • 3
  • Bastian Gundlach
    • 4
  • Paul Hartogh
    • 7
  • Ulysse Marboeuf
    • 8
  • Irakli Simonia
    • 9
  • Tsitsino Simonia
    • 9
  • Patrice Theulé
    • 3
  • Rui Yang
    • 10
    • 11
  1. 1.Science DivisionJet Propulsion Laboratory, California Institute of TechnologyPasadenaUSA
  2. 2.IPSTUniversity of Maryland at College ParkCollege ParkUSA
  3. 3.Aix-Marseille UniversitéPIIM UMR-CNRS 7345MarseilleFrance
  4. 4.Institut für Geophysik und extraterrestrische PhysikTechnische Universität BraunschweigBraunschweigGermany
  5. 5.Astrochemistry Laboratory, Code 691NASA Goddard Space Flight CenterGreenbeltUSA
  6. 6.Aix-Marseille UniversitéCNRS, LAM (Laboratoire d’Astrophysique de Marseille) UMR 7326MarseilleFrance
  7. 7.Max Planck Institute for Solar System ResearchGöttingenGermany
  8. 8.Physics Institute and Center for Space and HabitabilityUniversity of BernBernSwitzerland
  9. 9.Laboratory for Interdisciplinary Investigation in Cosmochemistry and Astronomy at the School of Natural Sciences and EngineeringIlia State UniversityTbilisiGeorgia
  10. 10.Former Postdoctoral Fellow at the University of MarylandCollege ParkUSA
  11. 11.Chemistry DepartmentFudan UniversityShanghaiChina

Personalised recommendations