Space Science Reviews

, Volume 210, Issue 1–4, pp 77–108 | Cite as

Polar Field Reversals and Active Region Decay

  • Gordon Petrie
  • Sophie Ettinger


We study the relationship between polar field reversals and decayed active region magnetic flux. Photospheric active region flux is dispersed by differential rotation and turbulent diffusion, and is transported poleward by meridional flows and diffusion. We summarize the published evidence from observation and modeling of the influence of meridional flow variations and decaying active region flux’s spatial distribution, such as the Joy’s law tilt angle. Using NSO Kitt Peak synoptic magnetograms covering cycles 21–24, we investigate in detail the relationship between the transport of decayed active region flux to high latitudes and changes in the polar field strength, including reversals in the magnetic polarity at the poles. By means of stack plots of low- and high-latitude slices of the synoptic magnetograms, the dispersal of flux from low to high latitudes is tracked, and the timing of this dispersal is compared to the polar field changes. In the most abrupt cases of polar field reversal, a few activity complexes (systems of active regions) are identified as the main cause. The poleward transport of large quantities of decayed trailing-polarity flux from these complexes is found to correlate well in time with the abrupt polar field changes. In each case, significant latitudinal displacements were found between the positive and negative flux centroids of the complexes, consistent with Joy’s law bipole tilt with trailing-polarity flux located poleward of leading-polarity flux. The activity complexes of the cycle 21 and 22 maxima were larger and longer-lived than those of the cycle 23 and 24 maxima, and the poleward surges were stronger and more unipolar and the polar field changes larger and faster. The cycle 21 and 22 polar reversals were dominated by only a few long-lived complexes whereas the cycle 23 and 24 reversals were the cumulative effects of more numerous, shorter-lived regions. We conclude that sizes and lifetimes of activity complexes are key to understanding the diversity of polar reversals.


Solar magnetic fields Activity cycle Solar poles Photosphere Chromosphere Corona Solar interior Magnetic flux-transport models 



This work utilizes data obtained by the NSO Integrated Synoptic Program (NISP), managed by the National Solar Observatory, which is operated by the Association of Universities for Research in Astronomy (AURA), Inc. under a cooperative agreement with the National Science Foundation. SE’s contribution to this work was carried out through the National Solar Observatory Summer Research Assistantship (SRA) Program.


  1. H.W. Babcock, The topology of the sun’s magnetic field and the 22-year cycle. Astrophys. J. 133, 572 (1961). doi: 10.1086/147060 ADSCrossRefGoogle Scholar
  2. S. Basu, H.M. Antia, Characteristics of solar meridional flows during Solar cycle 23. Astrophys. J. 717, 488–495 (2010). arXiv:1005.3031. doi: 10.1088/0004-637X/717/1/488 ADSCrossRefGoogle Scholar
  3. R.H. Cameron, M. Schüssler, Changes of the solar meridional velocity profile during cycle 23 explained by flows toward the activity belts. Astrophys. J. 720, 1030–1032 (2010). arXiv:1007.2548. doi: 10.1088/0004-637X/720/2/1030 ADSCrossRefGoogle Scholar
  4. R.H. Cameron, M. Schüssler, Are the strengths of solar cycles determined by converging flows towards the activity belts? Astron. Astrophys. 548, A57 (2012). arXiv:1210.7644. doi: 10.1051/0004-6361/201219914 CrossRefGoogle Scholar
  5. R. Cameron, M. Schüssler, The crucial role of surface magnetic fields for the solar dynamo. Science 347, 1333–1335 (2015). 1503.08469. doi: 10.1126/science.1261470 ADSCrossRefGoogle Scholar
  6. R.H. Cameron, J. Jiang, D. Schmitt, M. Schüssler, Surface flux transport modeling for Solar cycles 15–21: Effects of cycle-dependent tilt angles of sunspot groups. Astrophys. J. 719, 264–270 (2010). arXiv:1006.3061. doi: 10.1088/0004-637X/719/1/264 ADSCrossRefGoogle Scholar
  7. R.H. Cameron, M. Dasi-Espuig, J. Jiang, E. Işık, D. Schmitt, M. Schüssler, Limits to solar cycle predictability: Cross-equatorial flux plumes. Astron. Astrophys. 557, A141 (2013). arXiv:1308.2827. doi: 10.1051/0004-6361/201321981 ADSCrossRefGoogle Scholar
  8. P. Charbonneau, Dynamo models of the solar cycle. Living Rev. Sol. Phys. 7, 3 (2010). doi: 10.12942/lrsp-2010-3 ADSCrossRefGoogle Scholar
  9. M. Dasi-Espuig, S.K. Solanki, N.A. Krivova, R. Cameron, T. Peñuela, Sunspot group tilt angles and the strength of the solar cycle. Astron. Astrophys. 518, A7 (2010). arXiv:1005.1774. doi: 10.1051/0004-6361/201014301 ADSCrossRefGoogle Scholar
  10. M. Dasi-Espuig, S.K. Solanki, N.A. Krivova, R. Cameron, T. Peñuela, Sunspot group tilt angles and the strength of the solar cycle (Corrigendum). Astron. Astrophys. 556, C3 (2013). doi: 10.1051/0004-6361/201014301e ADSCrossRefGoogle Scholar
  11. M. Dikpati, Polar field puzzle: Solutions from flux-transport dynamo and surface-transport models. Astrophys. J. 733, 90 (2011). arXiv:1104.0269. doi: 10.1088/0004-637X/733/2/90 ADSCrossRefGoogle Scholar
  12. M. Dikpati, P.A. Gilman, Global solar dynamo models: Simulations and predictions of cyclic photospheric fields and long-term non-reversing interior fields. New J. Phys. 9, 297 (2007). doi: 10.1088/1367-2630/9/8/297 ADSCrossRefGoogle Scholar
  13. C.J. Durrant, J.P.R. Turner, P.R. Wilson, The mechanism involved in the reversals of the sun’s polar magnetic fields. Sol. Phys. 222, 345–362 (2004). doi: 10.1023/B:SOLA.0000043577.33961.82 ADSCrossRefGoogle Scholar
  14. T.L. Duvall Jr, Large-scale solar velocity fields. Sol. Phys. 63, 3–15 (1979). doi: 10.1007/BF00155690 ADSCrossRefGoogle Scholar
  15. V. Gaizauskas, K.L. Harvey, J.W. Harvey, C. Zwaan, Large-scale patterns formed by solar active regions during the ascending phase of cycle 21. Astrophys. J. 265, 1056–1065 (1983). doi: 10.1086/160747 ADSCrossRefGoogle Scholar
  16. V. Gaizauskas, D.H. Mackay, K.L. Harvey, Evolution of solar filament channels observed during a major poleward surge of photospheric magnetic flux. Astrophys. J. 558, 888–902 (2001). doi: 10.1086/322298 ADSCrossRefGoogle Scholar
  17. G.E. Hale, S.B. Nicholson, The law of sun-spot polarity. Astrophys. J. 62, 270 (1925). doi: 10.1086/142933 ADSCrossRefGoogle Scholar
  18. G.E. Hale, F. Ellerman, S.B. Nicholson, A.H. Joy, The magnetic polarity of sun-spots. Astrophys. J. 49, 153 (1919). doi: 10.1086/142452 ADSCrossRefGoogle Scholar
  19. D.H. Hathaway, L. Rightmire, Variations in the Sun’s meridional flow over a solar cycle. Science 327, 1350 (2010). doi: 10.1126/science.1181990 ADSCrossRefGoogle Scholar
  20. D.H. Hathaway, P.A. Gilman, J.W. Harvey, F. Hill, R.F. Howard, H.P. Jones, J.C. Kasher, J.W. Leibacher, J.A. Pintar, G.W. Simon, GONG observations of solar surface flows. Science 272, 1306–1309 (1996). doi: 10.1126/science.272.5266.1306 ADSCrossRefGoogle Scholar
  21. J.T. Hoeksema, Structure and evolution of the large scale solar and heliospheric magnetic fields. PhD thesis, Stanford University, CA (1984) Google Scholar
  22. V.G. Ivanov, Joy’s law and its features according to the data of three sunspot catalogs. Geomagn. Aeron. 52, 999–1004 (2012). doi: 10.1134/S0016793212080130 ADSCrossRefGoogle Scholar
  23. J. Jiang, E. Işik, R.H. Cameron, D. Schmitt, M. Schüssler, The effect of activity-related meridional flow modulation on the strength of the solar polar magnetic field. Astrophys. J. 717, 597–602 (2010). arXiv:1005.5317. doi: 10.1088/0004-637X/717/1/597 ADSCrossRefGoogle Scholar
  24. R.W. Komm, R.F. Howard, J.W. Harvey, Meridional flow of small photospheric magnetic features. Sol. Phys. 147, 207–223 (1993). doi: 10.1007/BF00690713 ADSCrossRefGoogle Scholar
  25. B.J. Labonte, R. Howard, Solar rotation measurements at Mount Wilson. III—Meridional flow and limbshift. Sol. Phys. 80, 361–372 (1982). doi: 10.1007/BF00147982 ADSCrossRefGoogle Scholar
  26. R.B. Leighton, Transport of magnetic fields on the Sun. Astrophys. J. 140, 1547 (1964). doi: 10.1086/148058 ADSCrossRefzbMATHGoogle Scholar
  27. R.B. Leighton, A magneto-kinematic model of the solar cycle. Astrophys. J. 156, 1 (1969). doi: 10.1086/149943 ADSCrossRefGoogle Scholar
  28. A. Muñoz-Jaramillo, M. Dasi-Espuig, L.A. Balmaceda, E.E. DeLuca, Solar cycle propagation, memory, and prediction: Insights from a century of magnetic proxies. Astrophys. J. Lett. 767, L25 (2013). arXiv:1304.3151. doi: 10.1088/2041-8205/767/2/L25 ADSCrossRefGoogle Scholar
  29. E.N. Parker, The formation of sunspots from the solar toroidal field. Astrophys. J. 121, 491 (1955). doi: 10.1086/146010 ADSCrossRefGoogle Scholar
  30. G.J.D. Petrie, Evolution of active and polar photospheric magnetic fields during the rise of cycle 24 compared to previous cycles. Sol. Phys. 281, 577–598 (2012). arXiv:1204.1048. doi: 10.1007/s11207-012-0117-3 ADSCrossRefGoogle Scholar
  31. G.J.D. Petrie, Solar magnetic activity cycles, coronal potential field models and eruption rates. Astrophys. J. 768, 162 (2013). arXiv:1303.1218. doi: 10.1088/0004-637X/768/2/162 ADSCrossRefGoogle Scholar
  32. G.J.D. Petrie, Solar magnetism in the polar regions. Living Rev. Sol. Phys. (2015) Google Scholar
  33. G.J.D. Petrie, I. Patrikeeva, A comparative study of magnetic fields in the solar photosphere and chromosphere at equatorial and polar latitudes. Astrophys. J. 699, 871–884 (2009). arXiv:1010.6041. doi: 10.1088/0004-637X/699/1/871 ADSCrossRefGoogle Scholar
  34. G.J.D. Petrie, K. Petrovay, K. Schatten, Solar polar fields and the 22-year activity cycle: Observations and models. Space Sci. Rev. 186, 325–357 (2014). doi: 10.1007/s11214-014-0064-4 ADSCrossRefGoogle Scholar
  35. K.H. Schatten, W.D. Pesnell, An early solar dynamo prediction: Cycle 23 is approximately cycle 22. Geophys. Res. Lett. 20, 2275–2278 (1993). doi: 10.1029/93GL02431 ADSCrossRefGoogle Scholar
  36. K.H. Schatten, S. Sofia, Forecast of an exceptionally large even-numbered solar cycle. Geophys. Res. Lett. 14, 632–635 (1987). doi: 10.1029/GL014i006p00632 ADSCrossRefGoogle Scholar
  37. K.H. Schatten, P.H. Scherrer, L. Svalgaard, J.M. Wilcox, Using dynamo theory to predict the sunspot number during solar cycle 21. Geophys. Res. Lett. 5, 411–414 (1978). doi: 10.1029/GL005i005p00411 ADSCrossRefGoogle Scholar
  38. K. Schatten, D.J. Myers, S. Sofia, Solar activity forecast for solar cycle 23. Geophys. Res. Lett. 23, 605–608 (1996). doi: 10.1029/96GL00451 ADSCrossRefGoogle Scholar
  39. C.J. Schrijver, Y. Liu, The global solar magnetic field through a full sunspot cycle: Observations and model results. Sol. Phys. 252, 19–31 (2008). doi: 10.1007/s11207-008-9240-6 ADSCrossRefGoogle Scholar
  40. C.J. Schrijver, M.L. De Rosa, A.M. Title, What is missing from our understanding of long-term solar and heliospheric activity? Astrophys. J. 577, 1006–1012 (2002). doi: 10.1086/342247 ADSCrossRefGoogle Scholar
  41. N.R. Sheeley Jr., C.R. DeVore, J.P. Boris, Simulations of the mean solar magnetic field during sunspot cycle 21. Sol. Phys. 98, 219–239 (1985). doi: 10.1007/BF00152457 ADSCrossRefGoogle Scholar
  42. H.B. Snodgrass, Magnetic rotation of the solar photosphere. Astrophys. J. 270, 288–299 (1983). doi: 10.1086/161121 ADSCrossRefGoogle Scholar
  43. X. Sun, J.T. Hoeksema, Y. Liu, J. Zhao, On polar magnetic field reversal and surface flux transport during solar cycle 24. Astrophys. J. 798, 114 (2015). 1410.8867. doi: 10.1088/0004-637X/798/2/114 ADSCrossRefGoogle Scholar
  44. L. Svalgaard, T.L. Duvall Jr., P.H. Scherrer, The strength of the sun’s polar fields. Sol. Phys. 58, 225–239 (1978). doi: 10.1007/BF00157268 ADSCrossRefGoogle Scholar
  45. R.K. Ulrich, The controversial sun, in IAU Colloq. 137: Inside the Stars, ed. by W.W. Weiss, A. Baglin. Astronomical Society of the Pacific Conference Series, vol. 40 (Astronomical Society of the Pacific, San Francisco, 1993), pp. 25–42 Google Scholar
  46. Y.M. Wang, N.R. Sheeley Jr., Magnetic flux transport and the sun’s dipole moment—new twists to the Babcock-Leighton model. Astrophys. J. 375, 761–770 (1991). doi: 10.1086/170240 ADSCrossRefGoogle Scholar
  47. Y.M. Wang, N.R. Sheeley Jr., On potential field models of the solar corona. Astrophys. J. 392, 310–319 (1992). doi: 10.1086/171430 ADSCrossRefGoogle Scholar
  48. Y.M. Wang, A.G. Nash, N.R. Sheeley Jr., Evolution of the sun’s polar fields during sunspot cycle 21—poleward surges and long-term behavior. Astrophys. J. 347, 529–539 (1989). doi: 10.1086/168143 ADSCrossRefGoogle Scholar
  49. Y.M. Wang, J. Lean, N.R. Sheeley Jr., Role of a variable meridional flow in the secular evolution of the sun’s polar fields and open flux. Astrophys. J. Lett. 577, L53–L57 (2002). doi: 10.1086/344196 ADSCrossRefGoogle Scholar
  50. Y.M. Wang, E. Robbrecht, N.R. Sheeley Jr., On the weakening of the polar magnetic fields during solar cycle 23. Astrophys. J. 707, 1372 (2009). doi: 10.1088/0004-637X/707/2/1372 ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.National Solar ObservatoryTucsonUSA
  2. 2.University of ChicagoChicagoUSA

Personalised recommendations