Space Science Reviews

, Volume 191, Issue 1–4, pp 1–12 | Cite as

Magnetic Fields at Largest Universal Strengths: Overview

  • V. S. Beskin
  • A. Balogh
  • M. Falanga
  • R. A. TreumannEmail author


A brief review is given about the role strong magnetic fields play in the universe. We list the main observational and theoretical achievements treated in the following chapters including a number of open questions which future research is going to attack. Strong fields in the universe exceed any large scale fields by several orders of magnitude, at first glance suggesting that their generation mechanisms would be different. However, it is believed that gravitational collapse and magnetic flux conservation is responsible for the amplification of fields generated in the progenitors to the observed strengths. In this sense the extremely strong fields are mainly fossil, and their variety confirms the different masses and stages where the collapse comes to rest, at the lightest in white dwarfs and at the strongest in magnetars, which are a particular class of neutron stars with strongly inhomogeneous particularly structured crust. Various effects related to the detection of such fields, radiation generation and consequences for the environment are pointed out and referred to the relevant chapters in this volume.


Magnetic stars: white dwarfs, magnetars, pulsar Neutron stars Accretion, outflow and jets 


  1. Y. Aharonov, D. Bohm, Significance of electromagnetic potentials in the quantum theory. Phys. Rev. 115, 485–491 (1959). doi: 10.1103/PhysRev.115.485 zbMATHMathSciNetCrossRefADSGoogle Scholar
  2. A. Balogh, R.A. Treumann, Physics of Collisionless Shocks: Space Plasma Shock Waves. ISSI Scientific Report Series, vol. 12 (Springer, New York, 2013). doi: 10.1007/978-1-4614-6099-2 CrossRefGoogle Scholar
  3. R. Beck, A. Balogh, A. Bykov, R.A. Treumann, L.M. Widrow (eds.), Large-Scale Magnetic Fields in the Universe. ISSI Space Sci. Ser., vol. 39 (Springer, New York, 2012) Google Scholar
  4. V.S. Beskin, S.V. Chernov, C.R. Gwinn, A.A. Tchekhovskoy, Radio pulsars. Space Sci. Rev. (2015). doi: 10.1007/s11214-015-0102-2 Google Scholar
  5. R.D. Blandford, R.L. Znajek, Electromagnetic extraction of energy from Kerr black holes. Mon. Not. R. Astron. Soc. 179, 433–456 (1977) CrossRefADSGoogle Scholar
  6. A.M. Bykov, R.A. Treumann, Fundamentals of collisionless shocks for astrophysical application, 2. Relativistic shocks. Astron. Astrophys. Rev. (2011). doi: 10.1007/s00159-011-0042-8 Google Scholar
  7. H.F. Chau, On the rotation and magnetic field evolution of superconducting strange stars. Astrophys. J. 479, 886–901 (1997). doi: 10.1086/303898 CrossRefADSGoogle Scholar
  8. R.C. Duncan, C. Thompson, Formation of very strongly magnetized neutron stars—implications for gamma-ray bursts. Astrophys. J. Lett. 392, L9–L13 (1992). doi: 10.1086/186413 CrossRefADSGoogle Scholar
  9. R.C. Duncan, Physics in ultra-strong magnetic fields, in Gamma-Ray Bursts, 5th Huntsville Symposium, vol. 526 (2000), pp. 830–841. doi: 10.1063/1.1361651 Google Scholar
  10. R. Durrer, A. Neronov, Cosmological magnetic fields: their generation, evolution and observation. Astron. Astrophys. Rev. 21, 62 (2013). doi: 10.1007/s00159-013-0062-7 CrossRefADSGoogle Scholar
  11. L. Ferrario, A. Melatos, J. Zrake, Magnetic field generation in stars. Space Sci. Rev. (2015a). doi: 10.1007/s11214-015-0138-y Google Scholar
  12. L. Ferrario, D. de Martino, B.T. Gänsicke, Magnetic white dwarfs. Space Sci. Rev. (2015b). doi: 10.1007/s11214-015-0152-0 Google Scholar
  13. G. Gabrielse, D. Hanneke, T. Kinoshita, M. Nio, B. Odom, New determination of the fine structure constant from the electron \(g\) value and QED. Phys. Rev. Lett. 97, 030802 (2006). doi: 10.1103/PhysRevLett.97.03802 CrossRefADSGoogle Scholar
  14. J. Granot, T. Piran, O. Bromberg, J.L. Racusin, F. Daigne, Gamma ray bursts as sources of strong magnetic fields. Space Sci. Rev. (2015). doi: 10.1007/s11214-015-0102-2 Google Scholar
  15. J.F. Hawley, C. Fendt, M. Hardcastle, E. Nokhrina, A. Tchekhovskoy, Disks and jets—gravity, rotation and magnetic fields. Space Sci. Rev. (2015). doi: 10.1007/s11214-015-0102-2 Google Scholar
  16. D. Kagan, L. Sironi, B. Cerutti, D. Giannios, Relativistic magnetic reconnection in pair plasmas and its astrophysical applications. Space Sci. Rev. (2015). doi: 10.1007/s11214-015-0102-2 zbMATHGoogle Scholar
  17. O. Kargaltsev, B. Cerutti, Y. Lyubarsky, E. Striani, Pulsar-wind nebulae. Space Sci. Rev. (2015). doi: 10.1007/s11214-015-0102-2 Google Scholar
  18. D. Lai, Physics in very strong magnetic fields. Space Sci. Rev. (2015). doi: 10.1007/s11214-015-0137-z Google Scholar
  19. L. Landau, Diamagnetismus der Metalle. Z. Phys. 64, 629–637 (1930). doi: 10.1007/BF01397213 zbMATHCrossRefADSGoogle Scholar
  20. J.L. Linsky, M. Schöller, Observations of strong magnetic fields in nondegenerate stars. Space Sci. Rev. (2015). doi: 10.1007/s11214-015-0143-1 Google Scholar
  21. M. Lyutikov, Magnetar activity mediated by plastic deformations of neutron star crust. Mon. Not. R. Astron. Soc. 447, 1407–1417 (2015). doi: 10.1093/mnras/stu2413 CrossRefADSGoogle Scholar
  22. S. Mereghetti, J.A. Pons, A. Melatos, Magnetars: properties, origin and evolution. Space Sci. Rev. (2015). doi: 10.1007/s11214-015-0102-2 Google Scholar
  23. A.Y. Pothekhin, A. De Luca, J.A. Pons, Neutron stars—thermal emitters. Space Sci. Rev. (2015a). doi: 10.1007/s11214-015-0102-2 Google Scholar
  24. A.Y. Pothekhin, J.A. Pons, D. Page, Neutron stars—cooling and transport. Space Sci. Rev. (2015b). doi: 10.1007/s11214-015-0102-2 Google Scholar
  25. M. Revnivtsev, S. Mereghetti, Magnetic fields of neutron stars in X-ray binaries. Space Sci. Rev. (2015). doi: 10.1007/s11214-015-0102-2 Google Scholar
  26. M. Romanova, S.P. Owocki, Accretion, outflows and winds from magnetized stars. Space Sci. Rev. (2015). doi: 10.1007/s11214-015-0102-2 zbMATHGoogle Scholar
  27. M. Ruderman, Matter in superstrong magnetic fields, in Physics of Dense Matter, ed. by C.J. Hansen. Proc. IAU Symp., vol. 53, Dordrecht, Boston (1974), pp. 117–131 CrossRefGoogle Scholar
  28. R. Schlickeiser, Cosmic Ray Astrophysics. Astron. Astrophys. Library (Springer, Berlin, 2002). doi: 10.1007/978-3-662-04814-6 CrossRefGoogle Scholar
  29. L. Sironi, U. Keshet, M. Lemoine, Relativistic shocks. Space Sci. Rev. (2015). doi: 10.1007/s11214-015-0102-2 Google Scholar
  30. C. Thompson, R.C. Duncan, The soft gamma repeaters as very strongly magnetized neutron stars—I. Radiative mechanism for outbursts. Mon. Not. R. Astron. Soc. 275, 255–300 (1995). doi: 10.1063/1.1361651 ADSGoogle Scholar
  31. R.A. Treumann, Fundamentals of collisionless shocks for astrophysical application, 1. Non-relativistic shocks. Astron. Astrophys. Rev. 17, 409–535 (2009). doi: 10.1007/s00159-009-0024-2 CrossRefADSGoogle Scholar
  32. R.A. Treumann, W. Baumjohann, A. Balogh, The strongest magnetic fields in the universe: how strong can they become? Front. Phys. (2014). doi: 10.3389/fphy.2014.00059 Google Scholar
  33. J. Trümper, W. Pietsch, C. Reppin, B. Sacco, Evidence for strong cyclotron emission in the hard X-ray spectrum of Her X-1 (eighth Texas symposium on relativistic astrophysics). Ann. N.Y. Acad. Sci. 302, 538–544 (1977). doi: 10.1111/j.1749-6632.1977.tb37072.x CrossRefADSGoogle Scholar
  34. L.M. Widrow, D. Ryu, D.R.G. Schleicher, K. Subramanian, C.G. Tsagas, R.A. Treumann, The first magnetic fields. Space Sci. Rev. 116, 37–70 (2012). doi: 10.1007/s11214-011-9833-5 CrossRefADSGoogle Scholar
  35. T.S. Wood, R. Hollerbach, Three dimensional simulation of the magnetic stress in a neutron star crust. Phys. Rev. Lett. 114, 191101 (2015). arXiv:1501.05149 [astro-ph.SR]. doi: 10.1102/PhysRevLett.114.191101 CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Lebedev Physical InstituteRussian Academy of SciencesMoscowRussian Federation
  2. 2.Imperial College LondonLondonUK
  3. 3.International Space Science InstituteBernSwitzerland

Personalised recommendations