Space Science Reviews

, Volume 192, Issue 1–4, pp 145–208 | Cite as

The Earth: Plasma Sources, Losses, and Transport Processes

  • Daniel T. Welling
  • Mats André
  • Iannis Dandouras
  • Dominique Delcourt
  • Andrew Fazakerley
  • Dominique Fontaine
  • John Foster
  • Raluca Ilie
  • Lynn Kistler
  • Justin H. Lee
  • Michael W. Liemohn
  • James A. Slavin
  • Chih-Ping Wang
  • Michael Wiltberger
  • Andrew Yau
Article

Abstract

This paper reviews the state of knowledge concerning the source of magnetospheric plasma at Earth. Source of plasma, its acceleration and transport throughout the system, its consequences on system dynamics, and its loss are all discussed. Both observational and modeling advances since the last time this subject was covered in detail (Hultqvist et al., Magnetospheric Plasma Sources and Losses, 1999) are addressed.

Keywords

Magnetosphere Plasma Ionosphere Solar wind 

References

  1. T. Abe, B.A. Whalen, A.W. Yau, S. Watanabe, E. Sagawa, K.I. Oyama, Altitude profile of the polar wind velocity and its relationship to ionospheric conditions. Geophys. Res. Lett. 20(24), 2825–2828 (1993a). doi:10.1029/93GL02837 ADSCrossRefGoogle Scholar
  2. T. Abe, B.A. Whalen, A.W. Yau, R.E. Horita, S. Watanabe, E. Sagawa, EXOS D (Akebono) suprathermal mass spectrometer observations of the polar wind. J. Geophys. Res. 98(A7), 11191 (1993b). doi:10.1029/92JA01971 ADSCrossRefGoogle Scholar
  3. T. Abe, S. Watanabe, B.A. Whalen, A.W. Yau, E. Sagawa, Observations of polar wind and thermal ion outflow by Akebono/SMS. J. Geomagn. Geoelectr. 48(3), 319–325 (1996). doi:10.5636/jgg.48.319. https://www.jstage.jst.go.jp/article/jgg1949/48/3/48_3_319/_article CrossRefGoogle Scholar
  4. T. Abe, Long-term variation of the polar wind velocity and its implication for the ion acceleration process: Akebono/suprathermal ion mass spectrometer observations. J. Geophys. Res. 109(A9), 09305 (2004). doi:10.1029/2003JA010223 CrossRefGoogle Scholar
  5. S.-I. Akasofu, The development of the auroral substorm. Planet. Space Sci. 12(4), 273–282 (1964). doi:10.1016/0032-0633(64)90151-5. http://www.sciencedirect.com/science/article/pii/0032063364901515 ADSCrossRefGoogle Scholar
  6. J. Akinrimisi, S. Orsini, M. Candidi, H. Balsiger, Ion Dynamics in the Plasma Mantle (1989). http://www.researchgate.net/publication/234190759_Ion_dynamics_in_the_plasma_mantle Google Scholar
  7. B.J. Anderson, S.A. Fuselier, Response of thermal ions to electromagnetic ion cyclotron waves. J. Geophys. Res. 99(A10), 19413 (1994). doi:10.1029/94JA01235 ADSCrossRefGoogle Scholar
  8. M. André, C.M. Cully, Low-energy ions: a previously hidden solar system particle population. Geophys. Res. Lett. 39(3) (2012). doi:10.1029/2011GL050242
  9. M. André, K. Li, A.I. Eriksson, Outflow of low-energy ions and the solar cycle. J. Geophys. Res. Space Phys. (2015). doi:10.1002/2014JA020714 Google Scholar
  10. M. André, A. Vaivads, Y.V. Khotyaintsev, T. Laitinen, H. Nilsson, G. Stenberg, A. Fazakerley, J.G. Trotignon, Magnetic reconnection and cold plasma at the magnetopause. Geophys. Res. Lett. 37(22) (2010). doi:10.1029/2010GL044611
  11. M. André, P. Norqvist, L. Andersson, L. Eliasson, A.I. Eriksson, L. Blomberg, R.E. Erlandson, J. Waldemark, Ion energization mechanisms at 1700 km in the auroral region. J. Geophys. Res. 103(A3), 4199 (1998). doi:10.1029/97JA00855. http://adsabs.harvard.edu/abs/1998JGR...103.4199A ADSCrossRefGoogle Scholar
  12. N. André, J.F. Lemaire, Convective instabilities in the plasmasphere. J. Atmos. Sol.-Terr. Phys. 68(2), 213–227 (2006). doi:10.1016/j.jastp.2005.10.013. http://www.sciencedirect.com/science/article/pii/S1364682605002932 ADSCrossRefGoogle Scholar
  13. V. Angelopoulos, W. Baumjohann, C.F. Kennel, F.V. Coroniti, M.G. Kivelson, R. Pellat, R.J. Walker, H. Lühr, G. Paschmann, Bursty bulk flows in the inner central plasma sheet. J. Geophys. Res. 97(A4), 4027 (1992). doi:10.1029/91JA02701 ADSCrossRefGoogle Scholar
  14. V. Angelopoulos, C.F. Kennel, F.V. Coroniti, R. Pellat, H.E. Spence, M.G. Kivelson, R.J. Walker, W. Baumjohann, W.C. Feldman, J.T. Gosling, C.T. Russell, Characteristics of ion flow in the quiet state of the inner plasma sheet. Geophys. Res. Lett. 20(16), 1711–1714 (1993). doi:10.1029/93GL00847 ADSCrossRefGoogle Scholar
  15. E.E. Antonova, The structure of the magnetospheric boundary layers and the magnetospheric turbulence. Planet. Space Sci. 53, 161–168 (2005). doi:10.1016/j.pss.2004.09.041. http://www.sciencedirect.com/science/article/pii/S0032063304001813 ADSCrossRefGoogle Scholar
  16. R.L. Arnoldy, K.A. Lynch, P.M. Kintner, J. Vago, S. Chesney, T.E. Moore, C.J. Pollock, Bursts of transverse ion acceleration at rocket altitudes. Geophys. Res. Lett. 19(4), 413–416 (1992). doi:10.1029/92GL00091 ADSCrossRefGoogle Scholar
  17. P.M. Banks, T.E. Holzer, High-latitude plasma transport: the polar wind. J. Geophys. Res. 74(26), 6317–6332 (1969). doi:10.1029/JA074i026p06317 ADSCrossRefGoogle Scholar
  18. P.M. Banks, A.F. Nagy, W.I. Axford, Dynamical behavior of thermal protons in the mid-latitude ionosphere and magnetosphere. Planet. Space Sci. 19(9), 1053–1067 (1971). doi:10.1016/0032-0633(71)90104-8. http://www.sciencedirect.com/science/article/pii/0032063371901048 ADSCrossRefGoogle Scholar
  19. W. Baumjohann, G. Paschmann, H. Lühr, Characteristics of high-speed ion flows in the plasma sheet. J. Geophys. Res. 95(A4), 3801 (1990). doi:10.1029/JA095iA04p03801 ADSCrossRefGoogle Scholar
  20. M.B. Bavassano Cattaneo, M.F. Marcucci, Y.V. Bogdanova, H. Rème, I. Dandouras, L.M. Kistler, E. Lucek, Global reconnection topology as inferred from plasma observations inside Kelvin–Helmholtz vortices. Ann. Geophys. 28(4), 893–906 (2010). doi:10.5194/angeo-28-893-2010. http://www.ann-geophys.net/28/893/2010/angeo-28-893-2010.html ADSCrossRefGoogle Scholar
  21. J. Borovsky, M.F. Thomsen, R.C. Elphic, The driving of the plasma sheet by the solar wind. J. Geophys. Res. 103(A8), 17617–17639 (1998) ADSCrossRefGoogle Scholar
  22. J.E. Borovsky, MHD turbulence in the Earth’s plasma sheet: dynamics, dissipation, and driving. J. Geophys. Res. 108(A7), 1284 (2003). doi:10.1029/2002JA009625 CrossRefGoogle Scholar
  23. J.E. Borovsky, M.H. Denton, A statistical look at plasmaspheric drainage plumes. J. Geophys. Res. 113(A9), 09221 (2008). doi:10.1029/2007JA012994 CrossRefGoogle Scholar
  24. J.E. Borovsky, J.T. Steinberg, The “calm before the storm” in CIR/magnetosphere interactions: occurrence statistics, solar wind statistics, and magnetospheric preconditioning. J. Geophys. Res. 111(A7), 7–10 (2006). doi:10.1029/2005JA011397 Google Scholar
  25. J.E. Borovsky, R.C. Elphic, H.O. Funsten, M.F. Thomsen, The Earth’s Plasma Sheet as a Laboratory for Flow Turbulence in High- \(\beta\) MHD (Cambridge University Press, Cambridge, 1997). doi:10.1017/S0022377896005259. http://journals.cambridge.org/abstract_S0022377896005259 Google Scholar
  26. J.E. Borovsky, M. Hesse, J. Birn, M.M. Kuznetsova, What determines the reconnection rate at the dayside magnetosphere? J. Geophys. Res. 113(A7), 07210 (2008). doi:10.1029/2007JA012645 CrossRefGoogle Scholar
  27. M. Bouhram, B. Klecker, W. Miyake, H. Rème, J.-A. Sauvaud, M. Malingre, L. Kistler, A. Blăgău, On the altitude dependence of transversely heated O<sup>+</sup> distributions in the cusp/cleft. Ann. Geophys. 22(5), 1787–1798 (2004). doi:10.5194/angeo-22-1787-2004. http://www.ann-geophys.net/22/1787/2004/angeo-22-1787-2004.html ADSCrossRefGoogle Scholar
  28. O.J. Brambles, W. Lotko, P.a. Damiano, B. Zhang, M. Wiltberger, J. Lyon, Effects of causally driven cusp O+ outflow on the storm time magnetosphere-ionosphere system using a multifluid global simulation. J. Geophys. Res. 115, 1–4 (2010). doi:10.1029/2010JA015469 Google Scholar
  29. O.J. Brambles, W. Lotko, B. Zhang, M. Wiltberger, J. Lyon, R.J. Strangeway, Magnetosphere sawtooth oscillations induced by ionospheric outflow. Science 332(6034), 1183–1186 (2011). doi:10.1126/science.1202869 ADSCrossRefGoogle Scholar
  30. O.J. Brambles, W. Lotko, B. Zhang, J. Ouellette, J. Lyon, M. Wiltberger, The effects of ionospheric outflow on ICME and SIR driven sawtooth-events. J. Geophys. Res. Space Phys. 118(10), 6026–6041 (2013). doi:10.1002/jgra.50522 ADSCrossRefGoogle Scholar
  31. W. Bristow, Statistics of velocity fluctuations observed by SuperDARN under steady interplanetary magnetic field conditions. J. Geophys. Res. Space Phys. 113(A11), 11202 (2008). doi:10.1029/2008JA013203 ADSCrossRefGoogle Scholar
  32. M. Candidi, S. Orsini, V. Formisano, The properties of ionospheric O/+/ ions as observed in the magnetotail boundary layer and northern plasma lobe. J. Geophys. Res. 87, 9097–9106 (1982) ADSCrossRefGoogle Scholar
  33. H.C. Carlson, Accelerated polar rain electrons as the source of Sun-aligned arcs in the polar cap during northward interplanetary magnetic field conditions. J. Geophys. Res. 110(A5), 05302 (2005). doi:10.1029/2004JA010669 CrossRefGoogle Scholar
  34. D.L. Carpenter, Electron-density variations in the magnetosphere deduced from whistler data. J. Geophys. Res. 67(9), 3345–3360 (1962). doi:10.1029/JZ067i009p03345 MathSciNetADSCrossRefGoogle Scholar
  35. P.A. Cassak, M.A. Shay, Scaling of asymmetric magnetic reconnection: general theory and collisional simulations. Phys. Plasmas 14(10), 102114 (2007). doi:10.1063/1.2795630. http://scitation.aip.org/content/aip/journal/pop/14/10/10.1063/1.2795630 ADSCrossRefGoogle Scholar
  36. C.R. Chappell, Initial observations of thermal plasma composition and energetics from dynamics explorer-1. Geophys. Res. Lett. 9(9), 929–932 (1982). doi:10.1029/GL009i009p00929 ADSCrossRefGoogle Scholar
  37. C.R. Chappell, The role of the ionosphere in providing plasma to the terrestrial magnetosphere—an historical overview. Space Sci. Rev. (2015, submitted) Google Scholar
  38. C.R. Chappell, T.E. Moore, J.H. Waite, The ionosphere as a fully adequate source of plasma for the Earth’s magnetosphere. J. Geophys. Res. 92(A6), 5896 (1987). doi:10.1029/JA092iA06p05896 ADSCrossRefGoogle Scholar
  39. C.R. Chappell, M.M. Huddleston, T.E. Moore, B.L. Giles, D.C. Delcourt, Observations of the warm plasma cloak and an explanation of its formation in the magnetosphere. J. Geophys. Res. 113(A9), 09206 (2008). doi:10.1029/2007JA012945 CrossRefGoogle Scholar
  40. C. Chaston, J. Bonnell, J.P. McFadden, C.W. Carlson, C. Cully, O. Le Contel, A. Roux, H.U. Auster, K.H. Glassmeier, V. Angelopoulos, C.T. Russell, Turbulent heating and cross-field transport near the magnetopause from THEMIS. Geophys. Res. Lett. 35(17), L17S08 (2008). doi:10.1029/2008GL033601 CrossRefGoogle Scholar
  41. L. Chen, Theory of plasma transport induced by low-frequency hydromagnetic waves. J. Geophys. Res. 104(A2), 2421 (1999). doi:10.1029/1998JA900051 ADSCrossRefGoogle Scholar
  42. L. Chen, W. Li, J. Bortnik, R.M. Thorne, Amplification of whistler-mode hiss inside the plasmasphere. Geophys. Res. Lett. 39(8) (2012). doi:10.1029/2012GL051488
  43. S.P. Christon, M.I. Desai, T.E. Eastman, G. Gloeckler, S. Kokubun, A.T.Y. Lui, R.W. McEntire, E.C. Roelof, D.J. Williams, Low-charge-state heavy ions upstream of Earth’s bow shock and sunward flux of ionospheric O+1, N+1, and O+2 ions: Geotail observations. Geophys. Res. Lett. 27(16), 2433–2436 (2000). doi:10.1029/2000GL000039 ADSCrossRefGoogle Scholar
  44. B.M.A. Cooling, C.J. Owen, S.J. Schwartz, Role of the magnetosheath flow in determining the motion of open flux tubes. J. Geophys. Res. 106(A9), 18763 (2001). doi:10.1029/2000JA000455 ADSCrossRefGoogle Scholar
  45. S.W.H. Cowley, Comments on the merging of non-antiparallel magnetic fields. J. Geophys. Res. 81, 3455–3458 (1976) ADSCrossRefGoogle Scholar
  46. S.W.H. Cowley, C.J. Owen, A simple illustrative model of open flux tube motion over the dayside magnetopause. Planet. Space Sci. 37(11), 1461–1475 (1989). doi:10.1016/0032-0633(89)90116-5. http://www.sciencedirect.com/science/article/pii/0032063389901165 ADSCrossRefGoogle Scholar
  47. C.M. Cully, E. Donovan, A.W. Yau, G.G. Arkos, Akebono/Suprathermal mass spectrometer observations of low-energy ion outflow: dependence on magnetic activity and solar wind conditions. J. Geophys. Res. 108(A2), 1093 (2003a). doi:10.1029/2001JA009200 Google Scholar
  48. C.M. Cully, E.F. Donovan, A.W. Yau, H.J. Opgenoorth, Supply of thermal ionospheric ions to the central plasma sheet. J. Geophys. Res. 108(A2), 1092 (2003b). doi:10.1029/2002JA009457 Google Scholar
  49. I.A. Daglis, W.I. Axford, Fast ionospheric response to enhanced activity in geospace: ion feeding of the inner magnetotail. J. Geophys. Res. 101(A), 5047–5066 (1996) ADSCrossRefGoogle Scholar
  50. L.A. Daglis, S. Livi, E.T. Sarris, B. Wilken, Energy density of ionospheric and solar wind origin ions in the near-Earth magnetotail during substorms. J. Geophys. Res. 99, 5691–5703 (1994) ADSCrossRefGoogle Scholar
  51. I. Dandouras, Detection of a plasmaspheric wind in the Earth’s magnetosphere by the Cluster spacecraft. Ann. Geophys. 31(7), 1143–1153 (2013). doi:10.5194/angeo-31-1143-2013. http://www.ann-geophys.net/31/1143/2013/angeo-31-1143-2013.html ADSCrossRefGoogle Scholar
  52. I. Dandouras, V. Pierrard, J. Goldstein, C. Vallat, G.K. Parks, H. Rème, C. Gouillart, F. Sevestre, M. Mccarthy, L.M. Kistler, B. Klecker, A. Korth, P. Bavassano-Cattaneo, M.B. Escoubet, A. Masson, No TitleMultipoint observations of ionic structures in the plasmasphere by CLUSTER’CIS and comparisons with IMAGE-EUV observations and with model simulations, in Inner Magnetosphere Interactions: New Perspectives from Imaging, ed. by J. Burch, M. Schulz, H. Spence (Am. Geophys. Union, Washington, 2005). doi:10.1029/159GM03 Google Scholar
  53. F. Darrouzet, V. Pierrard, S. Benck, G. Lointier, J. Cabrera, K. Borremans, N.Y. Ganushkina, J.D. Keyser, Links between the plasmapause and the radiation belt boundaries as observed by the instruments CIS, RAPID, and WHISPER onboard Cluster. J. Geophys. Res. Space Phys. 118(7), 4176–4188 (2013). doi:10.1002/jgra.50239 ADSCrossRefGoogle Scholar
  54. F. Darrouzet, D.L. Gallagher, N. André, D.L. Carpenter, I. Dandouras, P.M. Décréau, J.D. Keyser, R.E. Denton, J.C. Foster, J. Goldstein, M.B. Moldwin, B.W. Reinisch, B.R. Sandel, J. Tu, Plasmaspheric density structures and dynamics: properties observed by the CLUSTER and IMAGE missions, in The Earth’s Plasmasphere, ed. by F. Darrouzet, J. De Keyser, V. Pierrard (Springer, New York, 2009), pp. 55–106. 978-1-4419-1322-7. doi:10.1007/978-1-4419-1323-4. http://link.springer.com/10.1007/978-1-4419-1323-4 CrossRefGoogle Scholar
  55. D.C. Delcourt, J.A. Sauvaud, A. Pedersen, Dynamics of single-particle orbits during substorm expansion phase. J. Geophys. Res. 95(A12), 20853 (1990). doi:10.1029/JA095iA12p20853 ADSCrossRefGoogle Scholar
  56. D.C. Delcourt, C.R. Chappell, T.E. Moore, J.H. Waite, A three-dimensional numerical model of ionospheric plasma in the magnetosphere. J. Geophys. Res. 94(A9), 11893 (1989). doi:10.1029/JA094iA09p11893. http://adsabs.harvard.edu/abs/1989JGR....9411893D ADSCrossRefGoogle Scholar
  57. D.C. Delcourt, T.E. Moore, J.A. Sauvaud, C.R. Chappell, Nonadiabatic transport features in the outer cusp region. J. Geophys. Res. 97, 16833 (1992) ADSCrossRefGoogle Scholar
  58. D.C. Delcourt, Particle acceleration by inductive electric fields in the inner magnetosphere. J. Atmos. Sol.-Terr. Phys. 64(5-6), 551–559 (2002). doi:10.1016/S1364-6826(02)00012-3. http://www.sciencedirect.com/science/article/pii/S1364682602000123 ADSCrossRefGoogle Scholar
  59. E. Drakou, A.W. Yau, T. Abe, Ion temperature measurements from the Akebono suprathermal mass spectrometer: application to the polar wind. J. Geophys. Res. 102(A8), 17523 (1997). doi:10.1029/97JA00099 ADSCrossRefGoogle Scholar
  60. J.W. Dungey, The steady state of the Chapman–Ferraro problem in two dimensions. J. Geophys. Res. 66(4), 1043–1047 (1961). doi:10.1029/JZ066i004p01043. http://adsabs.harvard.edu/abs/1961JGR....66.1043D ADSCrossRefGoogle Scholar
  61. J.P. Eastwood, S.A. Kiehas, in Magnetotails in the Solar System, ed. by A. Keiling, C.M. Jackman, P. Delmare (Wiley, Hoboken, 2015), pp. 269–287. Chap. 16 Google Scholar
  62. Y. Ebihara, M. Ejiri, Modeling of solar wind control of the ring current buildup: a case study of the magnetic storms in April 1997. Geophys. Res. Lett. 25(20), 3751–3754 (1998). doi:10.1029/1998GL900006 ADSCrossRefGoogle Scholar
  63. R.C. Elphic, M.F. Thomsen, J.E. Borovsky, The fate of the outer plasmasphere. Geophys. Res. Lett. 24(4), 365–368 (1997). doi:10.1029/97GL00141 ADSCrossRefGoogle Scholar
  64. E. Engwall, A.I. Eriksson, M. André, I. Dandouras, G. Paschmann, J. Quinn, K. Torkar, Low-energy (order 10 eV) ion flow in the magnetotail lobes inferred from spacecraft wake observations. Geophys. Res. Lett. 33(6), 06110 (2006). doi:10.1029/2005GL025179 ADSCrossRefGoogle Scholar
  65. E. Engwall, A.I. Eriksson, C.M. Cully, M. André, R. Torbert, H. Vaith, Earth’s Ionospheric Outflow Dominated by Hidden Cold Plasma (2009a). doi:10.1038/ngeo387. http://dx.doi.org/10.1038/ngeo387 Google Scholar
  66. E. Engwall, A.I. Eriksson, C.M. Cully, M. André, P.A. Puhl-Quinn, H. Vaith, R. Torbert, Survey of cold ionospheric outflows in the magnetotail. Ann. Geophys. 27(8), 3185–3201 (2009b). doi:10.5194/angeo-27-3185-2009. http://www.ann-geophys.net/27/3185/2009/ ADSCrossRefGoogle Scholar
  67. J. Etcheto, A. Saint-Marc, Anomalously high plasma densities in the plasma sheet boundary layer. J. Geophys. Res. 90(A6), 5338 (1985). doi:10.1029/JA090iA06p05338 ADSCrossRefGoogle Scholar
  68. M. Faganello, F. Califano, F. Pegoraro, T. Andreussi, S. Benkadda, Magnetic reconnection and Kelvin–Helmholtz instabilities at the Earth’s magnetopause. Plasma Phys. Control. Fusion 54(12), 124037 (2012). doi:10.1088/0741-3335/54/12/124037. http://stacks.iop.org/0741-3335/54/i=12/a=124037 ADSCrossRefGoogle Scholar
  69. M. Faganello, F. Califano, F. Pegoraro, A. Retinò, Kelvin–Helmholtz vortices and double mid-latitude reconnection at the Earth’s magnetopause: comparison between observations and simulations. Europhys. Lett. 107(1), 19001 (2014). doi:10.1209/0295-5075/107/19001. http://stacks.iop.org/0295-5075/107/i=1/a=19001 ADSCrossRefGoogle Scholar
  70. D.H. Fairfield, On the average configuration of the geomagnetic tail. J. Geophys. Res. 84(A5), 1950 (1979). doi:10.1029/JA084iA05p01950 ADSCrossRefGoogle Scholar
  71. R.C. Fear, S.E. Milan, R. Maggiolo, A.N. Fazakerley, I. Dandouras, S.B. Mende, Direct observation of closed magnetic flux trapped in the high-latitude magnetosphere. Science 346(6216), 1506–1510 (2014). doi:10.1126/science.1257377. http://www.sciencemag.org/content/346/6216/1506.short ADSCrossRefGoogle Scholar
  72. Y.I. Feldstein, A.E. Levitin, S.A. Golyshev, L.A. Dremukhina, U.B. Vestchezerova, T.E. Valchuk, A. Grafe, Ring current and auroral electrojets in connection with interplanetary medium parameters during magnetic storm. Ann. Geophys. 12(7), 602–611 (1994). doi:10.1007/s00585-994-0602-6. http://www.ann-geophys.net/12/602/1994/ ADSCrossRefGoogle Scholar
  73. M.-C. Fok, J.U. Kozyra, A.F. Nagy, C.E. Rasmussen, G.V. Khazanov, Decay of equatorial ring current ions and associated aeronomical consequences. J. Geophys. Res. 98(A11), 19381 (1993). doi:10.1029/93JA01848 ADSCrossRefGoogle Scholar
  74. M.-C. Fok, P.D. Craven, T.E. Moore, P.G. Richards, Ring current-plasmasphere coupling through Coulomb collisions, in Cross-Scale Coupling in Space Plasmas, ed. by J.L. Horwitz, N. Singh, J.L. Burch (Am. Geophys. Union, Washington, 1995). doi:10.1029/GM093p0161 Google Scholar
  75. M. Förster, G. Paschmann, S.E. Haaland, J.M. Quinn, R.B. Torbert, H. Vaith, C.A. Kletzing, High-latitude plasma convection from Cluster EDI: variances and solar wind correlations. Ann. Geophys. 25(7), 1691–1707 (2007). https://hal.archives-ouvertes.fr/hal-00318357/ ADSCrossRefGoogle Scholar
  76. C. Foster, M. Lester, J.A. Davies, A statistical study of diurnal, seasonal and solar cycle variations of F-region and topside auroral upflows observed by EISCAT between 1984 and 1996. Ann. Geophys. 16(10), 1144–1158 (1998). doi:10.1007/s00585-998-1144-0. http://www.ann-geophys.net/16/1144/1998/ ADSCrossRefGoogle Scholar
  77. J.C. Foster, Stormtime observations of the flux of plasmaspheric ions to the dayside cusp/magnetopause. Geophys. Res. Lett. 31(8), 08809 (2004). doi:10.1029/2004GL020082 ADSCrossRefGoogle Scholar
  78. J.C. Foster, Multiradar observations of the polar tongue of ionization. J. Geophys. Res. 110(A9), 9–31 (2005). doi:10.1029/2004JA010928 Google Scholar
  79. J.C. Foster, P.J. Erickson, D.N. Baker, S.G. Claudepierre, C.A. Kletzing, W. Kurth, G.D. Reeves, S.A. Thaller, H.E. Spence, Y.Y. Shprits, J.R. Wygant, Prompt energization of relativistic and highly relativistic electrons during a substorm interval: Van Allen Probes observations. Geophys. Res. Lett. 41(1), 20–25 (2014a). doi:10.1002/2013GL058438 ADSCrossRefGoogle Scholar
  80. J.C. Foster, P.J. Erickson, A.J. Coster, S. Thaller, J. Tao, J.R. Wygant, J.W. Bonnell, Storm time observations of plasmasphere erosion flux in the magnetosphere and ionosphere. Geophys. Res. Lett. 41(3), 762–768 (2014b). doi:10.1002/2013GL059124 ADSCrossRefGoogle Scholar
  81. J.C. Foster, Storm time plasma transport at middle and high latitudes. J. Geophys. Res. 98(A2), 1675 (1993). doi:10.1029/92JA02032 ADSCrossRefGoogle Scholar
  82. C. Foullon, C.J. Farrugia, A.N. Fazakerley, C.J. Owen, F.T. Gratton, R.B. Torbert, Evolution of Kelvin–Helmholtz activity on the dusk flank magnetopause. J. Geophys. Res. 113(A11), 11203 (2008). doi:10.1029/2008JA013175 CrossRefGoogle Scholar
  83. H.U. Frey, Localized aurora beyond the auroral oval. Rev. Geophys. 45(1), 1003 (2007). doi:10.1029/2005RG000174 ADSGoogle Scholar
  84. T.A. Fritz, M. Alothman, J. Bhattacharjya, D.L. Matthews, J. Chen, Butterfly pitch-angle distributions observed by ISEE-1. Planet. Space Sci. 51(3), 205–219 (2003). doi:10.1016/S0032-0633(02)00202-7. http://www.sciencedirect.com/science/article/pii/S0032063302002027 ADSCrossRefGoogle Scholar
  85. S.A. Fuselier, W.S. Lewis, Properties of near-Earth magnetic reconnection from in-situ observations. Space Sci. Rev. 160(1-4), 95–121 (2011). doi:10.1007/s11214-011-9820-x. http://link.springer.com/10.1007/s11214-011-9820-x ADSCrossRefGoogle Scholar
  86. S.A. Fuselier, B.J. Anderson, T.G. Onsager, Particle signatures of magnetic topology at the magnetopause: AMPTE/CCE observations. J. Geophys. Res. 100(A7), 11805 (1995). doi:10.1029/94JA02811 ADSCrossRefGoogle Scholar
  87. S.A. Fuselier, B.J. Anderson, T.G. Onsager, Electron and ion signatures of field line topology at the low-shear magnetopause. J. Geophys. Res. 102(A3), 4847 (1997). doi:10.1029/96JA03635 ADSCrossRefGoogle Scholar
  88. S.A. Fuselier, K.J. Trattner, S.M. Petrinec, Antiparallel and component reconnection at the dayside magnetopause. J. Geophys. Res. 116(A10), 10227 (2011). doi:10.1029/2011JA016888 CrossRefGoogle Scholar
  89. S.A. Fuselier, K.J. Trattner, S.M. Petrinec, B. Lavraud, Dayside magnetic topology at the Earth’s magnetopause for northward IMF. J. Geophys. Res. 117(A8), 08235 (2012). doi:10.1029/2012JA017852 Google Scholar
  90. K.S. Garcia, V.G. Merkin, W.J. Hughes, Effects of nightside O+ outflow on magnetospheric dynamics: results of multifluid MHD modeling. J. Geophys. Res. 115(May), 1–9 (2010). doi:10.1029/2010JA015730 Google Scholar
  91. N.G.J. Gazey, M. Lockwood, M. Grande, C.H. Perry, P.N. Smith, S. Coles, A.D. Aylward, R.J. Bunting, H. Opgenoorth, B. Wilken, EISCAT/CRRES observations: nightside ionospheric ion outflow and oxygen-rich substorm injections. Ann. Geophys. 14(1), 1032–1043 (1996) ADSCrossRefGoogle Scholar
  92. A. Glocer, G. Tóth, T. Gombosi, D. Welling, Modeling ionospheric outflows and their impact on the magnetosphere, initial results. J. Geophys. Res. 114(A5), 1–16 (2009a). doi:10.1029/2009JA014053 Google Scholar
  93. a. Glocer, G. Tóth, Y. Ma, T. Gombosi, J.-C. Zhang, L.M. Kistler, Multifluid block-adaptive-tree solar wind roe-type upwind scheme: magnetospheric composition and dynamics during geomagnetic storms initial results. J. Geophys. Res. 114(A12), 12203 (2009b). doi:10.1029/2009JA014418 CrossRefGoogle Scholar
  94. G. Gloeckler, D.C. Hamilton, AMPTE ion composition results. Phys. Scr. T 18, 73–84 (1987) ADSCrossRefGoogle Scholar
  95. J. Goldstein, Control of plasmaspheric dynamics by both convection and sub-auroral polarization stream. Geophys. Res. Lett. 30(24), 2243 (2003). doi:10.1029/2003GL018390 ADSCrossRefGoogle Scholar
  96. W.D. Gonzalez, B.T. Tsurutani, A.L.C. Gonzalez, E.J. Smith, F. Tang, S.-I. Akasofu, Solar wind-magnetosphere coupling during intense magnetic storms (1978–1979). J. Geophys. Res. 94(A7), 8835 (1989). doi:10.1029/JA094iA07p08835 ADSCrossRefGoogle Scholar
  97. J.T. Gosling, D.N. Baker, S.J. Bame, E.W. Hones, D.J. McComas, R.D. Zwickl, J.A. Slavin, E.J. Smith, B.T. Tsurutani, Plasma entry into the distant tail lobes: ISEE-3. Geophys. Res. Lett. 11(10), 1078–1081 (1984). doi:10.1029/GL011i010p01078 ADSCrossRefGoogle Scholar
  98. M.E. Greenspan, D.C. Hamilton, Relative contributions of H+ and O+ to the ring current energy near magnetic storm maximum. J. Geophys. Res. Space Phys. 107(A), 1043 (2002) ADSCrossRefGoogle Scholar
  99. R.S. Grew, F.W. Menk, M.A. Clilverd, B.R. Sandel, Mass and electron densities in the inner magnetosphere during a prolonged disturbed interval. Geophys. Res. Lett. 34(2), 02108 (2007). doi:10.1029/2006GL028254 ADSCrossRefGoogle Scholar
  100. S. Haaland, B. Lybekk, K. Svenes, A. Pedersen, M. Förster, H. Vaith, R. Torbert, Plasma transport in the magnetotail lobes. Ann. Geophys. 27(9), 3577–3590 (2009). doi:10.5194/angeo-27-3577-2009. http://www.ann-geophys.net/27/3577/2009/angeo-27-3577-2009.html ADSCrossRefGoogle Scholar
  101. S. Haaland, A. Eriksson, E. Engwall, B. Lybekk, H. Nilsson, A. Pedersen, K. Svenes, M. André, M. Förster, K. Li, C. Johnsen, N. Østgaard, Estimating the capture and loss of cold plasma from ionospheric outflow. J. Geophys. Res. 117(A7), 07311 (2012). doi:10.1029/2012JA017679 CrossRefGoogle Scholar
  102. G. Haerendel, G. Paschmann, Entry of solar wind plasma into the magnetosphere, in Physics of the Hot Plasma in the Magnetosphere, ed. by B. Hultqvist, L. Stenflo (Springer, New York, 1975), pp. 23–43. doi:10.1007/978-1-4613-4437-7_2 CrossRefGoogle Scholar
  103. D.C. Hamilton, G. Gloeckler, F.M. Ipavich, W. Stüdemann, B. Wilken, G. Kremser, Ring current development during the great geomagnetic storm of February 1986. J. Geophys. Res. 93(A12), 14343 (1988). doi:10.1029/JA093iA12p14343 ADSCrossRefGoogle Scholar
  104. Y. Harada, S. Machida, J.S. Halekas, A.R. Poppe, J.P. McFadden, ARTEMIS observations of lunar dayside plasma in the terrestrial magnetotail lobe. J. Geophys. Res. Space Phys. 118(6), 3042–3054 (2013). doi:10.1002/jgra.50296 ADSCrossRefGoogle Scholar
  105. D.A. Hardy, J.W. Freeman, H.K. Hills, Plasma observations in the magnetotail, in Magnetospheric Particles and Fields, ed. by B.M. McCormac, Hingham, Mass., USA (1976), p. 89 CrossRefGoogle Scholar
  106. D.A. Hardy, H.K. Hills, J.W. Freeman, A new plasma regime in the distant geomagnetic tail. Geophys. Res. Lett. 2(5), 169–172 (1975). doi:10.1029/GL002i005p00169 ADSCrossRefGoogle Scholar
  107. D.A. Hardy, H.K. Hills, J.W. Freeman, Occurrence of the lobe plasma at lunar distance. J. Geophys. Res. 84(A1), 72 (1979). doi:10.1029/JA084iA01p00072 ADSCrossRefGoogle Scholar
  108. C. Harvey, J. Etcheto, Y. Javel, R. Manning, M. Petit, The ISEE electron density experiment. IEEE Trans. Geosci. Electron. 16(3), 231–238 (1978). doi:10.1109/TGE.1978.294553. http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4071924 ADSCrossRefGoogle Scholar
  109. A. Hasegawa, L. Chen, Kinetic process of plasma heating due to Alfvén wave excitation. Phys. Rev. Lett. 35(6), 370–373 (1975). doi:10.1103/PhysRevLett.35.370. http://link.aps.org/doi/10.1103/PhysRevLett.35.370 ADSCrossRefGoogle Scholar
  110. A. Hasegawa, K. Mima, Anomalous transport produced by kinetic Alfvén wave turbulence. J. Geophys. Res. 83(A3), 1117 (1978). doi:10.1029/JA083iA03p01117 MathSciNetADSCrossRefGoogle Scholar
  111. H. Hasegawa, M. Fujimoto, T.-D. Phan, H. Rème, A. Balogh, M.W. Dunlop, C. Hashimoto, R. Tandokoro, Transport of solar wind into Earth’s magnetosphere through rolled-up Kelvin–Helmholtz vortices. Nature 430(7001), 755–758 (2004). doi:10.1038/nature02799. http://dx.doi.org/10.1038/nature02799 ADSCrossRefGoogle Scholar
  112. H. Hasegawa, M. Fujimoto, K. Takagi, Y. Saito, T. Mukai, H. Rème, Single-spacecraft detection of rolled-up Kelvin–Helmholtz vortices at the flank magnetopause. J. Geophys. Res. 111(A9), 09203 (2006). doi:10.1029/2006JA011728 CrossRefGoogle Scholar
  113. H. Hasegawa, A. Retinò, A. Vaivads, Y. Khotyaintsev, M. André, T.K.M. Nakamura, W.-L. Teh, B.U.O. Sonnerup, S.J. Schwartz, Y. Seki, M. Fujimoto, Y. Saito, H. Rème, P. Canu, Kelvin–Helmholtz waves at the Earth’s magnetopause: multiscale development and associated reconnection. J. Geophys. Res. 114(A12), 12207 (2009). doi:10.1029/2009JA014042. http://adsabs.harvard.edu/abs/2009JGRA..11412207H CrossRefGoogle Scholar
  114. R.A. Heelis, J.D. Winningham, M. Sugiura, N.C. Maynard, Particle acceleration parallel and perpendicular to the magnetic field observed by DE-2. J. Geophys. Res. 89(A6), 3893 (1984). doi:10.1029/JA089iA06p03893 ADSCrossRefGoogle Scholar
  115. W.J. Heikkila, R.J. Pellinen, Localized induced electric field within the magnetotail. J. Geophys. Res. 82(10), 1610–1614 (1977). doi:10.1029/JA082i010p01610 ADSCrossRefGoogle Scholar
  116. M.G. Henderson, The may 2–3, 1986 CDAW-9C interval: a sawtooth event. Geophys. Res. Lett. 31(11), 11804 (2004). doi:10.1029/2004GL019941 ADSCrossRefGoogle Scholar
  117. M. Hirahara, Periodic emergence of multicomposition cold ions modulated by geomagnetic field line oscillations in the near-Earth magnetosphere. J. Geophys. Res. 109(A3), 03211 (2004). doi:10.1029/2003JA010141 CrossRefGoogle Scholar
  118. M. Hirahara, M. Nakamura, T. Terasawa, T. Mukai, Y. Saito, T. Yamamoto, A. Nishida, S. Machida, S. Kokubun, Acceleration and heating of cold ion beams in the plasma sheet boundary layer observed with GEOTAIL. Geophys. Res. Lett. 21, 3003–3006 (1994) (ISSN 0094-8276) ADSCrossRefGoogle Scholar
  119. M. Hirahara, T. Terasawa, T. Mukai, M. Hoshino, Y. Saito, S. Machida, T. Yamamoto, S. Kokubun, Cold ion streams consisting of double proton populations and singly charged oxygen observed at the distant magnetopause by Geotail: a case study. J. Geophys. Res. 102(A), 2359–2372 (1997) ADSCrossRefGoogle Scholar
  120. E.W. Hones, J.R. Asbridge, S.J. Bame, M.D. Montgomery, S. Singer, S.-I. Akasofu, Measurements of magnetotail plasma flow made with Vela 4B. J. Geophys. Res. 77(28), 5503–5522 (1972). doi:10.1029/JA077i028p05503 ADSCrossRefGoogle Scholar
  121. R.B. Horne, R.M. Thorne, Potential waves for relativistic electron scattering and stochastic acceleration during magnetic storms. Geophys. Res. Lett. 25(15), 3011–3014 (1998). doi:10.1029/98GL01002 ADSCrossRefGoogle Scholar
  122. J.L. Horwitz, The tail lobe ion spectrometer. J. Geophys. Res. 91, 5689–5699 (1986) ADSCrossRefGoogle Scholar
  123. C.-S. Huang, Periodic magnetospheric substorms and their relationship with solar wind variations. J. Geophys. Res. 108(A6), 1255 (2003). doi:10.1029/2002JA009704 CrossRefGoogle Scholar
  124. M.M. Huddleston, C.R. Chappell, D.C. Delcourt, T.E. Moore, B.L. Giles, M.O. Chandler, An examination of the process and magnitude of ionospheric plasma supply to the magnetosphere. J. Geophys. Res. Space Phys. 110 (2005). doi:10.1029/2004JA010401
  125. B. Hultqvist, On the origin of the hot ions in the disturbed dayside magnetosphere. Planet. Space Sci. 31(2), 173–184 (1983). doi:10.1016/0032-0633(83)90052-1. http://www.sciencedirect.com/science/article/pii/0032063383900521 ADSCrossRefGoogle Scholar
  126. B. Hultqvist, M. Øieroset, G. Paschmann, R.A. Treumann (eds.), Magnetospheric Plasma Sources and Losses. Space Sciences Series of ISSI, vol. 6 (Springer, Dordrecht, 1999). 978-94-010-5918-3. doi:10.1007/978-94-011-4477-3. http://www.springerlink.com/index/10.1007/978-94-011-4477-3 Google Scholar
  127. K.-J. Hwang, M.M. Kuznetsova, F. Sahraoui, M.L. Goldstein, E. Lee, G.K. Parks, Kelvin–Helmholtz waves under southward interplanetary magnetic field. J. Geophys. Res. 116(A8), 08210 (2011). doi:10.1029/2011JA016596 Google Scholar
  128. K.-J. Hwang, M.L. Goldstein, M.M. Kuznetsova, Y. Wang, A.F. Viñas, D.G. Sibeck, The first in situ observation of Kelvin–Helmholtz waves at high-latitude magnetopause during strongly dawnward interplanetary magnetic field conditions. J. Geophys. Res. 117(A8), 08233 (2012). doi:10.1029/2011JA017256 Google Scholar
  129. R. Ilie, R.M. Skoug, H.O. Funsten, M.W. Liemohn, J.J. Bailey, M. Gruntman, The impact of geocoronal density on ring current development. J. Atmos. Sol.-Terr. Phys. 99, 92–103 (2013). doi:10.1016/j.jastp.2012.03.010. http://www.sciencedirect.com/science/article/pii/S1364682612000946 ADSCrossRefGoogle Scholar
  130. S.M. Imber, J.A. Slavin, H.U. Auster, V. Angelopoulos, A THEMIS survey of flux ropes and traveling compression regions: location of the near-Earth reconnection site during solar minimum. J. Geophys. Res. 116(A2), 02201 (2011). doi:10.1029/2010JA016026 CrossRefGoogle Scholar
  131. F.M. Ipavich, A.B. Galvin, G. Gloeckler, D. Hovestadt, B. Klecker, M. Scholer, Energetic (>100 keV) O+ ions in the plasma sheet. Geophys. Res. Lett. 11(5), 504–507 (1984). doi:10.1029/GL011i005p00504 ADSCrossRefGoogle Scholar
  132. J.R. Johnson, C.Z. Cheng, Kinetic Alfvén waves and plasma transport at the magnetopause. Geophys. Res. Lett. 24(11), 1423–1426 (1997). doi:10.1029/97GL01333 ADSCrossRefGoogle Scholar
  133. J.R. Johnson, C.Z. Cheng, Stochastic ion heating at the magnetopause due to kinetic Alfvén waves. Geophys. Res. Lett. 28(23), 4421–4424 (2001). doi:10.1029/2001GL013509 ADSCrossRefGoogle Scholar
  134. J.R. Johnson, S. Wing, Northward interplanetary magnetic field plasma sheet entropies. J. Geophys. Res. Space Phys. 114 (2009). doi:10.1029/2008JA014017
  135. V.K. Jordanova, L.M. Kistler, J.U. Kozyra, G.V. Khazanov, A.F. Nagy, Collisional losses of ring current ions. J. Geophys. Res. 101(A1), 111 (1996). doi:10.1029/95JA02000 ADSCrossRefGoogle Scholar
  136. V.K. Jordanova, C.J. Farrugia, J.M. Quinn, R.M. Thorne, K.E. Ogilvie, R.P. Lepping, G. Lu, A.J. Lazarus, M.F. Thomsen, R.D. Belian, Effect of wave-particle interactions on ring current evolution for January 10-11, 1997: initial results. Geophys. Res. Lett. 25(15), 2971–2974 (1998). doi:10.1029/98GL00649 ADSCrossRefGoogle Scholar
  137. V.K. Jordanova, R.B. Torbert, R.M. Thorne, H.L. Collin, J.L. Roeder, J.C. Foster, Ring current activity during the early B z < 0 phase of the January 1997 magnetic cloud. J. Geophys. Res. 104(A11), 24895 (1999). doi:10.1029/1999JA900339 ADSCrossRefGoogle Scholar
  138. V.K. Jordanova, L.M. Kistler, C.J. Farrugia, R.B. Torbert, Effects of inner magnetospheric convection on ring current dynamics: March 10–12, 1998. J. Geophys. Res. 106(A), 29705–29720 (2001) ADSCrossRefGoogle Scholar
  139. V.K. Jordanova, L.M. Kistler, M.F. Thomsen, C.G. Mouikis, Effects of plasma sheet variability on the fast initial ring current decay. Geophys. Res. Lett. 30(6), 41–44 (2003) CrossRefGoogle Scholar
  140. V.K. Jordanova, R.M. Thorne, W. Li, Y. Miyoshi, Excitation of whistler mode chorus from global ring current simulations. J. Geophys. Res. 115, 1–10 (2010). doi:10.1029/2009JA014810 Google Scholar
  141. Z. Kaymaz, G.L. Siscoe, N.A. Tsyganenko, R.P. Lepping, Magnetotail views at 33 R E : IMP 8 magnetometer observations. J. Geophys. Res. 99(A5), 8705 (1994). doi:10.1029/93JA03564 ADSCrossRefGoogle Scholar
  142. K. Keika, Outflow of energetic ions from the magnetosphere and its contribution to the decay of the storm time ring current. J. Geophys. Res. 110(A9), 09210 (2005). doi:10.1029/2004JA010970 CrossRefGoogle Scholar
  143. K. Keika, L.M. Kistler, P.C. Brandt, Energization of O+ ions in the Earth’s inner magnetosphere and the effects on ring current buildup: a review of previous observations and possible mechanisms. J. Geophys. Res. Space Phys. 118(7), 4441–4464 (2013) ADSCrossRefGoogle Scholar
  144. L.M. Kistler, F.M. Ipavich, D.C. Hamilton, G. Gloeckler, B. Wilken, Energy spectra of the major ion species in the ring current during geomagnetic storms. J. Geophys. Res. 94, 3579–3599 (1989) ADSCrossRefGoogle Scholar
  145. L.M. Kistler, E. Möbius, D.M. Klumpar, M.A. Popecki, L. Tang, V. Jordanova, B. Klecker, W.K. Peterson, E.G. Shelley, D. Hovestadt, M. Temerin, R.E. Ergun, J.P. McFadden, C.W. Carlson, F.S. Mozer, R.C. Elphic, R.J. Strangeway, C.A. Cattell, R.F. Pfaff, FAST/TEAMS observations of charge exchange signatures in ions mirroring at low altitudes. Geophys. Res. Lett. 25(1), 2085–2088 (1998) ADSCrossRefGoogle Scholar
  146. L.M. Kistler, B. Klecker, V.K. Jordanova, E. Möbius, M.A. Popecki, D. Patel, J.A. Sauvaud, H. Rème, A.M. Di Lellis, A. Korth, M. McCarthy, R. Cerulli, M.B. Bavassano-Cattaneo, L. Eliasson, C.W. Carlson, G.K. Parks, G. Paschmann, W. Baumjohann, G. Haerendel, Testing electric field models using ring current ion energy spectra from the Equator-S ion composition (ESIC) instrument. Ann. Geophys. 17(1), 1611–1621 (1999) ADSCrossRefGoogle Scholar
  147. L.M. Kistler, C. Mouikis, E. Möbius, B. Klecker, J.A. Sauvaud, H. Réme, A. Korth, M.F. Marcucci, R. Lundin, G.K. Parks, A. Balogh, Contribution of nonadiabatic ions to the cross-tail current in an O+ dominated thin current sheet. J. Geophys. Res. Space Phys. 110(A6), 06213 (2005). doi:10.1029/2004JA010653 ADSCrossRefGoogle Scholar
  148. L.M. Kistler, C.G. Mouikis, B. Klecker, I. Dandouras, Cusp as a source for oxygen in the plasma sheet during geomagnetic storms. J. Geophys. Res. 115(A3), 03209 (2010a). doi:10.1029/2009JA014838 CrossRefGoogle Scholar
  149. L.M. Kistler, a.B. Galvin, M.a. Popecki, K.D.C. Simunac, C. Farrugia, E. Moebius, M.a. Lee, L.M. Blush, P. Bochsler, P. Wurz, B. Klecker, R.F. Wimmer-Schweingruber, A. Opitz, J.-a. Sauvaud, B. Thompson, C.T. Russell, Escape of O+ through the distant tail plasma sheet. Geophys. Res. Lett. 37(21) (2010b). doi:10.1029/2010GL045075
  150. D.M. Klumpar, Transversely accelerated ions: an ionospheric source of hot magnetospheric ions. J. Geophys. Res. 84(A8), 4229 (1979). doi:10.1029/JA084iA08p04229 ADSCrossRefGoogle Scholar
  151. D.M. Klumpar, W.K. Peterson, E.G. Shelley, Direct evidence for two-stage (bimodal) acceleration of ionospheric ions. J. Geophys. Res. 89(A12), 10779 (1984). doi:10.1029/JA089iA12p10779 ADSCrossRefGoogle Scholar
  152. G.A. Kotova, The Earth’s plasmasphere: state of studies (a review). Geomagn. Aeron. 47(4), 409–422 (2007). doi:10.1134/S0016793207040019. http://link.springer.com/10.1134/S0016793207040019 ADSCrossRefGoogle Scholar
  153. J.U. Kozyra, Multistep Dst development and ring current composition changes during the 4–6 June 1991 magnetic storm. J. Geophys. Res. 107(A8), 1224 (2002). doi:10.1029/2001JA000023 Google Scholar
  154. J.U. Kozyra, A.F. Nagy, D.W. Slater, High-altitude energy source(s) for stable auroral red arcs. Rev. Geophys. 35(2), 155 (1997). doi:10.1029/96RG03194 ADSCrossRefGoogle Scholar
  155. J.U. Kozyra, M.-C. Fok, E.R. Sanchez, D.S. Evans, D.C. Hamilton, A.F. Nagy, The role of precipitation losses in producing the rapid early recovery phase of the Great Magnetic Storm of February 1986. J. Geophys. Res. 103(A4), 6801 (1998). doi:10.1029/97JA03330 ADSCrossRefGoogle Scholar
  156. J.U. Kozyra, M.W. Liemohn, Ring current energy input and decay, in Magnetospheric Imaging—the Image Prime Mission, ed. by J.L. Burch (Springer, Berlin, 2003), pp. 105–131. doi:10.1007/978-94-010-0027-7_6 CrossRefGoogle Scholar
  157. S.M. Krimigis, R.W. McEntire, T.A. Potemra, G. Gloeckler, F.L. Scarf, E.G. Shelley, A synthesis of ring current spectra and energy densities measured with AMPTE/CCE. Geophys. Res. Lett. 12, 329–332 (1985). Magnetic storm of September 4, 1984 (ISSN 0094-8276) ADSCrossRefGoogle Scholar
  158. E.A. Kronberg, M. Ashour-Abdalla, I. Dandouras, D.C. Delcourt, E.E. Grigorenko, L.M. Kistler, I.V. Kuzichev, J. Liao, R. Maggiolo, H.V. Malova, K.G. Orlova, V. Peroomian, D.R. Shklyar, Y.Y. Shprits, D.T. Welling, L.M. Zelenyi, Circulation of heavy ions and their dynamical effects in the magnetosphere: recent observations and models. Space Sci. Rev. 184(1-4), 173–235 (2014). doi:10.1007/s11214-014-0104-0. http://link.springer.com/10.1007/s11214-014-0104-0 ADSCrossRefGoogle Scholar
  159. A. Kullen, Solar wind dependence of the occurrence and motion of polar auroral arcs: a statistical study. J. Geophys. Res. 107(A11), 1362 (2002). doi:10.1029/2002JA009245 CrossRefGoogle Scholar
  160. J. Labelle, R.A. Treumann, Plasma waves at the dayside magnetopause. Space Sci. Rev. 47(1–2) (1988). doi:10.1007/BF00223240. http://link.springer.com/10.1007/BF00223240
  161. B. Lavraud, Characteristics of the magnetosheath electron boundary layer under northward interplanetary magnetic field: implications for high-latitude reconnection. J. Geophys. Res. 110(A6), 06209 (2005). doi:10.1029/2004JA010808 CrossRefGoogle Scholar
  162. B. Lavraud, M.F. Thomsen, B. Lefebvre, S.J. Schwartz, K. Seki, T.D. Phan, Y.L. Wang, A. Fazakerley, H. Rème, A. Balogh, Evidence for newly closed magnetosheath field lines at the dayside magnetopause under northward IMF. J. Geophys. Res. 111(A5), 05211 (2006). doi:10.1029/2005JA011266 CrossRefGoogle Scholar
  163. J.H. Lee, V. Angelopoulos, On the presence and properties of cold ions near Earth’s equatorial magnetosphere. J. Geophys. Res. Space Phys. 119(3), 1749–1770 (2014). doi:10.1002/2013JA019305 ADSCrossRefGoogle Scholar
  164. L.C. Lee, J.R. Johnson, Z.W. Ma, Kinetic Alfvén waves as a source of plasma transport at the dayside magnetopause. J. Geophys. Res. 99(A9), 17405 (1994). doi:10.1029/94JA01095 ADSCrossRefGoogle Scholar
  165. J. Lemaire, M. Scherer, Model of the polar ion-exosphere. Planet. Space Sci. 18(1), 103–120 (1970). doi:10.1016/0032-0633(70)90070-X. http://www.sciencedirect.com/science/article/pii/003206337090070X ADSCrossRefGoogle Scholar
  166. J. Lemaire, R.W. Schunk, Plasmaspheric wind. J. Atmos. Terr. Phys. 54(3-4), 467–477 (1992). doi:10.1016/0021-9169(92)90026-H. http://www.sciencedirect.com/science/article/pii/002191699290026H ADSCrossRefGoogle Scholar
  167. J.F. Lemaire, K.I. Gringauz, The Earth’s Plasmasphere (Cambridge University Press, Cambridge, 1998), p. 376. 0521675553. http://books.google.com/books?hl=en&lr=&id=xdnWRdPEvdQC&pgis=1 CrossRefGoogle Scholar
  168. J.F. Lemaire, The formation plasmaspheric tails. Phys. Chem. Earth, Part C, Sol.-Terr. Planet. Sci. 25(1-2), 9–17 (2000). doi:10.1016/S1464-1917(99)00026-4. http://www.sciencedirect.com/science/article/pii/S1464191799000264 ADSGoogle Scholar
  169. J.F. Lemaire, The formation of the light-ion trough and peeling off the plasmasphere. J. Atmos. Sol.-Terr. Phys. 63(11), 1285–1291 (2001). doi:10.1016/S1364-6826(00)00232-7. http://www.sciencedirect.com/science/article/pii/S1364682600002327 ADSCrossRefGoogle Scholar
  170. K. Li, S. Haaland, A. Eriksson, M. André, E. Engwall, Y. Wei, E.A. Kronberg, M. Fränz, P.W. Daly, H. Zhao, Q.Y. Ren, On the ionospheric source region of cold ion outflow. Geophys. Res. Lett. 39(18) (2012). doi:10.1029/2012GL053297
  171. W. Li, Plasma sheet formation during long period of northward IMF. Geophys. Res. Lett. 32(12), L12S08 (2005). doi:10.1029/2004GL021524 CrossRefGoogle Scholar
  172. J. Liao, L.M. Kistler, C.G. Mouikis, B. Klecker, I. Dandouras, J.-C. Zhang, Statistical study of O+ transport from the cusp to the lobes with Cluster CODIF data. J. Geophys. Res. 115, 1–15 (2010). doi:10.1029/2010JA015613 Google Scholar
  173. J. Liao, L.M. Kistler, C.G. Mouikis, B. Klecker, I. Dandouras, Solar cycle dependence of the cusp O+ access to the near-Earth magnetotail. J. Geophys. Res. 117(A10), 10220 (2012). doi:10.1029/2012JA017819 CrossRefGoogle Scholar
  174. J. Liao, X. Cai, L.M. Kistler, C.R. Clauer, C.G. Mouikis, B. Klecker, I. Dandouras, The relationship between sawtooth events and O+ in the plasma sheet. J. Geophys. Res. Space Phys. 119(3), 1572–1586 (2014). doi:10.1002/2013JA019084 ADSCrossRefGoogle Scholar
  175. J. Liao, L.M. Kistler, C.G. Mouikis, B. Klecker, I. Dandouras, Acceleration of O+ from the cusp to the plasma sheet. J. Geophys. Res. Space Phys. (2015) Google Scholar
  176. M.W. Liemohn, Occurrence statistics of cold, streaming ions in the near-Earth magnetotail: survey of polar-TIDE observations. J. Geophys. Res. 110(A7), 07211 (2005). doi:10.1029/2004JA010801 CrossRefGoogle Scholar
  177. M.W. Liemohn, G.V. Khazanov, J.U. Kozyra, Guided plasmaspheric hiss interactions with superthermal electrons: 1. Resonance curves and timescales. J. Geophys. Res. 102(A6), 11619 (1997). doi:10.1029/97JA00825 ADSCrossRefGoogle Scholar
  178. M.W. Liemohn, J.U. Kozyra, V.K. Jordanova, G.V. Khazanov, M.F. Thomsen, T.E. Cayton, Analysis of early phase ring current recovery mechanisms during geomagnetic storms. Geophys. Res. Lett. 26(18), 2845–2848 (1999). doi:10.1029/1999GL900611 ADSCrossRefGoogle Scholar
  179. M.W. Liemohn, J.U. Kozyra, P.G. Richards, G.V. Khazanov, M.J. Buonsanto, V.K. Jordanova, Ring current heating of the thermal electrons at solar maximum. J. Geophys. Res. 105(A12), 27767 (2000). doi:10.1029/2000JA000088 ADSCrossRefGoogle Scholar
  180. M.W. Liemohn, J.U. Kozyra, M.F. Thomsen, J.L. Roeder, G. Lu, J.E. Borovsky, T.E. Cayton, Dominant role of the asymmetric ring current in producing the stormtime Dst*. J. Geophys. Res. 106(A6), 10883 (2001). doi:10.1029/2000JA000326 ADSCrossRefGoogle Scholar
  181. Y. Lin, J.R. Johnson, X.Y. Wang, Hybrid simulation of mode conversion at the magnetopause. J. Geophys. Res. 115(A4), 04208 (2010). doi:10.1029/2009JA014524 CrossRefGoogle Scholar
  182. Y. Lin, J.R. Johnson, X. Wang, Three-dimensional mode conversion associated with kinetic Alfvén waves. Phys. Rev. Lett. 109(12), 125003 (2012). doi:10.1103/PhysRevLett.109.125003. http://link.aps.org/doi/10.1103/PhysRevLett.109.125003 ADSCrossRefGoogle Scholar
  183. H. Liu, S.-Y. Ma, K. Schlegel, Diurnal, seasonal, and geomagnetic variations of large field-aligned ion upflows in the high-latitude ionospheric F region. J. Geophys. Res. 106(A11), 24651 (2001). doi:10.1029/2001JA900047 ADSCrossRefGoogle Scholar
  184. R.E. Lopez, R. Bruntz, E.J. Mitchell, M. Wiltberger, J.G. Lyon, V.G. Merkin, Role of magnetosheath force balance in regulating the dayside reconnection potential. J. Geophys. Res. 115(A12), 12216 (2010). doi:10.1029/2009JA014597 CrossRefGoogle Scholar
  185. W. Lotko, The magnetosphere–ionosphere system from the perspective of plasma circulation: a tutorial. J. Atmos. Sol.-Terr. Phys. 69(3), 191–211 (2007). doi:10.1016/j.jastp.2006.08.011. http://www.sciencedirect.com/science/article/pii/S1364682606002604 ADSCrossRefGoogle Scholar
  186. J.G. Luhmann, D.W. Curtis, P. Schroeder, J. McCauley, R.P. Lin, D.E. Larson, S.D. Bale, J.-A. Sauvaud, C. Aoustin, R.A. Mewaldt, A.C. Cummings, E.C. Stone, A.J. Davis, W.R. Cook, B. Kecman, M.E. Wiedenbeck, T. von Rosenvinge, M.H. Acuna, L.S. Reichenthal, S. Shuman, K.A. Wortman, D.V. Reames, R. Mueller-Mellin, H. Kunow, G.M. Mason, P. Walpole, A. Korth, T.R. Sanderson, C.T. Russell, J.T. Gosling, STEREO IMPACT investigation goals, measurements, and data products overview. Space Sci. Rev. 136(1-4), 117–184 (2007). doi:10.1007/s11214-007-9170-x. http://adsabs.harvard.edu/abs/2008SSRv..136..117L ADSCrossRefGoogle Scholar
  187. B. Lybekk, A. Pedersen, S. Haaland, K. Svenes, A.N. Fazakerley, A. Masson, M.G.G.T. Taylor, J.-G. Trotignon, Solar cycle variations of the Cluster spacecraft potential and its use for electron density estimations. J. Geophys. Res. Space Phys. 117(A1) (2012). doi:10.1029/2011JA016969
  188. K. Maezawa, T. Hori, The distant magnetotail: its structure, IMF dependence, and thermal properties, in New Perspectives on the Earth’s Magnetotail, ed. by A. Nishida, D.N. Baker, S.W.H. Cowley (Am. Geophys. Union, Washington, 1998). doi:10.1029/GM105p0001 Google Scholar
  189. R. Maggiolo, J.A. Sauvaud, D. Fontaine, A. Teste, E. Grigorenko, A. Balogh, A. Fazakerley, G. Paschmann, D. Delcourt, H. Rème, A multi-satellite study of accelerated ionospheric ion beams above the polar cap. Ann. Geophys. 24(6), 1665–1684 (2006). doi:10.5194/angeo-24-1665-2006. http://www.ann-geophys.net/24/1665/2006/angeo-24-1665-2006.html ADSCrossRefGoogle Scholar
  190. R. Maggiolo, M. Echim, J. De Keyser, D. Fontaine, C. Jacquey, I. Dandouras, Polar cap ion beams during periods of northward IMF: Cluster statistical results. Ann. Geophys. 29(5), 771–787 (2011). doi:10.5194/angeo-29-771-2011. http://www.ann-geophys.net/29/771/2011/angeo-29-771-2011.html ADSCrossRefGoogle Scholar
  191. R. Maggiolo, M. Echim, C. Simon Wedlund, Y. Zhang, D. Fontaine, G. Lointier, J.-G. Trotignon, Polar cap arcs from the magnetosphere to the ionosphere: kinetic modelling and observations by Cluster and TIMED. Ann. Geophys. 30(2), 283–302 (2012). doi:10.5194/angeo-30-283-2012. http://www.ann-geophys.net/30/283/2012/angeo-30-283-2012.html ADSCrossRefGoogle Scholar
  192. B.H. Mauk, Quantitative modeling of the “convection surge” mechanism of ion acceleration. J. Geophys. Res. 91(A12), 13423 (1986). doi:10.1029/JA091iA12p13423 ADSCrossRefGoogle Scholar
  193. J.P. McFadden, C.W. Carlson, D. Larson, J. Bonnell, F.S. Mozer, V. Angelopoulos, K.-H. Glassmeier, U. Auster, Structure of plasmaspheric plumes and their participation in magnetopause reconnection: first results from THEMIS. Geophys. Res. Lett. 35(17), L17S10 (2008). doi:10.1029/2008GL033677 Google Scholar
  194. C.E. McIlwain, A Kp dependent equatorial electric field model. Adv. Space Res. 6(3), 187–197 (1986). doi:10.1016/0273-1177(86)90331-5. http://www.sciencedirect.com/science/article/pii/0273117786903315 ADSCrossRefGoogle Scholar
  195. R.L. McPherron, Earth’s magnetotail, in Magnetotails in the Solar System, ed. by A. Keiling, C.M. Jackman, P. Delmare (Wiley, Hoboken, 2015), pp. 61–84. Chap. 3 Google Scholar
  196. D.G. Mitchell, P. C:son Brandt, E.C. Roelof, D.C. Hamilton, K.C. Retterer, S. Mende, Global imaging of O+ from IMAGE/HENA. Space Sci. Rev. 109(1-4), 63–75 (2003). doi:10.1023/B:SPAC.0000007513.55076.00. http://link.springer.com/10.1023/B:SPAC.0000007513.55076.00 ADSCrossRefGoogle Scholar
  197. A. Miura, Kelvin–Helmholtz instability for supersonic shear flow at the magnetospheric boundary. Geophys. Res. Lett. 17(6), 749–752 (1990). doi:10.1029/GL017i006p00749 ADSCrossRefGoogle Scholar
  198. W. Miyake, T. Mukai, N. Kaya, On the evolution of ion conics along the field line from EXOS D observations. J. Geophys. Res. 98(A7), 11127 (1993). doi:10.1029/92JA00716 ADSCrossRefGoogle Scholar
  199. W. Miyake, T. Mukai, N. Kaya, On the origins of the upward shift of elevated (bimodal) ion conics in velocity space. J. Geophys. Res. 101(A12), 26961 (1996). doi:10.1029/96JA02601 ADSCrossRefGoogle Scholar
  200. E. Möbius, D. Hovestadt, B. Klecker, M. Scholer, F.M. Ipavich, C.W. Carlson, R.P. Lin, A burst of energetic O+ ions during an upstream particle event. Geophys. Res. Lett. 13(13), 1372–1375 (1986). doi:10.1029/GL013i013p01372 ADSCrossRefGoogle Scholar
  201. T.E. Moore, The dayside reconnection X line. J. Geophys. Res. 107(A10), 1332 (2002). doi:10.1029/2002JA009381 CrossRefGoogle Scholar
  202. T.E. Moore, Plasma sheet and (nonstorm) ring current formation from solar and polar wind sources. J. Geophys. Res. 110(A2), 02210 (2005). doi:10.1029/2004JA010563 CrossRefGoogle Scholar
  203. T.E. Moore, C.R. Chappell, M.O. Chandler, P.D. Craven, B.L. Giles, C.J. Pollock, J.L. Burch, D.T. Young, J.H. Waite, J.E. Nordholt, M.F. Thomsen, D.J. McComas, J.J. Berthelier, W.S. Williamson, R. Robson, F.S. Mozer, High-altitude observations of the polar wind. Science 277(5324), 349–351 (1997). doi:10.1126/science.277.5324.349. http://www.sciencemag.org/cgi/doi/10.1126/science.277.5324.349 ADSCrossRefGoogle Scholar
  204. T.E. Moore, W.K. Peterson, C.T. Russell, M.O. Chandler, M.R. Collier, H.L. Collin, P.D. Craven, R. Fitzenreiter, B.L. Giles, C.J. Pollock, Ionospheric mass ejection in response to a CME. Geophys. Res. Lett. 26(15), 2339–2342 (1999). doi:10.1029/1999GL900456 ADSCrossRefGoogle Scholar
  205. T. Nagai, Solar wind control of the radial distance of the magnetic reconnection site in the magnetotail. J. Geophys. Res. 110(A9), 09208 (2005). doi:10.1029/2005JA011207 CrossRefGoogle Scholar
  206. D. Nagata, S. Machida, S. Ohtani, Y. Saito, T. Mukai, Solar wind control of plasma number density in the near-Earth plasma sheet. J. Geophys. Res. Space Phys. 112(A9), 09204 (2007). doi:10.1029/2007JA012284 ADSCrossRefGoogle Scholar
  207. T.K.M. Nakamura, W. Daughton, H. Karimabadi, S. Eriksson, Three-dimensional dynamics of vortex-induced reconnection and comparison with THEMIS observations. J. Geophys. Res. Space Phys. 118(9), 5742–5757 (2013). doi:10.1002/jgra.50547 ADSCrossRefGoogle Scholar
  208. B. Ni, R.M. Thorne, R.B. Horne, N.P. Meredith, Y.Y. Shprits, L. Chen, W. Li, Resonant scattering of plasma sheet electrons leading to diffuse auroral precipitation: 1. Evaluation for electrostatic electron cyclotron harmonic waves. J. Geophys. Res. 116(A4), 04218 (2011a). doi:10.1029/2010JA016232 CrossRefGoogle Scholar
  209. B. Ni, R.M. Thorne, N.P. Meredith, R.B. Horne, Y.Y. Shprits, Resonant scattering of plasma sheet electrons leading to diffuse auroral precipitation: 2. Evaluation for whistler mode chorus waves. J. Geophys. Res. 116(A4), 04219 (2011b). doi:10.1029/2010JA016233 CrossRefGoogle Scholar
  210. H. Nilsson, M. Waara, S. Arvelius, O. Marghitu, M. Bouhram, Y. Hobara, M. Yamauchi, R. Lundin, H. Rème, J.-A. Sauvaud, I. Dandouras, A. Balogh, L.M. Kistler, B. Klecker, C.W. Carlson, M.B. Bavassano-Cattaneo, A. Korth, Characteristics of high altitude oxygen ion energization and outflow as observed by Cluster: a statistical study. Ann. Geophys. 24(3), 1099–1112 (2006). doi:10.5194/angeo-24-1099-2006. http://www.ann-geophys.net/24/1099/2006/angeo-24-1099-2006.html ADSCrossRefGoogle Scholar
  211. H. Nilsson, E. Engwall, A. Eriksson, P.A. Puhl-Quinn, S. Arvelius, Centrifugal acceleration in the magnetotail lobes. Ann. Geophys. 28(2), 569–576 (2010). doi:10.5194/angeo-28-569-2010. http://www.ann-geophys.net/28/569/2010/angeo-28-569-2010.html ADSCrossRefGoogle Scholar
  212. H. Nilsson, I.A. Barghouthi, R. Slapak, A.I. Eriksson, M. André, Hot and cold ion outflow: spatial distribution of ion heating. J. Geophys. Res. 117(A11), 11201 (2012) CrossRefGoogle Scholar
  213. H. Nilsson, I.A. Barghouthi, R. Slapak, A.I. Eriksson, M. André, Hot and cold ion outflow: observations and implications for numerical models. J. Geophys. Res. Space Phys. 118(1), 105–117 (2013) ADSCrossRefGoogle Scholar
  214. M. Nosé, A.T.Y. Lui, S. Ohtani, B.H. Mauk, R.W. McEntire, D.J. Williams, T. Mukai, K. Yumoto, Acceleration of oxygen ions of ionospheric origin in the near-Earth magnetotail during substorms. J. Geophys. Res. 105(A4), 7669 (2000). doi:10.1029/1999JA000318 ADSCrossRefGoogle Scholar
  215. M. Nosé, K. Takahashi, K. Keika, L.M. Kistler, K. Koga, H. Koshiishi, H. Matsumoto, M. Shoji, Y. Miyashita, R. Nomura, Magnetic fluctuations embedded in dipolarization inside geosynchronous orbit and their associated selective acceleration of O+ ions. J. Geophys. Res. Space Phys. 119(6), 4639–4655 (2014). doi:10.1002/2014JA019806 ADSCrossRefGoogle Scholar
  216. K. Nykyri, A. Otto, B. Lavraud, C. Mouikis, L.M. Kistler, A. Balogh, H. Rème, Cluster observations of reconnection due to the Kelvin–Helmholtz instability at the dawnside magnetospheric flank. Ann. Geophys. 24(10), 2619–2643 (2006). doi:10.5194/angeo-24-2619-2006. http://www.ann-geophys.net/24/2619/2006/angeo-24-2619-2006.html ADSCrossRefGoogle Scholar
  217. M. Øieroset, Global cooling and densification of the plasma sheet during an extended period of purely northward IMF on October 22–24, 2003. Geophys. Res. Lett. 32(12), L12S07 (2005). doi:10.1029/2004GL021523 CrossRefGoogle Scholar
  218. M. Øieroset, J. Raeder, T.D. Phan, S. Wing, J.P. McFadden, W. Li, M. Fujimoto, H. Rème, A. Balogh, Global cooling and densification of the plasma sheet during an extended period of purely northward IMF on October 22-24, 2003. Geophys. Res. Lett. 32, 1–4 (2005). doi:10.1029/2004GL021523 CrossRefGoogle Scholar
  219. Y. Obana, F.W. Menk, I. Yoshikawa, Plasma refilling rates for \(L = 2.3\mbox{--}3.8\) flux tubes. J. Geophys. Res. 115(A3), 03204 (2010). doi:10.1029/2009JA014191 CrossRefGoogle Scholar
  220. Y. Ogawa, S.C. Buchert, R. Fujii, S. Nozawa, A.P. van Eyken, Characteristics of ion upflow and downflow observed with the European Incoherent Scatter Svalbard radar. J. Geophys. Res. 114(A5), 05305 (2009). doi:10.1029/2008JA013817 CrossRefGoogle Scholar
  221. Y. Ogawa, S.C. Buchert, A. Sakurai, S. Nozawa, R. Fujii, Solar activity dependence of ion upflow in the polar ionosphere observed with the European Incoherent Scatter (EISCAT) TromsøUHF radar. J. Geophys. Res. 115(A7), 07310 (2010). doi:10.1029/2009JA014766 CrossRefGoogle Scholar
  222. Y. Ono, M. Nosé, S.P. Christon, A.T.Y. Lui, The role of magnetic field fluctuations in nonadiabatic acceleration of ions during dipolarization. J. Geophys. Res. 114(A5), 05209 (2009). doi:10.1029/2008JA013918 CrossRefGoogle Scholar
  223. T.G. Onsager, J.D. Scudder, M. Lockwood, C.T. Russell, Reconnection at the high-latitude magnetopause during northward interplanetary magnetic field conditions. J. Geophys. Res. 106(A11), 25467 (2001). doi:10.1029/2000JA000444 ADSCrossRefGoogle Scholar
  224. A. Opitz, J.-A. Sauvaud, A. Klassen, R. Gomez-Herrero, R. Bucik, L.M. Kistler, C. Jacquey, J. Luhmann, G. Mason, P. Kajdic, B. Lavraud, Solar wind control of the terrestrial magnetotail as seen by STEREO. J. Geophys. Res. Space Phys. 119(8), 6342–6355 (2014). doi:10.1002/2014JA019988 ADSCrossRefGoogle Scholar
  225. S. Orsini, M. Candidi, M. Stockholm, H. Balsiger, Injection of ionospheric ions into the plasma sheet. J. Geophys. Res. 95, 7915–7928 (1990) ADSCrossRefGoogle Scholar
  226. A. Otto, D.H. Fairfield, Kelvin–Helmholtz instability at the magnetotail boundary: MHD simulation and comparison with Geotail observations. J. Geophys. Res. 105(A9), 21175 (2000). doi:10.1029/1999JA000312 ADSCrossRefGoogle Scholar
  227. J.E. Ouellette, O.J. Brambles, J.G. Lyon, W. Lotko, B.N. Rogers, Properties of outflow-driven sawtooth substorms. J. Geophys. Res. Space Phys. 118(6), 3223–3232 (2013). doi:10.1002/jgra.50309 ADSCrossRefGoogle Scholar
  228. I.L. Ovchinnikov, E.E. Antonova, Y.I. Yermolaev, Determination of the turbulent diffusion coefficient in the plasma sheet using the project INTERBALL data. Cosm. Res. 38(6), 557–561 (2000). doi:10.1023/A:1026686600686. http://link.springer.com/article/10.1023/A%3A1026686600686 ADSCrossRefGoogle Scholar
  229. C.J. Owen, M.G.G.T. Taylor, I.C. Krauklis, A.N. Fazakerley, M.W. Dunlop, J.M. Bosqued, Cluster observations of surface waves on the dawn flank magnetopause. Ann. Geophys. 22(3), 971–983 (2004). doi:10.5194/angeo-22-971-2004. http://www.ann-geophys.net/22/971/2004/angeo-22-971-2004.html ADSCrossRefGoogle Scholar
  230. C.G. Park, Whistler observations of the interchange of ionization between the ionosphere and the protonosphere. J. Geophys. Res. 75(22), 4249–4260 (1970). doi:10.1029/JA075i022p04249 ADSCrossRefGoogle Scholar
  231. G. Paschmann, G. Haerendel, N. Sckopke, H. Rosenbauer, P.C. Hedgecock, Plasma and magnetic field characteristics of the distant polar cusp near local noon: the entry layer. J. Geophys. Res. 81(16), 2883–2899 (1976). doi:10.1029/JA081i016p02883 ADSCrossRefGoogle Scholar
  232. G. Paschmann, M. Øieroset, T. Phan, In-situ observations of reconnection in space. Space Sci. Rev. 178(2-4), 385–417 (2013). doi:10.1007/s11214-012-9957-2. http://adsabs.harvard.edu/abs/2013SSRv..178..385P ADSCrossRefGoogle Scholar
  233. R.J. Pellinen, W.J. Heikkila, Energization of charged particles to high energies by an induced substorm electric field within the magnetotail. J. Geophys. Res. 83(A4), 1544 (1978). doi:10.1029/JA083iA04p01544 ADSCrossRefGoogle Scholar
  234. W.K. Peterson, L. Andersson, B.C. Callahan, H.L. Collin, J.D. Scudder, A.W. Yau, Solar-minimum quiet time ion energization and outflow in dynamic boundary related coordinates. J. Geophys. Res. 113(A7), 07222 (2008). doi:10.1029/2008JA013059 CrossRefGoogle Scholar
  235. W.K. Peterson, H.L. Collin, M.F. Doherty, C.M. Bjorklund, Extended (Bi-modal) ion conics at high altitudes, in Space Plasmas: Coupling Between Small and Medium Scale Processes. Geophysical Monograph, vol. 86 (1995). http://adsabs.harvard.edu/abs/1995GMS....86..105P Google Scholar
  236. V. Pierrard, J. Cabrera, Comparisons between EUV/IMAGE observations and numerical simulations of the plasmapause formation. Ann. Geophys. 23(7), 2635–2646 (2005). doi:10.5194/angeo-23-2635-2005. http://www.ann-geophys.net/23/2635/2005/angeo-23-2635-2005.html ADSCrossRefGoogle Scholar
  237. V. Pierrard, J.F. Lemaire, Development of shoulders and plumes in the frame of the interchange instability mechanism for plasmapause formation. Geophys. Res. Lett. 31(5) (2004). doi:10.1029/2003GL018919
  238. V. Pierrard, G.V. Khazanov, J. Cabrera, J. Lemaire, Influence of the convection electric field models on predicted plasmapause positions during magnetic storms. J. Geophys. Res. 113(A8), 08212 (2008). doi:10.1029/2007JA012612 CrossRefGoogle Scholar
  239. V. Pierrard, J. Goldstein, N. André, V.K. Jordanova, G.A. Kotova, J.F. Lemaire, M.W. Liemohn, H. Matsui, Recent progress in physics-based models of the plasmasphere. Space Sci. Rev. 145(1-2), 193–229 (2009). doi:10.1007/s11214-008-9480-7. http://link.springer.com/10.1007/s11214-008-9480-7 ADSCrossRefGoogle Scholar
  240. W.G. Pilipp, G. Morfill, The formation of the plasma sheet resulting from plasma mantle dynamics. J. Geophys. Res. 83(A12), 5670 (1978). doi:10.1029/JA083iA12p05670 ADSCrossRefGoogle Scholar
  241. C.J. Pollock, M.O. Chandler, T.E. Moore, J.H. Waite, C.R. Chappell, D.A. Gurnett, A survey of upwelling ion event characteristics. J. Geophys. Res. 95(A11), 18969 (1990). doi:10.1029/JA095iA11p18969 ADSCrossRefGoogle Scholar
  242. A.R. Poppe, R. Samad, J.S. Halekas, M. Sarantos, G.T. Delory, W.M. Farrell, V. Angelopoulos, J.P. McFadden, ARTEMIS observations of lunar pick-up ions in the terrestrial magnetotail lobes. Geophys. Res. Lett. 39(17) (2012). doi:10.1029/2012GL052909
  243. A. Posner, Association of low-charge-state heavy ions up to 200 R e upstream of the Earth’s bow shock with geomagnetic disturbances. Geophys. Res. Lett. 29(7), 1099 (2002). doi:10.1029/2001GL013449 ADSCrossRefGoogle Scholar
  244. H. Rème, C. Aoustin, J.M. Bosqued, I. Dandouras, B. Lavraud, J.A. Sauvaud, A. Barthe, J. Bouyssou, T. Camus, O. Coeur-Joly, A. Cros, J. Cuvilo, F. Ducay, Y. Garbarowitz, J.L. Medale, E. Penou, H. Perrier, D. Romefort, J. Rouzaud, C. Vallat, D. Alcaydé, C. Jacquey, C. Mazelle, C. D’Uston, E. Möbius, L.M. Kistler, K. Crocker, M. Granoff, C. Mouikis, M. Popecki, M. Vosbury, B. Klecker, D. Hovestadt, H. Kucharek, E. Kuenneth, G. Paschmann, M. Scholer, N. Sckopke, E. Seidenschwang, C.W. Carlson, D.W. Curtis, C. Ingraham, R.P. Lin, J.P. McFadden, G.K. Parks, T. Phan, V. Formisano, E. Amata, M.B. Bavassano-Cattaneo, P. Baldetti, R. Bruno, G. Chionchio, A.D. Lellis, M.F. Marcucci, G. Pallocchia, A. Korth, P.W. Daly, B. Graeve, H. Rosenbauer, V. Vasyliunas, M. Mccarthy, M. Wilber, L. Eliasson, R. Lundin, S. Olsen, E.G. Shelley, S. Fuselier, A.G. Ghielmetti, W. Lennartsson, C.P. Escoubet, H. Balsiger, R. Friedel, J.-B. Cao, R.A. Kovrazhkin, I. Papamastorakis, R. Pellat, J. Scudder, B. Sonnerup, First multispacecraft ion measurements in and near the Earth’s magnetosphere with the identical Cluster ion spectrometry (CIS) experiment. Ann. Geophys. 19(10/12), 1303–1354 (2001). https://hal.archives-ouvertes.fr/hal-00329192/ ADSCrossRefGoogle Scholar
  245. W.T. Roberts, J.L. Horwitz, R.H. Comfort, C.R. Chappell, J.H. Waite, J.L. Green, Heavy ion density enhancements in the outer plasmasphere. J. Geophys. Res. 92(A12), 13499 (1987). doi:10.1029/JA092iA12p13499 ADSCrossRefGoogle Scholar
  246. J.G. Roederer, On the adiabatic motion of energetic particles in a model magnetosphere. J. Geophys. Res. 72(3), 981–992 (1967). doi:10.1029/JZ072i003p00981 ADSCrossRefGoogle Scholar
  247. J.G. Roederer, M. Schulz, Splitting of drift shells by the magnetospheric electric field. J. Geophys. Res. 76(4), 1055–1059 (1971). doi:10.1029/JA076i004p01055 ADSCrossRefGoogle Scholar
  248. J.G. Roederer, H.H. Hilton, M. Schulz, Drift shell splitting by internal geomagnetic multipoles. J. Geophys. Res. 78(1), 133–144 (1973). doi:10.1029/JA078i001p00133 ADSCrossRefGoogle Scholar
  249. H. Rosenbauer, H. Grünwaldt, M.D. Montgomery, G. Paschmann, N. Sckopke, Heos 2 plasma observations in the distant polar magnetosphere: the plasma mantle. J. Geophys. Res. 80(19), 2723–2737 (1975). doi:10.1029/JA080i019p02723 ADSCrossRefGoogle Scholar
  250. Y. Saito, S. Yokota, K. Asamura, T. Tanaka, M.N. Nishino, T. Yamamoto, Y. Terakawa, M. Fujimoto, H. Hasegawa, H. Hayakawa, M. Hirahara, M. Hoshino, S. Machida, T. Mukai, T. Nagai, T. Nagatsuma, T. Nakagawa, M. Nakamura, K.-i. Oyama, E. Sagawa, S. Sasaki, K. Seki, I. Shinohara, T. Terasawa, H. Tsunakawa, H. Shibuya, M. Matsushima, H. Shimizu, F. Takahashi, In-flight performance and initial results of plasma energy angle and composition experiment (PACE) on SELENE (Kaguya). Space Sci. Rev. 154(1-4), 265–303 (2010). doi:10.1007/s11214-010-9647-x. http://link.springer.com/10.1007/s11214-010-9647-x ADSCrossRefGoogle Scholar
  251. B.R. Sandel, A.L. Broadfoot, C.C. Curtis, R.A. King, T.C. Stone, R.H. Hill, J. Chen, O.H.W. Siegmund, R. Raffanti, D.D. Allred, R.S. Turley, D.L. Gallagher, The extreme ultraviolet imager investigation for the image mission, in The IMAGE Mission, ed. by J.L. Burch (Springer, Berlin, 2000), pp. 197–242. doi:10.1007/978-94-011-4233-5_7 CrossRefGoogle Scholar
  252. B.R. Sandel, J. Goldstein, D.L. Gallagher, M. Spasojevic, Extreme ultraviolet imager observations of the structure and dynamics of the plasmasphere. Space Sci. Rev. 109(1-4), 25–46 (2003). doi:10.1023/B:SPAC.0000007511.47727.5b. http://link.springer.com/10.1023/B:SPAC.0000007511.47727.5b ADSCrossRefGoogle Scholar
  253. J.-A. Sauvaud, R. Lundin, H. Rème, J.P. McFadden, C. Carlson, G.K. Parks, E. Möbius, L.M. Kistler, B. Klecker, E. Amata, A.M. Dilellis, V. Formisano, J.M. Bosqued, I. Dandouras, P. Décréau, M. Dunlop, L. Eliasson, A. Korth, B. Lavraud, M. Mccarthy, Intermittent thermal plasma acceleration linked to sporadic motions of the magnetopause, first Cluster results. Ann. Geophys. 19(10/12), 1523–1532 (2001). https://hal.archives-ouvertes.fr/hal-00329207/ ADSCrossRefGoogle Scholar
  254. J.A. Sauvaud, P. Louarn, G. Fruit, H. Stenuit, C. Vallat, J. Dandouras, H. Rème, M. André, A. Balogh, M. Dunlop, L. Kistler, E. Möbius, C. Mouikis, B. Klecker, G.K. Parks, J. McFadden, C. Carlson, F. Marcucci, G. Pallocchia, R. Lundin, A. Korth, M. McCarthy, Case studies of the dynamics of ionospheric ions in the Earth’s magnetotail. J. Geophys. Res. 109(A), 1212 (2004) CrossRefGoogle Scholar
  255. R.W. Schunk, Time-dependent simulations of the global polar wind. J. Atmos. Sol.-Terr. Phys. 69(16), 2028–2047 (2007). doi:10.1016/j.jastp.2007.08.009. http://www.sciencedirect.com/science/article/pii/S136468260700243X ADSCrossRefGoogle Scholar
  256. N. Sckopke, G. Paschmann, H. Rosenbauer, D.H. Fairfield, Influence of the interplanetary magnetic field on the occurrence and thickness of the plasma mantle. J. Geophys. Res. 81(16), 2687–2691 (1976). doi:10.1029/JA081i016p02687 ADSCrossRefGoogle Scholar
  257. K. Seki, M. Hirahara, T. Terasawa, I. Shinohara, T. Mukai, Y. Saito, S. Machida, T. Yamamoto, S. Kokubun, Coexistence of Earth-origin O+ and solar wind-origin H+/He++ in the distant magnetotail. Geophys. Res. Lett. 23(9), 985–988 (1996). doi:10.1029/96GL00768 ADSCrossRefGoogle Scholar
  258. K. Seki, M. Hirahara, T. Terasawa, T. Mukai, S. Kokubun, Properties of He+ beams observed by Geotail in the lobe/mantle regions: comparison with O+ beams. J. Geophys. Res. 104(A4), 6973 (1999). doi:10.1029/1998JA900142 ADSCrossRefGoogle Scholar
  259. K. Seki, General processes, in Solar System Sources and Losses of Plasma (2015) Google Scholar
  260. K. Seki, T. Terasawa, M. Hirahara, T. Mukai, Quantification of tailward cold O+ beams in the lobe/mantle regions with Geotail data: constraints on polar O+ outflows. J. Geophys. Res. 103(A), 29371–29382 (1998) ADSCrossRefGoogle Scholar
  261. K. Seki, M. Hirahara, M. Hoshino, T. Terasawa, R.C. Elphic, Y. Saito, T. Mukai, H. Hayakawa, H. Kojima, H. Matsumoto, Cold ions in the hot plasma sheet of Earth’s magnetotail. Nature 422(6932), 589–592 (2003). doi:10.1038/nature01502. http://dx.doi.org/10.1038/nature01502 ADSCrossRefGoogle Scholar
  262. K. Seki, A. Nagy, C.M. Jackman, F. Crary, D. Fontaine, P. Zarka et al., A review of general physical and chemical processes related to plasma sources and losses for solar system magnetospheres. Space Sci. Rev. (2015). doi:10.1007/s11214-015-0170-y Google Scholar
  263. E.G. Shelley, W.K. Peterson, A.G. Ghielmetti, J. Geiss, The polar ionosphere as a source of energetic magnetospheric plasma. Geophys. Res. Lett. 9(9), 941–944 (1982). doi:10.1029/GL009i009p00941 ADSCrossRefGoogle Scholar
  264. D.G. Sibeck, R.W. McEntire, A.T.Y. Lui, R.E. Lopez, S.M. Krimigis, Magnetic field drift shell splitting: cause of unusual dayside particle pitch angle distributions during storms and substorms. J. Geophys. Res. 92(A12), 13485 (1987). doi:10.1029/JA092iA12p13485 ADSCrossRefGoogle Scholar
  265. G.L. Siscoe, E. Sanchez, An MHD model for the complete open magnetotail boundary. J. Geophys. Res. 92(A7), 7405 (1987). doi:10.1029/JA092iA07p07405 ADSCrossRefGoogle Scholar
  266. G.L. Siscoe, G.M. Erickson, B.U.O. Sonnerup, N.C. Maynard, K.D. Siebert, D.R. Weimer, W.W. White, Relation between cusp and mantle in MHD simulation. J. Geophys. Res. 106(A6), 10743 (2001). doi:10.1029/2000JA000385 ADSCrossRefGoogle Scholar
  267. G. Siscoe, Z. Kaymaz, Spatial relations of mantle and plasma sheet. J. Geophys. Res. 104(A7), 14639 (1999). doi:10.1029/1999JA900113 ADSCrossRefGoogle Scholar
  268. J.A. Slavin, E.J. Smith, P.W. Daly, T.R. Sanderson, K.-P. Wenzel, R.P. Lepping, Magnetic configuration of the distant plasma sheet: ISEE 3 observations, in Magnetotail Physics (1987), pp. 59–63. http://adsabs.harvard.edu/abs/1987magp.book...59S Google Scholar
  269. J.A. Slavin, R.P. Lepping, J. Gjerloev, D.H. Fairfield, M. Hesse, C.J. Owen, M.B. Moldwin, T. Nagai, A. Ieda, T. Mukai, Geotail observations of magnetic flux ropes in the plasma sheet. J. Geophys. Res. Space Phys. 108(A1), 1015 (2003). doi:10.1029/2002JA009557 ADSCrossRefGoogle Scholar
  270. J.A. Slavin, E.J. Smith, D.G. Sibeck, D.N. Baker, R.D. Zwickl, S.-I. Akasofu, An ISEE 3 study of average and substorm conditions in the distant magnetotail. J. Geophys. Res. 90(A11), 10875 (1985). doi:10.1029/JA090iA11p10875 ADSCrossRefGoogle Scholar
  271. R. Smets, G. Belmont, D. Delcourt, L. Rezeau, Diffusion at the Earth magnetopause: enhancement by Kelvin–Helmholtz instability. Ann. Geophys. 25(1), 271–282 (2007). doi:10.5194/angeo-25-271-2007. http://www.ann-geophys.net/25/271/2007/angeo-25-271-2007.html ADSCrossRefGoogle Scholar
  272. P. Song, C.T. Russell, Model of the formation of the low-latitude boundary layer for strongly northward interplanetary magnetic field. J. Geophys. Res. 97(A2), 1411 (1992). doi:10.1029/91JA02377 ADSCrossRefGoogle Scholar
  273. B.U.O. Sonnerup, Transport mechanisms at the magnetopause, in Dynamics of the Magnetosphere, ed. by S.-I. Akasofu (Springer, Berlin, 1980), pp. 77–100. 978-94-009-9519-2. doi:10.1007/978-94-009-9519-2_5 Google Scholar
  274. T.W. Speiser, Plasma density and acceleration in the tail from the reconnection model, in Earth’s Particles and Fields, ed. by B.M. McCormac, New York, NY (1968) Google Scholar
  275. H.E. Spence, M.G. Kivelson, Contributions of the low-latitude boundary layer to the finite width magnetotail convection model. J. Geophys. Res. 98(A9), 15487 (1993). doi:10.1029/93JA01531 ADSCrossRefGoogle Scholar
  276. M. Stepanova, V. Pinto, J.A. Valdivia, E.E. Antonova, Spatial distribution of the eddy diffusion coefficients in the plasma sheet during quiet time and substorms from THEMIS satellite data. J. Geophys. Res. Space Phys. 116(A5) (2011). doi:10.1029/2010JA015887
  277. R. Strangeway, J.R.E. Ergun, Y.J. Su, C.W. Carlson, R.C. Elphic, Factors controlling ionospheric outflows as observed at intermediate altitudes. J. Geophys. Res. 110(A3), 03221 (2005). doi:10.1029/2004JA010829 CrossRefGoogle Scholar
  278. Y.-J. Su, J.L. Horwitz, T.E. Moore, B.L. Giles, M.O. Chandler, P.D. Craven, M. Hirahara, C.J. Pollock, Polar wind survey with the thermal ion dynamics Experiment/Plasma source instrument suite aboard POLAR. J. Geophys. Res. 103(A12), 29305 (1998). doi:10.1029/98JA02662 ADSCrossRefGoogle Scholar
  279. Y.-J. Su, M.F. Thomsen, J.E. Borovsky, J.C. Foster, A linkage between polar patches and plasmaspheric drainage plumes. Geophys. Res. Lett. 28(1), 111–113 (2001). doi:10.1029/2000GL012042 ADSCrossRefGoogle Scholar
  280. S. Taguchi, H. Kishida, T. Mukai, Y. Saito, Low-latitude plasma mantle in the near-Earth magnetosphere: Geotail observations. J. Geophys. Res. 106(A2), 1949 (2001). doi:10.1029/2000JA900100 ADSCrossRefGoogle Scholar
  281. K. Takagi, C. Hashimoto, H. Hasegawa, M. Fujimoto, R. TanDokoro, Kelvin–Helmholtz instability in a magnetotail flank-like geometry: three-dimensional MHD simulations. J. Geophys. Res. 111(A8), 08202 (2006). doi:10.1029/2006JA011631 CrossRefGoogle Scholar
  282. K. Takahashi, B.J. Anderson, S.-i. Ohtani, G.D. Reeves, S. Takahashi, T.E. Sarris, K. Mursula, Drift-shell splitting of energetic ions injected at pseudo-substorm onsets. J. Geophys. Res. 102(A10), 22117 (1997). doi:10.1029/97JA01870 ADSCrossRefGoogle Scholar
  283. S. Takahashi, T. Iyemori, M. Takeda, A simulation of the storm-time ring current. Planet. Space Sci. 38(9), 1133–1141 (1990). doi:10.1016/0032-0633(90)90021-H. http://www.sciencedirect.com/science/article/pii/003206339090021H ADSCrossRefGoogle Scholar
  284. S.W.Y. Tam, T. Chang, V. Pierrard, Kinetic modeling of the polar wind. J. Atmos. Sol.-Terr. Phys. 69(16), 1984–2027 (2007). doi:10.1016/j.jastp.2007.08.006. http://www.sciencedirect.com/science/article/pii/S1364682607002428 ADSCrossRefGoogle Scholar
  285. T. Tanaka, Y. Saito, S. Yokota, K. Asamura, M.N. Nishino, H. Tsunakawa, H. Shibuya, M. Matsushima, H. Shimizu, F. Takahashi, M. Fujimoto, T. Mukai, T. Terasawa, First in situ observation of the Moon-originating ions in the Earth’s magnetosphere by MAP-PACE on SELENE (KAGUYA). Geophys. Res. Lett. 36(22), 22106 (2009). doi:10.1029/2009GL040682 ADSCrossRefGoogle Scholar
  286. M.G.G.T. Taylor, H. Hasegawa, B. Lavraud, T. Phan, C.P. Escoubet, M.W. Dunlop, Y.V. Bogdanova, A.L. Borg, M. Volwerk, J. Berchem, O.D. Constantinescu, J.P. Eastwood, A. Masson, H. Laakso, J. Soucek, A.N. Fazakerley, H.U. Frey, E.V. Panov, C. Shen, J.K. Shi, D.G. Sibeck, Z.Y. Pu, J. Wang, J.A. Wild, Spatial Distribution of Rolled up Kelvin–Helmholtz Vortices at Earth’s Dayside and Flank Magnetopause (2012). http://eprints.lancs.ac.uk/60570/1/angeo_30_1025_2012.pdf Google Scholar
  287. M.G.G.T. Taylor, B. Lavraud, C.P. Escoubet, S.E. Milan, K. Nykyri, M.W. Dunlop, J.A. Davies, R.H.W. Friedel, H. Frey, Y.V. Bogdanova, A. Å snes, H. Laakso, P. Trávnícek, A. Masson, H. Opgenoorth, C. Vallat, A.N. Fazakerley, A.D. Lahiff, C.J. Owen, F. Pitout, Z. Pu, C. Shen, Q.G. Zong, H. Rème, J. Scudder, T.L. Zhang, The plasma sheet and boundary layers under northward IMF: a multi-point and multi-instrument perspective. Adv. Space Res. 41(10), 1619–1629 (2008). doi:10.1016/j.asr.2007.10.013. http://www.sciencedirect.com/science/article/pii/S0273117707010368 ADSCrossRefGoogle Scholar
  288. T. Terasawa, M. Fujimoto, T. Mukai, I. Shinohara, Y. Saito, T. Yamamoto, S. Machida, S. Kokubun, A.J. Lazarus, J.T. Steinberg, R.P. Lepping, Solar wind control of density and temperature in the near-Earth plasma sheet: WIND/GEOTAIL collaboration. Geophys. Res. Lett. 24(8), 935–938 (1997). doi:10.1029/96GL04018 ADSCrossRefGoogle Scholar
  289. A. Teste, D. Fontaine, J.-A. Sauvaud, R. Maggiolo, P. Canu, A. Fazakerley, CLUSTER observations of electron outflowing beams carrying downward currents above the polar cap by northward IMF. Ann. Geophys. 25(4), 953–969 (2007). doi:10.5194/angeo-25-953-2007. http://www.ann-geophys.net/25/953/2007/angeo-25-953-2007.html ADSCrossRefGoogle Scholar
  290. A. Teste, D. Fontaine, P. Canu, G. Belmont, Cluster observations of outflowing electron distributions and broadband electrostatic emissions above the polar cap. Geophys. Res. Lett. 37(3) (2010). doi:10.1029/2009GL041593
  291. E.G. Thomas, J.B.H. Baker, J.M. Ruohoniemi, L.B.N. Clausen, A.J. Coster, J.C. Foster, P.J. Erickson, Direct observations of the role of convection electric field in the formation of a polar tongue of ionization from storm enhanced density. J. Geophys. Res. Space Phys. 118(3), 1180–1189 (2013). doi:10.1002/jgra.50116 ADSCrossRefGoogle Scholar
  292. R.M. Thorne, Radiation belt dynamics: the importance of wave-particle interactions. Geophys. Res. Lett. 37(22) (2010). doi:10.1029/2010GL044990
  293. K. Torkar, A.I. Eriksson, P.-A. Lindqvist, W. Steiger, Long-term study of active spacecraft potential control. IEEE Trans. Plasma Sci. 36(5), 2294–2300 (2008). doi:10.1109/TPS.2008.2003134. http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4663151 ADSCrossRefGoogle Scholar
  294. K.J. Trattner, J.S. Mulcock, S.M. Petrinec, S.A. Fuselier, Location of the reconnection line at the magnetopause during southward IMF conditions. Geophys. Res. Lett. 34(3), 03108 (2007a). doi:10.1029/2006GL028397 ADSCrossRefGoogle Scholar
  295. K.J. Trattner, J.S. Mulcock, S.M. Petrinec, S.A. Fuselier, Probing the boundary between antiparallel and component reconnection during southward interplanetary magnetic field conditions. J. Geophys. Res. 112(A8), 08210 (2007b). doi:10.1029/2007JA012270 CrossRefGoogle Scholar
  296. K.J. Trattner, S.M. Petrinec, S.A. Fuselier, T.D. Phan, The location of reconnection at the magnetopause: testing the maximum magnetic shear model with THEMIS observations. J. Geophys. Res. Space Phys. 117(A1) (2012). doi:10.1029/2011JA016959
  297. B.T. Tsurutani, E.J. Smith, R.R. Anderson, K.W. Ogilvie, J.D. Scudder, D.N. Baker, S.J. Bame, Lion roars and nonoscillatory drift mirror waves in the magnetosheath. J. Geophys. Res. 87(A8), 6060 (1982). doi:10.1029/JA087iA08p06060 ADSCrossRefGoogle Scholar
  298. N.A. Tsyganenko, Modeling the Earth’s magnetospheric magnetic field confined within a realistic magnetopause. J. Geophys. Res. 100(A4), 5599 (1995). doi:10.1029/94JA03193 ADSCrossRefGoogle Scholar
  299. J. Tu, P. Song, B.W. Reinisch, J.L. Green, Smooth electron density transition from plasmasphere to the subauroral region. J. Geophys. Res. 112(A5), 05227 (2007). doi:10.1029/2007JA012298 CrossRefGoogle Scholar
  300. C. Twitty, Cluster survey of cusp reconnection and its IMF dependence. Geophys. Res. Lett. 31(19), 19808 (2004). doi:10.1029/2004GL020646 ADSCrossRefGoogle Scholar
  301. R.J. Walker, M. Ashour-Abdalla, T. Ogino, V. Peroomian, R.L. Richard, Modeling Magnetospheric Sources. Geophys. Monogr. 133 (2003). doi:10.1029/133GM03. http://192.102.233.13/books/gm/v133/133GM03/133GM03.pdf
  302. B.M. Walsh, J.C. Foster, P.J. Erickson, D.G. Sibeck, Simultaneous ground- and space-based observations of the plasmaspheric plume and reconnection. Science 343(6175), 1122–1125 (2014). doi:10.1126/science.1247212. http://www.sciencemag.org/content/343/6175/1122.short ADSCrossRefGoogle Scholar
  303. C.-P. Wang, Modeling the transition of the inner plasma sheet from weak to enhanced convection. J. Geophys. Res. 109(A12), 12202 (2004). doi:10.1029/2004JA010591 CrossRefGoogle Scholar
  304. C.-P. Wang, L.R. Lyons, V. Angelopoulos, Properties of low-latitude mantle plasma in the Earth’s magnetotail: ARTEMIS observations and global MHD predictions. J. Geophys. Res. Space Phys. 119, 7264–7280 (2014). doi:10.1002/2014JA020060 ADSCrossRefGoogle Scholar
  305. C.-P. Wang, L.R. Lyons, T. Nagai, J.M. Weygand, R.W. McEntire, Sources, transport, and distributions of plasma sheet ions and electrons and dependences on interplanetary parameters under northward interplanetary magnetic field. J. Geophys. Res. 112(A10), 10224 (2007). doi:10.1029/2007JA012522 CrossRefGoogle Scholar
  306. C.P. Wang, L.R. Lyons, R.A. Wolf, T. Nagai, J.M. Weygand, A.T.Y. Lui, Plasma sheet Pv5/3and n\(\nu\) and associated plasma and energy transport for different convection strengths and AE levels. J. Geophys. Res. Space Phys. 114, 1–2 (2009). doi:10.1029/2008JA013849 Google Scholar
  307. C.-P. Wang, L.R. Lyons, T. Nagai, J.M. Weygand, A.T.Y. Lui, Evolution of plasma sheet particle content under different interplanetary magnetic field conditions. J. Geophys. Res. 115(A6), 06210 (2010). doi:10.1029/2009JA015028 CrossRefGoogle Scholar
  308. C.-P. Wang, M. Gkioulidou, L.R. Lyons, V. Angelopoulos, Spatial distributions of the ion to electron temperature ratio in the magnetosheath and plasma sheet. J. Geophys. Res. 117(A8), 08215 (2012). doi:10.1029/2012JA017658 Google Scholar
  309. C.-P. Wang, M. Gkioulidou, L.R. Lyons, X. Xing, R.A. Wolf, Interchange motion as a transport mechanism for formation of cold-dense plasma sheet. J. Geophys. Res. Space Phys. 119, 8318–8337 (2014). doi:10.1002/2014JA020251 ADSCrossRefGoogle Scholar
  310. D.T. Welling, M.W. Liemohn, Outflow in global magnetohydrodynamics as a function of a passive inner boundary source. J. Geophys. Res. Space Phys. 119(4), 2691–2705 (2014). doi:10.1002/2013JA019374 ADSCrossRefGoogle Scholar
  311. D.T. Welling, A.J. Ridley, Exploring sources of magnetospheric plasma using multispecies MHD. J. Geophys. Res. 115(A4), 04201 (2010). doi:10.1029/2009JA014596 CrossRefGoogle Scholar
  312. D.T. Welling, S.G. Zaharia, Ionospheric outflow and cross polar cap potential: what is the role of magnetospheric inflation? Geophys. Res. Lett. 39(23) (2012). doi:10.1029/2012GL054228
  313. D.T. Welling, V.K. Jordanova, S.G. Zaharia, A. Glocer, G. Toth, The effects of dynamic ionospheric outflow on the ring current. J. Geophys. Res. 116, 1–19 (2011). doi:10.1029/2010JA015642 Google Scholar
  314. J.M. Weygand, Plasma sheet turbulence observed by Cluster II. J. Geophys. Res. 110(A1), 01205 (2005). doi:10.1029/2004JA010581 CrossRefGoogle Scholar
  315. B.A. Whalen, S. Watanabe, A.W. Yau, Observations in the transverse ion energization region. Geophys. Res. Lett. 18(4), 725–728 (1991). doi:10.1029/90GL02788 ADSCrossRefGoogle Scholar
  316. M. Wiltberger, W. Lotko, J.G. Lyon, P. Damiano, V. Merkin, Influence of cusp O+ outflow on magnetotail dynamics in a multifluid MHD model of the magnetosphere. J. Geophys. Res. 115(June), 1–5 (2010). doi:10.1029/2010JA015579 Google Scholar
  317. M. Wiltberger, Review of global simulation studies of effect of ionospheric outflow on magnetosphere-ionosphere system dynamics, in Magnetotails in the Solar System (Wiley, Hoboken, 2015), pp. 373–392. Chap. 22. doi:10.1002/978111884232 Google Scholar
  318. S. Wing, J.R. Johnson, P.T. Newell, C.I. Meng, Dawn-dusk asymmetries, ion spectra, and sources in the northward interplanetary magnetic field plasma sheet. J. Geophys. Res. Space Phys. 110(A8), 08205 (2005). doi:10.1029/2005JA011086 ADSCrossRefGoogle Scholar
  319. S. Wing, J.R. Johnson, M. Fujimoto, Timescale for the formation of the cold-dense plasma sheet: a case study. Geophys. Res. Lett. 33(23), 23106 (2006). doi:10.1029/2006GL027110 ADSCrossRefGoogle Scholar
  320. R.M. Winglee, Multi-fluid simulations of the magnetosphere: the identification of the geopause and its variation with IMF. Geophys. Res. Lett. 25(24), 4441–4444 (1998). doi:10.1029/1998GL900217 ADSCrossRefGoogle Scholar
  321. R.M. Winglee, Global impact of ionospheric outflows on the dynamics of the magnetosphere and cross-polar cap potential. J. Geophys. Res. 107(A9), 1237 (2002). doi:10.1029/2001JA000214 CrossRefGoogle Scholar
  322. R.M. Winglee, E. Harnett, Influence of heavy ionospheric ions on substorm onset. J. Geophys. Res. 116(A11), 11212 (2011). doi:10.1029/2011JA016447 CrossRefGoogle Scholar
  323. G.Q. Yan, F.S. Mozer, C. Shen, T. Chen, G.K. Parks, C.L. Cai, J.P. McFadden, Kelvin–Helmholtz vortices observed by THEMIS at the duskside of the magnetopause under southward interplanetary magnetic field. Geophys. Res. Lett. (2014). doi:10.1002/2014GL060589 Google Scholar
  324. Y. Yao, C.C. Chaston, K.-H. Glassmeier, V. Angelopoulos, Electromagnetic waves on ion gyro-radii scales across the magnetopause. Geophys. Res. Lett. 38(9) (2011). doi:10.1029/2011GL047328
  325. A.W. Yau, M. André, M. Andre, Sources of ion outflow in the high latitude ionosphere. Space Sci. Rev. 80(1-2), 1–25 (1997). doi:10.1023/A:1004947203046. http://link.springer.com/article/10.1023/A%3A1004947203046 ADSCrossRefGoogle Scholar
  326. A.W. Yau, W.K. Peterson, E.G. Shelley, Quantitative parametrization of energetic ionospheric ion outflow, in Washington DC American Geophysical Union Geophysical Monograph Series (1988), pp. 211–217 Google Scholar
  327. A.W. Yau, B.A. Whalen, A.G. McNamara, P.J. Kellogg, W. Bernstein, Particle and wave observations of low-altitude ionospheric ion acceleration events. J. Geophys. Res. 88(A1), 341 (1983). doi:10.1029/JA088iA01p00341 ADSCrossRefGoogle Scholar
  328. A.W. Yau, B.A. Whalen, W.K. Peterson, E.G. Shelley, Distribution of upflowing ionospheric ions in the high-altitude polar cap and auroral ionosphere. J. Geophys. Res. 89(A7), 5507 (1984). doi:10.1029/JA089iA07p05507 ADSCrossRefGoogle Scholar
  329. A.W. Yau, T. Abe, W.K. Peterson, The polar wind: recent observations. J. Atmos. Sol.-Terr. Phys. 69(16), 1936–1983 (2007). doi:10.1016/j.jastp.2007.08.010. http://www.sciencedirect.com/science/article/pii/S1364682607002416 ADSCrossRefGoogle Scholar
  330. A.W. Yau, A. Howarth, W.K. Peterson, T. Abe, Transport of thermal-energy ionospheric oxygen (O+) ions between the ionosphere and the plasma sheet and ring current at quiet times preceding magnetic storms. J. Geophys. Res. 117(A7), 07215 (2012). doi:10.1029/2012JA017803 CrossRefGoogle Scholar
  331. I. Yoshikawa, Which is a significant contributor for outside of the plasmapause, an ionospheric filling or a leakage of plasmaspheric materials?: Comparison of He II (304 Å) images. J. Geophys. Res. 108(A2), 1080 (2003). doi:10.1029/2002JA009578 MathSciNetGoogle Scholar
  332. Y. Yu, A.J. Ridley, Exploring the influence of ionospheric O+ outflow on magnetospheric dynamics: dependence on the source location. J. Geophys. Res. Space Phys. 118(4), 1711–1722 (2013). doi:10.1029/2012JA018411 ADSCrossRefGoogle Scholar
  333. J. Zhang, M.W. Liemohn, D.L. De Zeeuw, J.E. Borovsky, A.J. Ridley, G. Toth, S. Sazykin, M.F. Thomsen, J.U. Kozyra, T.I. Gombosi, R.A. Wolf, Understanding storm-time ring current development through data-model comparisons of a moderate storm. J. Geophys. Res. 112(A4), 04208 (2007). doi:10.1029/2006JA011846 CrossRefGoogle Scholar
  334. Y. Zheng, T.E. Moore, F.S. Mozer, C.T. Russell, R.J. Strangeway, Polar study of ionospheric ion outflow versus energy input. J. Geophys. Res. 110(A7), 07210 (2005). doi:10.1029/2004JA010995 CrossRefGoogle Scholar
  335. X.-Z. Zhou, V. Angelopoulos, A.R. Poppe, J.S. Halekas, ARTEMIS observations of lunar pickup ions: mass constraints on ion species. J. Geophys. Res., Planets (2013). doi:10.1002/jgre.20125 Google Scholar
  336. L. Zhu, R.W. Schunk, J.J. Sojka, Polar cap arcs: a review. J. Atmos. Sol.-Terr. Phys. 59(10), 1087–1126 (1997). doi:10.1016/S1364-6826(96)00113-7. http://www.sciencedirect.com/science/article/pii/S1364682696001137 ADSCrossRefGoogle Scholar
  337. Q.-G. Zong, B. Wilken, S.Y. Fu, T.A. Fritz, A. Korth, N. Hasebe, D.J. Williams, Z.-Y. Pu, Ring current oxygen ions escaping into the magnetosheath. J. Geophys. Res. 106(A11), 25541 (2001). doi:10.1029/2000JA000127 ADSCrossRefGoogle Scholar
  338. S. Zou, M.B. Moldwin, A.J. Ridley, M.J. Nicolls, A.J. Coster, E.G. Thomas, J.M. Ruohoniemi, On the generation/decay of the storm-enhanced density plumes: role of the convection flow and field-aligned ion flow. J. Geophys. Res. Space Phys. 119(10), 8543–8559 (2014). doi:10.1002/2014JA020408 ADSCrossRefGoogle Scholar
  339. R.D. Zwickl, D.N. Baker, S.J. Bame, W.C. Feldman, J.T. Gosling, E.W. Hones, D.J. McComas, B.T. Tsurutani, J.A. Slavin, Evolution of the Earth’s distant magnetotail: ISEE 3 electron plasma results. J. Geophys. Res. 89(A12), 11007 (1984). doi:10.1029/JA089iA12p11007 ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Daniel T. Welling
    • 1
  • Mats André
    • 2
  • Iannis Dandouras
    • 3
  • Dominique Delcourt
    • 4
  • Andrew Fazakerley
    • 5
  • Dominique Fontaine
    • 4
  • John Foster
    • 6
  • Raluca Ilie
    • 1
  • Lynn Kistler
    • 7
  • Justin H. Lee
    • 8
  • Michael W. Liemohn
    • 1
  • James A. Slavin
    • 1
  • Chih-Ping Wang
    • 9
  • Michael Wiltberger
    • 10
  • Andrew Yau
    • 11
  1. 1.University of MichiganAnn ArborUSA
  2. 2.Swedish Institute of Space PhysicsUppsalaSweden
  3. 3.CNRS, IRAPUniversity of ToulouseToulouseFrance
  4. 4.LPP, Ecole Polytechnique-CNRSUniversité Pierre et Marie CurieParisFrance
  5. 5.Mullard Space Science LaboratoryUniversity College LondonHolmbury St. MaryUK
  6. 6.Massachusetts Institute of Technology Haystack Observatory WestfordMassachusettsUSA
  7. 7.University of New HampshireDurhamUSA
  8. 8.The Aerospace CorporationEl SegundoUSA
  9. 9.University of CaliforniaLos AngelesUSA
  10. 10.National Center for Atmospheric ResearchHigh Altitude ObservatoryBoulderUSA
  11. 11.University of CalgaryCalgaryCanada

Personalised recommendations