Space Science Reviews

, Volume 197, Issue 1–4, pp 151–190 | Cite as

The Composition of the Protosolar Disk and the Formation Conditions for Comets

  • K. Willacy
  • C. Alexander
  • M. Ali-Dib
  • C. Ceccarelli
  • S. B. Charnley
  • M. Doronin
  • Y. Ellinger
  • P. Gast
  • E. Gibb
  • S. N. Milam
  • O. Mousis
  • F. Pauzat
  • C. Tornow
  • E. S. Wirström
  • E. Zicler


Conditions in the protosolar nebula have left their mark in the composition of cometary volatiles, thought to be some of the most pristine material in the solar system. Cometary compositions represent the end point of processing that began in the parent molecular cloud core and continued through the collapse of that core to form the protosun and the solar nebula, and finally during the evolution of the solar nebula itself as the cometary bodies were accreting. Disentangling the effects of the various epochs on the final composition of a comet is complicated. But comets are not the only source of information about the solar nebula. Protostellar disks around young stars similar to the protosun provide a way of investigating the evolution of disks similar to the solar nebula while they are in the process of evolving to form their own solar systems. In this way we can learn about the physical and chemical conditions under which comets formed, and about the types of dynamical processing that shaped the solar system we see today.

This paper summarizes some recent contributions to our understanding of both cometary volatiles and the composition, structure and evolution of protostellar disks.


Protostellar disks Solar nebula Comets Chemistry 



Asymptotic giant branch


Atacama Large Millimeter Array


Calcium-rich aluminium-rich inclusion


Fractionated and unknown nuclear isotopic effects


Interstellar medium


Interstellar radiation field


Institut de Radioastronomie Millimétrique telescope


Magneto-rotational instability




Ortho-to-para ratio


Protosolar nebula


Short-lived radionuclide

Gaseous inner disk

Inside the iceline

Inner disk

Inside 35 AU

Outer disk

Outside 35 AU



The work of K. Willacy and C. Alexander was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. S.B. Charnley and S.N. Milam acknowledge the support of the Goddard Center for Astrobiology. Support for K. Willacy, S.B. Charnley and S.N. Milam was partially provided by the NASA Origins of Solar Systems Program. E. Gibb was supported by the NASA Exobiology and Evolutionary Biology (grant NNX11AG44G) and NSF Planetary Astronomy (grant AST-1211362) programs. O. Mousis and C. Ceccarelli acknowledge support from CNES. Support for O. Mousis was provided by the A*MIDEX project (no. ANR-11-1DEX-0001-02) funded by the “Investissements d’Avenir” French government program managed by the French National Research Agency (ANR). M. Ali-Dib was supported by a grant from the city of Beançon. E.S. Wirström was supported by the Swedish National Space Board.

©2014 Jet Propulsion Laboratory, California Institute of Technology. All rights reserved.


  1. F.C. Adams, The birth environment of the solar system. Annu. Rev. Astron. Astrophys. 48, 47 (2010) ADSCrossRefGoogle Scholar
  2. M.F. A’Hearn, L.M. Feaga, H.U. Keller, H. Kawakita, D.L. Hampton, J. Kissel, K.P. Klaasen, L.A. McFadden, K.J. Meech, P.H. Schultz, J.M. Sunshine, P.C. Thomas, J. Veverka, D.K. Yeomans, S. Besse, D. Bodewits, T.L. Farnham, O. Groussin, M.S. Kelley, C.M. Lisse, F. Merlin, S. Protopapa, D.D. Wellnitz, Cometary volatiles and the origin of comets. Astrophys. J. 758, 29 (2012) ADSCrossRefGoogle Scholar
  3. Y. Aikawa, Cold CO gas in protoplanetary disks. Astrophys. J. 656, L93 (2007) ADSCrossRefGoogle Scholar
  4. Y. Aikawa, E. Herbst, Deuterium fractionation in protoplanetary disks. Astrophys. J. 526, 314 (1999) ADSCrossRefGoogle Scholar
  5. Y. Aikawa, T. Nomura, Physical and chemical structure of protoplanetary disks with grain growth. Astrophys. J. 642, 1152 (2006) ADSCrossRefGoogle Scholar
  6. Y. Aikawa, T. Umebayashi, T. Nakano, S.M. Miyama, Evolution of molecular abundances in protoplanetary disks with accretion flows. Astrophys. J. 519, 705 (1999) ADSCrossRefGoogle Scholar
  7. Y. Aikawa, V. Wakelam, R.T. Garrod, E. Herbst, Molecular evolution and star formation: From prestellar cores to protostellar cores. Astrophys. J. 674, 984 (2008) ADSCrossRefGoogle Scholar
  8. Y. Aikawa, V. Wakelam, F. Hersant, R.T. Garrod, E. Herbst, From prestellar to protostellar cores II. Time dependence and deuterium fractionation. Astrophys. J. 760, 40 (2012) ADSCrossRefGoogle Scholar
  9. V. Akimkin, S. Zhukovska, D. Wiebe, D.A. Semenov, Ya. Pavlyuchenkov, A. Vasyunin, T. Birnstiel, Th. Henning, Protoplanetary disk structure with grain evolution: The ANDES model. Astrophys. J. 766, 8 (2013) ADSCrossRefGoogle Scholar
  10. T. Albertsson, D.A. Semenov, Th. Henning, Modeling deuterium fractionation in cold and warm molecular environments with large chemical networks. Astrophys. J. Suppl. Ser. 207, 27 (2011) ADSCrossRefGoogle Scholar
  11. T. Albertsson, D.A. Semenov, A.I. Vasyunin, Th. Henning, E. Herbst, New extended deuterium fractionation model: Assessment at dense ISM conditions and sensitivity analysis. Astrophys. J. Suppl. Ser. 207, 27 (2013) ADSCrossRefGoogle Scholar
  12. T. Albertsson, D.A. Semenov, Th. Henning, Chemodynamical deuterium fractionation in the early solar nebula: The origins of water on Earth and in asteroids and comets. Astrophys. J. 784, 39 (2014) ADSCrossRefGoogle Scholar
  13. M. Ali-Dib, O. Mousis, J.-M. Petit, J.I. Lunine, The measured compositions of Uranus and Neptune from their formation on the CO iceline. Astrophys. J. 793, 9 (2014) ADSCrossRefGoogle Scholar
  14. Y. Alibert, O. Mousis, W. Benz, On the volatile enrichments and composition of Jupiter. Astrophys. J. 622, L145 (2005a) ADSCrossRefGoogle Scholar
  15. Y. Alibert, O. Mousis, C. Mordasini, W. Benz, New Jupiter and Saturn formation models meet observations. Astrophys. J. 626, L57 (2005b) ADSCrossRefGoogle Scholar
  16. ALMA Partnership et al., First results from high angular resolution ALMA observations toward the HL Tau region. Astrophys. J. Lett. (2015, in press). arXiv:1503.02649
  17. K. Altwegg, H. Balsiger, A. Bar-Nun, J.J. Berthelier, A. Bieler, P. Bochsler, C. Briois, U. Calmonte, M. Combi, J. De Keyser, P. Eberhardt, B. Fiethe, S. Fuselier, S. Gasc, T.I. Gombosi, K.C. Hansen, M. Hässig, E. Kopp, A. Korth, A. Jäckel, L. LeRoy, U. Mall, B. Marty, O. Mousis, E. Neefs, T. Owen, H. Rème, M. Rubin, T. Sémon, C. Tzou, H. Waite, P. Wurz, Comet 67P/Churyumov-Gerasimenko, a Jupiter family comet with a high D/H ratio. Science 347, 387 (2015) ADSCrossRefGoogle Scholar
  18. M. Asplund, N. Grevesse, A.J. Sauval, P. Scott, The chemical composition of the Sun. Annu. Rev. Astron. Astrophys. 47, 481 (2009) ADSCrossRefGoogle Scholar
  19. S.A. Balbus, J.F. Hawley, A powerful local shear instability in weakly magnetized disks. I—Linear analysis. II—Nonlinear evolution. Astrophys. J. 376, 214 (1991) ADSCrossRefGoogle Scholar
  20. N. Biver, D. Bockelée-Morvan, J. Crovisier, D.C. Lis, R. Moreno, P. Colom, F. Henry, F. Herpin, G. Paubert, M. Womack, Radio wavelength molecular observations of comets C/1999 T1 (McNaught-Hartley), C/2001 A2 (LINEAR), C/2000 WM1 (LINEAR) and 15P/Ikeya-Zhang. Astron. Astrophys. 449, 1255 (2006) ADSCrossRefGoogle Scholar
  21. D. Bockelée-Morvan, D. Gautier, D.C. Lis, K. Young, J. Keene, T. Phillips, T. Owen, J. Crovisier, P.F. Goldsmith, E.A. Bergin, D. Depois, A. Wootten, Deuterated water in comet C/1996 B2 (Hyakutake) and its implications for the origin of comets. Icarus 133, 147 (1998) ADSCrossRefGoogle Scholar
  22. D. Bockelée-Morvan, D. Gautier, F. Hersant, J.-M. Huré, F. Robert, Turbulent radial mixing in the solar nebula as the source of crystalline silicates in comets. Astron. Astrophys. 384, 1107 (2002) ADSCrossRefGoogle Scholar
  23. D. Bockelée-Morvan, J. Crovisier, M.J. Mumma, H.A. Weaver, The composition of cometary volatiles, in Comets II (2004), p. 391 Google Scholar
  24. D. Bockelée-Morvan, N. Biver, B. Swinyard, M. de Val-Borro, J. Crovisier, P. Hartogh, D.C. Lis, R. Moreno, S. Szutowicz, E. Lellouch, M. Emprechtinger, G.A. Blake, R. Courtin, C. Jarchow, M. Kidger, M. Küppers, M. Rengel, G.R. Davis, T. Fulton, D. Naylor, S. Sidher, H. Walker, Herschel measurements of the D/H and 16O/18O ratios in water in the Oort-cloud comet C/2009 P1 (Garradd). Astron. Astrophys. 544, 15 (2012) ADSCrossRefGoogle Scholar
  25. D. Bockelée-Morvan, U. Calmonte, S. Charnley, J. Duprat, C. Engrand, A. Gicquel, M. Hässig, E. Jehin, H. Kawakita, B. Marty, S. Milam, A. Morse, P. Rousselot, S. Sheridan, E. Wirström, Cometary isotopic measurements. Space Sci. Rev. (2015, this issue). doi: 10.1007/s11214-015-0156-9 Google Scholar
  26. B.P. Bonev, M.J. Mumma, H. Kawakita, H. Kobayashi, G.L. Villanueva, IRCS/Subaru observations of water in the inner coma of comet 73P-B/Schwassman-Wachmann 3: Spatially resolved rotational temperatures and ortho-para ratios. Icarus 196, 241 (2008) ADSCrossRefGoogle Scholar
  27. B.P. Bonev, M.J. Mumma, E.L. Gibb, M.A. DiSanti, G.L. Villanueva, K. Magee-Sauer, R.S. Ellis, Comet C/2004 Q2 (Machholz): Parent volariles, a search for deuterated methane, and constraint on the CH4 spin temperature. Astrophys. J. 699, 1563 (2009) ADSCrossRefGoogle Scholar
  28. B.P. Bonev, E. Gibb, G. Villanueva, M. DiSanti, L. Paganini, M. Mumma, J. Keane, K. Meech, K. Wright, E. Sudholt, M. Besic, OH* prompt emission and near-infrared searches for HDO in the moderately bright comets C/2007 N3 Lulin and 103P/Hartley 2, in Asteroids, Comets and Meteors (2014) Google Scholar
  29. T. Bredichin, Les vapeurs du sodium dans la comète de Wells. Astron. Nachr. 102, 207 (1882) ADSCrossRefGoogle Scholar
  30. G. Buntkowsky, H.-H. Limbach, B. Walaszek, A. Adamczyk, Y. Xu, H. Breitzke, A. Schweitzer, T. Gutmann, M. Wachtler, J. Frydel, Th. Emmler, N. Amadeu, D. Tietze, B. Chaudret, Mechanisms of dipolar ortho/para H2O conversion in ice. Z. Phys. Chem. 222, 1049 (2008) CrossRefGoogle Scholar
  31. G. Bussolin, S. Casassa, P. Pisani, P. Ugliengo, Ab initio study of HCl and HF interaction with crystalline ice. I. Physical adsorption. J. Chem. Phys. 108, 9516 (1998) ADSCrossRefGoogle Scholar
  32. M. Calatayud, D. Courmier, C. Minot, Ionization of HCl and HF in ice: a periodic DFT study. Chem. Phys. Lett. 369, 287 (2003) ADSCrossRefGoogle Scholar
  33. J.S. Carr, J.R. Najita, Organic molecules and water in the planet formation region of young circumstellar disks. Science 319, 1504 (2008) ADSCrossRefGoogle Scholar
  34. S. Casassa, C. Pisani, Interaction of HOCl with a chlorinated ice surface to produce molecular clorine: An ab-initio study. J. Chem. Phys. 116, 9856 (2002) ADSCrossRefGoogle Scholar
  35. S. Casassa, M. Calatayud, K. Doll, K.C. Minot, C. Pisani, Proton ordered cubic and hexagonal periodic models of ordinary ice. Chem. Phys. Lett. 409, 110 (2005) ADSCrossRefGoogle Scholar
  36. P. Caselli, E. Keto, E.A. Bergin, M. Tafalla, Y. Aikawa, T. Douglas, L. Pagani, U.A. Yildiz, F.F.S. van der Tak, C.M. Walmsley, C. Codella, B. Nisini, L.E. Kristensen, E.F. van Dishoeck, First detection of water vapor in a pre-stellar core. Astrophys. J. Lett. L37, 5 (2012) Google Scholar
  37. C. Ceccarelli, C. Dominik, B. Lefloch, P. Caselli, E. Caux, Detection of H2D+: Measuring the midplane degree of ionization in the disks of DM Tauri and TW Hydrae. Astrophys. J. 607, L51 (2004) ADSCrossRefGoogle Scholar
  38. C. Ceccarelli, P. Caselli, D. Bockelee-Morvan, O. Mousis, S. Pizzarello, F. Robert, D. Semenov, Deuterium fractionation: the Ariadne’s thread from the pre-collapse phase to meteorites and comets today, in Protostars and Planets VI, ed. by H. Beuther, R.S. Klessen, C.P. Dullemond, Th. Henning (University of Arizona Press, Tucson, 2014). arXiv:1403.7143 Google Scholar
  39. S.B. Charnley, On the nature of interstellar organic chemistry, in Astronomical and biochemical origins and the search for life in the Universe, vol. 89, ed. by C. Batalli Cosmovici, S. Bowyer, D. Werthimer (Editrice Compositori, Bologna, 1997) Google Scholar
  40. S.B. Charnley, S.D. Rodgers, Interstellar reservoirs of cometary matter. Space Sci. Rev. 138, 59 (2008) ADSCrossRefGoogle Scholar
  41. S.B. Charnley, S.D. Rodgers, Clouds, clumps, cores and comets—a cosmic chemical connection? Adv. Geosci. 15, 211 (2009) Google Scholar
  42. S.B. Charnley, A.G.G.M. Tielens, S.D. Rodgers, Deuterated methanol in the Orion Compact Ridge. Astrophys. J. 482, L203 (1997) ADSCrossRefGoogle Scholar
  43. S.B. Charnley, P. Ehrenfreund, T.J. Millar, A.C.A. Boogert, A.J. Markwick, H.M. Butner, R. Ruiterkamp, S.D. Rodgers, Observational tests for grain chemistry: Posterior isotopic labeling. Mon. Not. R. Astron. Soc. 347, 157 (2004) ADSCrossRefGoogle Scholar
  44. K.M. Chick, P. Cassen, Thermal processing of interstellar dust grains in the primitive solar environment. Astrophys. J. 477, 398 (1997) ADSCrossRefGoogle Scholar
  45. F.J. Ciesla, The phases of water ice in the solar nebula. Astrophys. J. 784, L1 (2014) ADSCrossRefGoogle Scholar
  46. F.J. Ciesla, S.B. Charnley, The physics and chemistry of nebular evolution, in Meteorites and the Early Solar System II, ed. by D.S. Lauretta, H.Y. McSween Jr. (University of Arizona Press, Tucson, 2006), p. 209 Google Scholar
  47. R.N. Clayton, Oxygen isotopes in meteorites. Annu. Rev. Earth Planet. Sci. 21, 115 (1993) ADSMathSciNetCrossRefGoogle Scholar
  48. R.N. Clayton, L. Grossman, T.K. Mayeda, A component of primitive nuclear composition in carbonaceous meteorites. Science 182, 485 (1973) ADSCrossRefGoogle Scholar
  49. L.I. Cleeves, F.C. Adams, E.A. Bergin, Exclusion of cosmic rays in protoplanetary disks: stellar and magnetic effects. Astrophys. J. 772, 5 (2013) ADSCrossRefGoogle Scholar
  50. L.I. Cleeves, E.A. Bergin, C.M.O. ’D Alexander, F. Du, D. Graninger, K.I. Öberg, T.J. Harries, The ancient heritage of water ice in the solar system. Science 345, 1590 (2014a) ADSCrossRefGoogle Scholar
  51. L.I. Cleeves, E.A. Bergin, F.C. Adams, Exclusion of cosmic rays in protoplanetary disks. II. Chemical gradients and observational signatures. Astrophys. J. 794, 123 (2014b) ADSCrossRefGoogle Scholar
  52. A.L. Cochran, W.D. Cochran, E.S. Barker, \(\mathrm{N}_{2}^{+}\) and CO+ in Comets 122P/1995 S1 (deVico) and C/1995 O1 (Hale-Bopp). Icarus 146, 583 (2000) ADSCrossRefGoogle Scholar
  53. G. Cremonese, H. Boehnhardt, J. Crovisier, H. Rauer, A. Fitzsimmons, M. Fulle, J. Licandro, D. Pollacco, G.P. Tozzi, R.M. West, Neutral sodium from comet Hale-Bopp: A third type of tail. Astrophys. J. 490, L199 (1997) ADSCrossRefGoogle Scholar
  54. J. Crovisier, The water molecule in comets—fluorescence mechanisms and thermodynamics of the inner coma. Astron. Astrophys. 130, 361 (1994) ADSGoogle Scholar
  55. J. Crovisier, The molecular composition of comets and its interrelation with other small bodies of the Solar System, in IAU Symp 229 “Asteroids, Comets, Meteors”, ed. by L. Daniela, M. Sylvio Ferraz, F.J. Angel (2006), p. 113 Google Scholar
  56. J. Crovisier, K. Leech, D. Bockelée-Morvan, T.Y. Brooke, M.S. Hanner, B. Altieri, H.U. Keller, E. Lellouch, The spectrum of comet Hale-Bopp (C/1995 O1) observed with the Infrared Space Observatory at 2.9 AU from the Sun. Science 275, 1904 (1997) ADSCrossRefGoogle Scholar
  57. J. Crovisier, Th. Encrenaz, E. Lellouch, E. Bockelée-Morvan, B. Altieri, K. Leech, A. Salama, M.J. Griffin, Th. de Graauw, E.F. van Dishoeck, R. Knacke, T.Y. Brooke, ISO spectroscopic observations of short-period comets, in The Universe as Seen by ISO, ed. by P. Cox, M.F. Kessler. ESA SP-427 (ESA, Noordwijk, 1999), p. 161 Google Scholar
  58. J. Crovisier, D. Bockelée-Morvan, P. Colom, N. Biver, D. Despois, D.C. Lis, The composition of ices in comet C/1995 O1 (Hale-Bopp) from radio spectroscopy: Further results and upper limits on undetected species. Astron. Astrophys. 418, 1141 (2004) ADSCrossRefGoogle Scholar
  59. P. D’Alessio, B. Merin, N. Calvet, L. Hartmann, B. Montesinos, WWW database of models of accretion disks irradiated by the central star. Rev. Mex. Astron. Astrofís. 41, 61 (2005) ADSGoogle Scholar
  60. I. de Gregorio-Monsalvo et al., Unveiling the gas-and dust disk structure in HD 16329 using ALMA observations. Astron. Astrophys. 557, 133 (2013) CrossRefGoogle Scholar
  61. I. de Pater, M. Richmond, Neptune’s microwave spectrum from 1 mm to 20 cm. Icarus 80, 1 (1989) ADSCrossRefGoogle Scholar
  62. I. de Pater, P.N. Romani, S.K. Atreya, Uranus deep atmosphere revealed. Icarus 82, 288 (1989) ADSCrossRefGoogle Scholar
  63. N. Dello Russo, B.P. Bonev, M.A. DiSanti, M.J. Mumma, E.L. Gibb, K. Magee-Sauer, R.J. Barber, J. Tennyson, Water production rates, rotational temperatures, and spin temperatures in comets C/1999 H1 (Lee), C/1999 S4, and C/2001 A2. Astrophys. J. 621, 537 (2005) ADSCrossRefGoogle Scholar
  64. N. Dello Russo, R.J. Vervack, H.A. Weaver, N. Biver, D. Bockelée-Morvan, J. Crovisier, C.M. Lisse, Compositional homogeneity in the fragmented comet 73P/Schwassmann-Wachmann 3. Nature 448, 172 (2007) ADSCrossRefGoogle Scholar
  65. N. Dello Russo, R.J. Vervack, H.A. Weaver, M.M. Montgomery, R. Deshpande, Y.R. Fernández, E.L. Martin, The volatile composition of comet 17P/Holmes after its extraordinary outburst. Astrophys. J. 680, 793 (2008) ADSCrossRefGoogle Scholar
  66. M.A. DiSanti, B.P. Bonev, G.L. Villanueva, M.J. Mumma, Highly depleted ethane and mildly depleted methanol in comet 21P/Giacobini-Zinner: Application of a new empirical \(\nu_{2}\)-band model for CH3OH near 50 K. Astrophys. J. 763, 1 (2013) ADSCrossRefGoogle Scholar
  67. S.E. Dodson-Robinson, K. Willacy, P. Bodenheimer, N.J. Turner, C.A. Beichman, Ice lines, planetesimal composition and solid surface density in the solar nebula. Icarus 200, 672 (2009) ADSCrossRefGoogle Scholar
  68. A.Z. Dolginov, T.F. Stepinski, Are cosmic rays effective for ionization of protoplanetary disks? Astrophys. J. 427, 377 (1994) ADSCrossRefGoogle Scholar
  69. C. Dominik, C. Ceccarelli, D. Hollenbach, M. Kaufman, Gas-phase water in the surface layers of protoplanetary disks. Astrophys. J. 635, 85 (2005) ADSCrossRefGoogle Scholar
  70. C.P. Dullemond, C. Dominik, The effect of dust settling on the appearance of protoplanetary disks. Astron. Astrophys. 421, 1075 (2004) ADSCrossRefGoogle Scholar
  71. A. Dutrey, D. Semenov, E. Chapillon, U. Gorti, S. Guilloteau, F. Hersant, M. Hogerheijde, M. Hughes, G. Meeus, H. Nomura, V. Piétu, C. Qi, V. Wakelam, Physical and chemical structure of planet-forming disks probed by millimeter observations and modeling, in Protostars and Planets VI, ed. by H. Beuther, R. Klessen, C. Dullemond, Th. Henning (University of Arizona Press, Tuscon, 2014), p. 317 Google Scholar
  72. P. Eberhardt, D. Krankowsky, W. Schutte, U. Dolder, P. Limmerzahl, J.J. Berthelier, J. Woweries, U. Stubbemann, R.R. Hodges, J.H. Hoffman, J.M. Illiano, The CO and N2 abundance in comet P/Halley. Astron. Astrophys. 187, 481 (1987) ADSGoogle Scholar
  73. P. Eberhardt, M. Reber, D. Krankowsky, R.R. Hodges, The D/H and 18O/16O ratios in water from comet P/Halley. Astron. Astrophys. 302, 301 (1995) ADSGoogle Scholar
  74. Y. Ellinger, F. Pauzat, O. Mousis, A. Guilbert-Lepoutre, F. Leblanc, M. Ali-Dib, M. Doronin, E. Zicler, A. Doressoundiram, Neutral sodium in cometary tails as a remnant of early aqueous alteration. Astrophys. J. Lett. 801, L30 (2015) ADSCrossRefGoogle Scholar
  75. G.J. Flynn, Physical, chemical, and mineralogical properties of comet 81P/Wild 2 particles collected by Stardust. Earth Moon Planets 102, 447 (2008) ADSCrossRefGoogle Scholar
  76. J.K.J. Fogel, T.J. Bethell, E.A. Bergin, N. Calvet, D. Semenov, Chemistry of a protoplanetary disk with grain settling and Ly\(\alpha\) radiation. Astrophys. J. 726, 29 (2011) ADSCrossRefGoogle Scholar
  77. K. France, E. Schindhelm, E.A. Bergin, E. Roueff, H. Abgrall, High-resolution ultraviolet radiation fields of classical T Tauri stars. Astrophys. J. 127, 20 (2014) Google Scholar
  78. N. Fray, B. Schmitt, Sublimation of ices of astrophysical interest: A bibliographic review. Planet. Space Sci. 57, 2053 (2009) ADSCrossRefGoogle Scholar
  79. K.Y. Furuya, Y. Aikawa, H. Nomura, F. Hersant, V. Wakelam, Water in protoplanetary disks: Deuteration and turbulent mixing. Astrophys. J. 779, 11 (2013) ADSCrossRefGoogle Scholar
  80. D. Gautier, F. Hersant, O. Mousis, J.I. Lunine, Enrichments in volatiles in Jupiter: A new interpretation of the Galileo measurements. Astrophys. J. 550, L227 (2001) ADSCrossRefGoogle Scholar
  81. E.L. Gibb, B.P. Bonev, G. Villanueva, M.A. DiSanti, M.J. Mumma, E. Sudholt, Y. Radeva, Chemical composition of comet C/2007 N3 (Lulin): Another “atypical” comet. Astrophys. J. 750, 102 (2012) ADSCrossRefGoogle Scholar
  82. A.E. Glassgold, J. Najita, J. Igea, X-ray ionization of proto-planetary disks. Astrophys. J. 480, 344 (1997) ADSCrossRefGoogle Scholar
  83. S. Grimme, J. Antony, S. Ehrlich, H. Krieg, A consistent and accurate ab initio parameterization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010) ADSCrossRefGoogle Scholar
  84. S. Gulkis, C. Alexander, Composition measurements of a comet from the Rosetta Orbiter spacecraft. Space Sci. Rev. 138, 259 (2008) ADSCrossRefGoogle Scholar
  85. T. Hama, N. Watanabe, A. Kouchi, M. Yokoyama, Spin temperature of water molecules desorbed from the surfaces of amorphous solid water, vapor-deposited and produced from photolysis of a CH4/O2 solid mixture. Astrophys. J. Lett. 738, 15 (2011) ADSCrossRefGoogle Scholar
  86. D. Harsono, R. Visser, S. Bruderer, E.F. van Dishoeck, L.E. Kristensen, Evolution of CO lines in time-dependent models of protostellar disk formation. Astron. Astrophys. 555, 45 (2013) ADSCrossRefGoogle Scholar
  87. P. Hartogh, D.C. Lis, D. Bockelée-Morvan, M. de Val-Borro, N. Biver, M. Küppers, M. Emprechtinger, E.A. Bergin, J. Crovisier, M. Rengel, R. Moreno, S. Szutowicz, G.A. Blake, Ocean-like water in the Jupiter-family comet 103P/Hartley 2. Nature 478, 218 (2011) ADSCrossRefGoogle Scholar
  88. K. Hashimoto, K. Morokuma, Ab-initio molecular-orbital study of Na(H2O)N (\(\mathrm {N}=1\mbox{--}6\)) clusters and their ions—comparison of electronic-structure of the surface and their interior complexes. J. Am. Chem. Soc. 116, 11436 (1994) CrossRefGoogle Scholar
  89. M. Hassig, K. Altwegg, J. Berthelier, U. Almonte, T. Gombosi, J. De Jeyser, B. Fiethe, S. Fuselier, L. LeRoy, M. Rubin, The capabilities of ROSINA/DFMS to measure argon isotopes at comet 67P/Churyumov-Gerasimenko. Planet. Space Sci. 105, 175 (2015) ADSCrossRefGoogle Scholar
  90. J.F. Hawley, S.A. Balbus, A powerful local shear instability in weakly magnetized disks. Astrophys. J. 376, 223 (1991) ADSCrossRefGoogle Scholar
  91. J.F. Hawley, C.F. Gammie, S.A. Balbus, Local three-dimensional simulations of an accretion disk hydromagnetic dynamo. Astrophys. J. 464, 690 (1996) ADSCrossRefGoogle Scholar
  92. A.N. Heays, R. Visser, R. Gredel, W. Ubachs, B.R. Lewis, S.T. Givson, E.F. van Dishoeck, Isotope selective photodissociation of N2 by the interstellar radiation field and cosmic rays. Astron. Astrophys. 562, 61 (2014) ADSCrossRefGoogle Scholar
  93. J.E. Heidenreich III, M.H. Thiemens, A non-mass-independent isotope effect in the production of ozone from molecular oxygen. J. Chem. Phys. 78, 892 (1983) ADSCrossRefGoogle Scholar
  94. D. Heinzeller, H. Nomura, C. Walsh, T.J. Millar, Chemical evolution of protoplanetary disks—the effects of viscous accretion, turbulent mixing and disk winds. Astrophys. J. 731, 115 (2011) ADSCrossRefGoogle Scholar
  95. Th. Henning, D. Semenov, Chemistry in protoplanetary disks. Chem. Rev. 113, 9016 (2013) CrossRefGoogle Scholar
  96. E. Herbst, E.F. van Dishoeck, Complex organic interstellar molecules. Annu. Rev. Astron. Astrophys. 47, 427 (2009) ADSCrossRefGoogle Scholar
  97. F. Hersant, V. Wakelam, A. Dutrey, S. Guilloteau, E. Herbst, Cold CO in circumstellar disks. On the effects of photodesorption and vertical mixing. Astron. Astrophys. 493, L49 (2009) ADSCrossRefGoogle Scholar
  98. M.R. Hogerheijde, E.A. Bergin, C. Brinch, L.I. Cleeves, J.K. Fogel, G.A. Blacke, C. Dominik, D.C. Lis, G. Melnick, D. e Neufeld, O. Panić, J.C. Pearson, L. Kristensen, U.A. Yildiz, E.A. Dishoeck, Detection of the water reservoir in a forming planetary system. Science 354, 338 (2011) ADSCrossRefGoogle Scholar
  99. R. Hueso, T. Guillot, Evolution of protoplanetary disks: Constraints from DM Tauri and GM Aurigae. Astron. Astrophys. 442, 703 (2005) ADSCrossRefGoogle Scholar
  100. D. Hutsemékers, J. Manfroid, E. Jehin, J.M. Zucconi, C. Arpigny, The 16OH/18OH and OD/OH isotope ratios in comet C/2002 T7 (LINEAR). Astron. Astrophys. 490, 31 (2008) ADSCrossRefGoogle Scholar
  101. M. Ilgner, R.P. Nelson, On the ionization fraction in protoplanetary disks. II. The effect of turbulence mixing on gas-phase chemistry. Astron. Astrophys. 445, 223 (2006) ADSCrossRefGoogle Scholar
  102. M. Ilgner, R.P. Nelson, Turbulent transport and its effect on the dead zone in protoplanetary discs. Astron. Astrophys. 483, 815 (2008) ADSCrossRefGoogle Scholar
  103. M. Ilgner, Th. Henning, A.J. Markwick, T.J. Millar, Transport processes and chemical evolution in steady accretion disk flows. Astron. Astrophys. 415, 643 (2004) ADSCrossRefGoogle Scholar
  104. S. Inutsuka, T. Sano, Self-sustained ionization and vanishing dead zones in protoplanetary disks. Astrophys. J. 628, L155 (2005) ADSCrossRefGoogle Scholar
  105. W.-H. Ip, L. Jorda, Can the sodium tail of comet Hale-Bopp have a dust-impact origin? Astrophys. J. 496, L47 (1998) ADSCrossRefGoogle Scholar
  106. N. Iro, D. Gautier, F. Hersant, D. Bockelée-Morvan, J.I. Lunine, An interpretation of the nitrogen deficiency in comets. Icarus 161, 511 (2003) ADSCrossRefGoogle Scholar
  107. W.M. Irvine, D. Bockelée-Morvan, D.C. Lis, H.E. Matthews, N. Biver, J. Crovisier, J.K. Davies, W.R.F. Dent, D. Gautier, P.D. Godfrey, J. Keene, A.J. Lovell, T.C. Owen, T.G. Phillips, H. Tauer, F.P. Schloerb, M. Senay, K. Young, Spectroscopic evidence for interstellar ices in comet Hyakutake. Nature 383, 418 (1996) ADSCrossRefGoogle Scholar
  108. E. Jehin, J. Manfroid, D. Hutsemékers, C. Arpigny, J.-M. Zucconi, Isotopic ratios in comets: Status and perspectives. Earth Moon Planets 105, 167 (2009) ADSCrossRefGoogle Scholar
  109. E.K. Jessberger, J. Kissel, Chemical properties of cometary dust and a note on carbon isotopes, in IAU Colloq. 116: Comets in the Post-Halley Era, vol. 167 (1991), p. 1075 Google Scholar
  110. J.J. Kavelaars, O. Mousis, J.-M. Petit, H.A. Weaver, On the formation location of Uranus and Neptune as constrained by dynamical and chemical models of comets. Astrophys. J. Lett. 734, L30 (2011) ADSCrossRefGoogle Scholar
  111. H. Kawakita, H. Kobayashi, Formation conditions of icy materials in comet C/2004 Q2 (Machholz). II. Diagnostics using nuclear spin temperatures and deuterium-to-hydrogen ratios in cometary molecules. Astrophys. J. 693, 388 (2009) ADSCrossRefGoogle Scholar
  112. H. Kawakita, J.-i. Watanabe, R. Furusho, T. Fuse, M.T. Capria, M.C. De Sanctis, G. Cremonese, Spin temperatures of ammonia and water molecules in comets. Astrophys. J. 601, 1152 (2004) ADSCrossRefGoogle Scholar
  113. H. Kawakita, J.-I. Watanabe, R. Furusho, T. Fuse, D.C. Boice, Nuclear spin temperature and deuterium-to-hydrogen ratio of methane in comet C/2001 Q4 (NEAT). Astrophys. J. Lett. 623, 49 (2005) ADSCrossRefGoogle Scholar
  114. H. Kawakita, N. Dello Russo, R. Furusho, T. Fuse, J.-i. Watanabe, D.C. Boice, K. Sadakane, N. Arimoto, M. Ohkubo, T. Ohnishi, Ortho-to-para ratios of water and ammonia in comet C/2001 Q4 (NEAT): Comparison of nuclear spin temperatures of water and methane. Astrophys. J. 643, 1337 (2006) ADSCrossRefGoogle Scholar
  115. A. Kouchi, T. Yamamoto, T. Kozasa, T. Kuroda, J.M. Greenberg, Conditions for condensation and preservation of amorphous ice and crystallinity of astrophysical ices. Astron. Astrophys. 290, 1009 (1994) ADSGoogle Scholar
  116. D. Kozlowski, J. Pilmé, J. Comput. Chem. 32, 3207 (2011) CrossRefGoogle Scholar
  117. G. Kresse, J. Hafner, Ab-initio molecular-dynamics simulation of the liquid-metal amorphous-semiconductor transition in germanium. Phys. Rev. B 49, 14251 (1994a) ADSCrossRefGoogle Scholar
  118. G. Kresse, J. Hafner, Norm-conserving and ultrasoft pseudopotentials for first-row and transition elements. J. Phys. Condens. Matter 6, 8245 (1994b) ADSCrossRefGoogle Scholar
  119. W.D. Langer, T.E. Graedel, M.A. Frerking, P.B. Armentrout, Carbon and oxygen isotope fractionation in dense interstellar clouds. Astrophys. J. 27, 581 (1984) ADSCrossRefGoogle Scholar
  120. T. Lee, A local proton irradiation model for isotopic anomalies in the solar system. Astrophys. J. 224, 217 (1978) ADSCrossRefGoogle Scholar
  121. J.-E. Lee, E.A. Bergin, J.R. Lyons, Oxygen isotope anomalies of the Sun and the original environment of the solar system. Meteorit. Planet. Sci. 43, 1351 (2008) ADSCrossRefGoogle Scholar
  122. E. Lellouch, C. de Bergh, B. Sicardy, H.U. Käufl, A. Smette, High resolution spectroscopy of Pluto’s atmosphere: Detection of the \(2.3~\upmu \mbox{m}\) CH4 bands and evidence for carbon monoxide. Astron. Astrophys. 530, L4 (2011) ADSCrossRefGoogle Scholar
  123. J.S. Lewis, R.G. Prinn, Kinetic inhibition of CO and N2 reduction in the solar nebula. Astrophys. J. 238, 357 (1980) ADSCrossRefGoogle Scholar
  124. D.C. Lis, N. Biver, D. Bockelée-Morvan, P. Hartogh, E.A. Bergin, G.A. Blake, J. Crovisier, M. de Val-Borro, E. Jehin, M. Küppers, J. Manfroid, R. Moreno, M. Rengel, S. Szutowicz, A Herschel study of D/H in water in the Jupiter-family comet 45P/Honda-Mrkos-Pajdusáková and prospects for D/H measurements with CCAT. Astrophys. J. 774, L3 (2013) ADSCrossRefGoogle Scholar
  125. R. Llusar, A. Beltran, J. Andrès, B. Silvi, Topological analysis of electron density in depleted homopolar chemical bonds. J. Comput. Chem. 20, 1517 (1999) CrossRefGoogle Scholar
  126. J.I. Lunine, D.J. Stevenson, Thermodynamics of clathrate hydrate at low and high pressures with application to the outer solar system. Astrophys. J. Suppl. Ser. 58, 493 (1985) ADSCrossRefGoogle Scholar
  127. J.R. Lyons, E.D. Young, CO self-shielding as the origin of oxygen isotope anomalies in the early solar nebula. Nature 435, 193 (2005) CrossRefGoogle Scholar
  128. U. Marboeuf, O. Mousis, J.-M. Petit, B. Schmitt, Clathrate hydrates formation in short-period comets. Astrophys. J. 708, 812 (2010a) ADSCrossRefGoogle Scholar
  129. U. Marboeuf, O. Mousis, J.-M. Petit, B. Schmitt, A.L. Cochran, H.A. Weaver, On the stability of clathrate hydrates in comets 67P/Churyumov-Gerasimenko and 46P/Wirtanen. Astron. Astrophys. 525, 144 (2010b) CrossRefGoogle Scholar
  130. U. Marboeuf, B. Schmitt, J.-M. Petit, O. Mousis, N. Fray, A cometary nucleus model taking into account all phase changes of water ice: Amorphous, crystalline, and clathrate. Astron. Astrophys. 542, 82 (2012) ADSCrossRefGoogle Scholar
  131. G.S. Mathews, P.D. Klassen, A. Juhász, D. Harsono, E. Chapillon, E.F. van Dishoeck, D. Espada, I. de Gregorio-Monsalvo, A. Hales, M.R. Hogerheijde, J.C. Mottram, M.G. Rawlings, S. Takahasi, L. Testi, ALMA imaging of the CO snowline of the HD 163296 disk with DCO+. Astron. Astrophys. 557, 132 (2013) ADSCrossRefGoogle Scholar
  132. J.S. Mathis, W. Rumpl, K.H. Nordsieck, The size distribution of interstellar grains. Astrophys. J. 217, 425 (1977) ADSCrossRefGoogle Scholar
  133. K.D. McKeegan, A.P.A. Kallio, V.S. Heber, G. Jarzebinski, P.H. Mao, C.D. Coath, T. Kunihiro, R.C. Wiens, J.E. Nordholt, R.W. Moses, D.B. Reisenfeld, A.J.G. Jurewicz, D.S. Burnett, The oxygen isotopic composition of the Sun inferred from captured solar wind. Science 332, 1528 (2011) ADSCrossRefGoogle Scholar
  134. R. Meier, T.C. Owen, Cometary deuterium. Space Sci. Rev. 1, 99 (1999) Google Scholar
  135. R. Meier, T.C. Owen, D.C. Jewitt, H.E. Matthews, M. Senay, M.N. Biver, D. Bockelée-Morvan, J. Crovisier, D. Gautier, Deuterium in comet C/1995 O1 (Hale-Bopp): Detection of DCN. Science 279, 1707 (1998) ADSCrossRefGoogle Scholar
  136. T.J. Millar, A. Bennett, E. Herbst, Deuterium fractionation in dense interstellar clouds. Astrophys. J. 340, 906 (1989) ADSCrossRefGoogle Scholar
  137. J.C. Mottram, E.F. van Dishoeck, M. Schmalzl, L.E. Kristensen, R. Visser, M.R. Hogerheijde, S. Bruderer, Waterfalls around protostars. Infall motions toward Class 0/1 envelopes as probed by water. Astron. Astrophys. 558, 126 (2013) ADSCrossRefGoogle Scholar
  138. O. Mousis, Modeling the thermodynamical conditions in the Uranian subnebula—implications for regular satellite composition. Astron. Astrophys. 413, 373 (2004) ADSCrossRefGoogle Scholar
  139. O. Mousis, D. Gautier, Constraints on the presence of volatiles in Ganymede and Callisto from an evolutionary turbulent model of the Jovian subnebula. Planet. Space Sci. 52, 361 (2004) ADSCrossRefGoogle Scholar
  140. O. Mousis, D. Gautier, D. Bockelée-Morvan, F. Robert, B. Dubrulle, A. Drouart, Constraints on the formation of comets from D/H ratios measured in H2O and HCN. Icarus 148, 513 (2000) ADSCrossRefGoogle Scholar
  141. O. Mousis, D. Gautier, D. Bockelée-Morvan, An evolutionary turbulent model of Saturn’s subnebula: Implications for the origin of the atmosphere of Titan. Icarus 156, 162 (2002) ADSCrossRefGoogle Scholar
  142. O. Mousis, J.I. Lunine, C. Thomas, M. Pasek, U. Varboeuf, Y. Alibert, V. Ballenegger, D. Cordier, Y. Ellinger, F. Pauzat, S. Picaud, Clathration of volatiles in the Solar Nebula and implications for the origin of Titan’s atmosphere. Astrophys. J. 691, 1780 (2009a) ADSCrossRefGoogle Scholar
  143. O. Mousis, U. Marboeuf, J.L. Lunine, Y. Alibert, L.N. Fletcher, G.S. Orton, F. Pauzat, Y. Ellinger, Determination of the minimum masses of heavy elements in the envelopes of Jupiter and Saturn. Astrophys. J. 696, 1348 (2009b) ADSCrossRefGoogle Scholar
  144. O. Mousis, J.I. Lunine, S. Picaud, D. Cordier, Volatile inventories in clathrate hydrates formed in the primordial nebula. Faraday Discuss. 147, 509 (2010) ADSCrossRefGoogle Scholar
  145. O. Mousis, J.I. Lunine, N. Madhusudhan, T.V. Johnson, Nebular water depletion as the cause of Jupiter’s low oxygen abundance. Astrophys. J. 751, L7 (2012a) ADSCrossRefGoogle Scholar
  146. O. Mousis, A. Guilbert-Lepoutre, J.I. Lunine, A.L. Cochran, J.H. Waite, J.M. Petit, P. Rousselot, The dual origin of the nitrogen deficiency in comets: Selective volatile trapping in the nebula and postaccretion radiogenic heating. Astrophys. J. 757, 146 (2012b) ADSCrossRefGoogle Scholar
  147. O. Mousis et al., Scientific rationale of Saturn’s in situ exploration. Planet. Space Sci. 104, 29 (2015) ADSCrossRefGoogle Scholar
  148. M.J. Mumma, S.B. Charnley, The chemical composition of comets–emerging taxonomies and natal heritage. Annu. Rev. Astron. Astrophys. 49, 471 (2011) ADSCrossRefGoogle Scholar
  149. M.J. Mumma, H.A. Weaver, H.P. Larson, The ortho-para ratio of water vapor in comet P/Halley. Astron. Astrophys. 187, 419 (1987) ADSGoogle Scholar
  150. M.J. Mumma, W.E. Blass, H.A. Weaver, H.P. Larson, in The Formation and Evolution of Planetary Systems, Baltimore, ed. by H.A. Weaver, F. Paresce, L. Danly (Cambridge University Press, Cambridge, 1988), p. 157 Google Scholar
  151. K. Nagashima, A.N. Krot, H. Yurimoto, Stardust silicates from primitive meteorites. Nature 428, 921 (2004) ADSCrossRefGoogle Scholar
  152. J.R. Najita, J.S. Carr, K.M. Pontoppidan, C. Salyk, E.F. van Dishoeck, G.A. Blake, The HCN-water ratio in the planet formation region of disks. Astrophys. J. 766, 134 (2013) ADSCrossRefGoogle Scholar
  153. L.R. Nittler, Presolar stardust in meteorites: recent advances and scientific frontiers. Earth Planet. Sci. Lett. 209, 259 (2003) ADSCrossRefGoogle Scholar
  154. G. Notesco, A. Bar-Nun, A \(\sim25~\mbox{K}\) temperature of formation for the submicron ice grains which formed comets. Icarus 175, 546 (2005) ADSCrossRefGoogle Scholar
  155. K.I. Öberg, R. Murray-Clay, E.A. Bergin, The effects of snowlines on C/O in planetary atmospheres. Astrophys. J. 743, L16 (2011) ADSCrossRefGoogle Scholar
  156. T. Owen, P. Mahaffy, H.B. Niemann, S. Atreya, T. Donahue, A. Bar-Nun, I. de Pater, A low-temperature origin for the planetesimals that formed Jupiter. Nature 402, 269 (1999) ADSCrossRefGoogle Scholar
  157. L. Pagani, E. Roueff, P. Lesaffre, Ortho-H2 and the age of interstellar dark clouds. Astrophys. J. 739, L35 (2011) ADSCrossRefGoogle Scholar
  158. L. Paganini, M.A. DiSanti, M.J. Mumma, G.L. Villanueva, B.P. Bonev, J.V. Keane, E.L. Gibb, H. Boehnhard, K.J. Meech, The unexpectedly bright comet C/2012 F6 (Lemmon) unveiled at near-infrared wavelengths. Astron. J. 147, 15 (2014) ADSCrossRefGoogle Scholar
  159. J.P. Perdew, J.I. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, C. Fiolhais, Atoms, molecules, solids and surfaces—applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 46, 6671 (1992) ADSCrossRefGoogle Scholar
  160. M.V. Persson, J.K. Jorgensen, E.F. van Dishoeck, D. Harsono, The deuterium fractionation of water on solar system scales in deeply-embedded low-mass protostars. Astron. Astrophys. 563, 74 (2014) ADSCrossRefGoogle Scholar
  161. M. Pettini, R. Cooke, A new precise measurement of the primordial abundance of deuterium. Mon. Not. R. Astron. Soc. 425, 2477 (2012) ADSCrossRefGoogle Scholar
  162. L. Podio, I. Kamp, C. Codella, S. Cabrit, B. Nisini, C. Dougados, G. Sandell, J.P. Williams, L. Testi, W.-F. Thi, P. Woitke, R. Meirjink, M. Spaans, G. Aresu, F. Ménard, C. Pinte, Water vapor in the protoplanetary disk of DG Tau. Astrophys. J. Lett. 766, L5 (2013) ADSCrossRefGoogle Scholar
  163. K.M. Pontoppidan, S.M. Blevins, The chemistry of planet forming regions is not interstellar. Faraday Discuss. 168, 49 (2014) ADSCrossRefGoogle Scholar
  164. K.M. Pontoppidan, C.P. Dullemond, E.F. van Dishoeck, G.A. Blake, A.C.A. Boogert, N.J. Evans II, J.E. Kessler-Silacii, F. Lahuis, Ices in the edge-on disk CRBR 2422.8-3423: Spitzer spectroscopy and Monte Carlo radiative transfer modeling. Astrophys. J. 622, 463 (2005) ADSCrossRefGoogle Scholar
  165. K.M. Pontoppidan, C. Salyk, G.A. Blake, H.A. Käufl, Spectrally resolved pure rotational lines of water in protoplanetary disks. Astrophys. J. 722, L173 (2010) ADSCrossRefGoogle Scholar
  166. K.M. Pontoppidan, C. Salyk, E.A. Bergin, S. Brittain, B. Marty, O. Mousis, K.I. Öberg, Volatiles in protoplanetary disks, in Protostars and Planets VI, ed. by H. Beuther, R. Klessen, C. Dullemond, Th. Henning (University of Arizona Press, Tucson, 2014), p. 363 Google Scholar
  167. C. Qi, D.J. Wilner, Y. Aikawa, G.A. Blake, M.R. Hogerheijde, Resolving the chemistry in the disk of TW Hydrae. I. Deuterated species. Astrophys. J. 681, 1396 (2008) ADSCrossRefGoogle Scholar
  168. C. Qi et al., Resolving the CO snow line in the disk around HD 163296. Astrophys. J. 740, 84 (2011) ADSCrossRefGoogle Scholar
  169. C. Qi, K.I. Öberg, D.J. Wilner, P. D’Alessio, E.A. Bergin, S.M. Andrews, G.A. Blake, M.R. Hogerheijde, E.F. van Dishoeck, Imaging of the CO snow line in a Solar Nebula analog. Science 341, 630 (2013a) ADSCrossRefGoogle Scholar
  170. C. Qi, K.I. Öberg, D.J. Wilner, H2CO and N2H+ in protoplanetary disks: Evidence for a CO-ice regulated chemistry. Astrophys. J. 765, 34 (2013b) ADSCrossRefGoogle Scholar
  171. Y.L. Radeva, M.J. Mumma, B.P. Bonev, M.A. DiSanti, G.L. Villanuea, K. Magee-Sauer, E.L. Gibb, H.A. Weaver, The organic composition of comet C/2000 WM1 (LINEAR) revealed through infrared spectroscopy. Icarus 206, 764 (2010) ADSCrossRefGoogle Scholar
  172. S.D. Rodgers, S.B. Charnley, Nitrogen isotopic fractionation of interstellar nitriles. Astrophys. J. 689, 1448 (2008) ADSCrossRefGoogle Scholar
  173. E. Roueff, J.C. Loison, K.M. Hickson, Isotopic fractionation of carbon, deuterium and nitrogen: a full chemical study. Astron. Astrophys. 576, 99 (2015) ADSCrossRefGoogle Scholar
  174. K. Saigo, K. Tomisaka, T. Matsumoto, Evolution of first cores and formation of stellar cores in rotating molecular cloud cores. Astrophys. J. 674, 997 (2008) ADSCrossRefGoogle Scholar
  175. C. Salyk, K.M. Pontoppidan, G.A. Blake, F. Lahuis, E.F. van Dishoeck, N.J. Evans II, H2O and OH gas in the terrestrial planet-forming zones of protoplanetary disks. Astrophys. J. 676, L49 (2008) ADSCrossRefGoogle Scholar
  176. J. Schönke, W. Tscharnuter, Protostellar collapse of rotating cloud cores. Covering the complete first accretion period of the stellar core. Astron. Astrophys. 526, 139 (2011) ADSCrossRefzbMATHGoogle Scholar
  177. D. Semenov, D. Wiebe, Chemical evolution of turbulent protoplanetary disks and the solar nebula. Astrophys. J. Suppl. Ser. 196, 25 (2011) ADSCrossRefGoogle Scholar
  178. D. Semenov, D. Wiebe, Th. Henning, Gas-phase CO in protoplanetary disks: A challenge for turbulent mixing. Astrophys. J. 647, L57 (2006) ADSCrossRefGoogle Scholar
  179. Y. Shinnaka, H. Kawakita, H. Kobayashi, E. Jehin, J. Manfroid, D. Hutsemékers, C. Arpigny, Ortho-to-para abundance ratio (OPR) of ammonia in 15 comets: OPRs of ammonia versus 14N/15N ratios in CN. Astrophys. J. 729, 81 (2011) ADSCrossRefGoogle Scholar
  180. B. Silvi, A. Savin, Classification of chemical bonds based on topological analysis of electron localization functions. Nature 371, 683 (1994) ADSCrossRefGoogle Scholar
  181. V. Taquet, P.S. Peters, C. Kahane, C. Ceccarelli, A. López-Sepulcre, C. Toubin, D. Duflot, L. Wiesenfeld, Water ice deuteration: A tracer of the chemical history of protostars. Astron. Astrophys. 550, 127 (2013) ADSCrossRefGoogle Scholar
  182. V. Taquet, S.B. Charnley, O. Sipila, Multilayer formation and evaporation of deuterated ices in prestellar and protostellar cores. Astrophys. J. 791, 1 (2014) ADSCrossRefGoogle Scholar
  183. P. Theulé, F. Duvernay, G. Danger, F. Borget, J.B. Bossa, B. Vinogradoff, F. Mispelaer, T. Chiavassa, Thermal reactions in interstellar ice: A step towards molecular complexity in the interstellar medium. Adv. Space Res. 52, 1567 (2013) ADSCrossRefGoogle Scholar
  184. A.G.G.M. Tielens, Surface chemistry of deuterated molecules. Astron. Astrophys. 119, 177 (1983) ADSGoogle Scholar
  185. C. Tornow, P. Gast, I. Pelivan, S. Kupper, E. Kührt, U. Motschmann, Water formation in early solar nebula: I. Quasi-stationary cloud core. Planet. Space Sci. 98, 216 (2014a) ADSCrossRefGoogle Scholar
  186. C. Tornow, P. Gast, U. Motschmann, S. Kupper, E. Kührt, I. Pelivan, Water formation in early solar nebula: II. Collapsing cloud core. Planet. Space Sci. 98, 233 (2014b) ADSCrossRefGoogle Scholar
  187. N.J. Turner, K. Willacy, G. Bryden, H.W. Yorke, Turbulent mixing in the outer solar nebula. Astrophys. J. 639, 1218 (2006) ADSCrossRefGoogle Scholar
  188. N.J. Turner, T. Sano, N. Dziourkevitch, Turbulent mixing and the dead zone in protostellar disks. Astrophys. J. 659, 729 (2007) ADSCrossRefGoogle Scholar
  189. N.J. Turner, S. Fromang, C. Gammie, H. Klahr, G. Lesur, M. Wardle, X. Bai, Transport and accretion in planet-forming disks, in Protostars and Planets VI, ed. by H. Beuther, R. Klessen, C. Dullemond, Th. Henning (University of Arizona Press, Tucson, 2014), p. 411 Google Scholar
  190. A.I. Vasyunin, D.A. Wiebe, T. Birnstiel, S. Zhukovska, Th. Henning, C.P. Dullemond, Impact of grain evolution on the chemical structure of protoplanetary disks. Astrophys. J. 727, 76 (2011) ADSCrossRefGoogle Scholar
  191. G.L. Villanueva, M.J. Mumma, B.P. Bonev, M.A. DiSanti, E.L. Gibb, H. Böhnhardt, M. Lippi, A sensitive search for deuterated water in Comet 8P/Tuttle. Astrophys. J. 690, 5 (2009) ADSCrossRefGoogle Scholar
  192. G.J. Villanueva, M.J. Mumma, M.A. DiSanti, B.P. Bonev, E.L. Gibb, K. Magee-Sauer, G.A. Blake, C. Salyk, The molecular composition of comet C/2007 W1 (Boattini): Evidence of a peculiar outgassing and a rich chemistry. Icarus 216, 227 (2011) ADSCrossRefGoogle Scholar
  193. R. Visser, E.F. van Dishoeck, J.H. Black, The photodissociation and chemistry of CO isotopologues: Applications to interstellar clouds and circumstellar disks. Astron. Astrophys. 503, 323 (2009a) ADSCrossRefGoogle Scholar
  194. R. Visser, E.F. van Dishoeck, S.D. Doty, C.P. Dullemond, The chemical history of molecules in circumstellar disks. I. Ices. Astron. Astrophys. 495, 881–897 (2009b) ADSCrossRefGoogle Scholar
  195. R. Visser, S.D. Doty, E.F. van Dishoeck, The chemical history of molecules in circumstellar disks. II. Gas-phase species. Astron. Astrophys. 534, 132 (2011) ADSCrossRefGoogle Scholar
  196. V. Wakelam, C. Vastel, Y. Aikawa, A. Coutens, S. Bottinelli, E. Caux, Chemical modeling of water deuteration in IRAS 16293-2422. Mon. Not. R. Astron. Soc. 445, 2854 (2012) ADSCrossRefGoogle Scholar
  197. C. Walsh, T.J. Millar, H. Nomura, Molecular line emission from a protoplanetary disk irradiated externally by a nearby massive star. Astrophys. J. 766, L23 (2013) ADSCrossRefGoogle Scholar
  198. C. Walsh, T.J. Millar, H. Nomura, E. Herbst, S. Widicus Weaver, Y. Aikawa, J.C. Laas, A.I. Vasyunin, Complex organic molecules in protoplanetary disks. Astron. Astrophys. 563, 33 (2014) ADSCrossRefGoogle Scholar
  199. N. Watanabe, A. Kouchi, Ice surface reactions: A key to chemical evolution in space. Prog. Surf. Sci. 83, 439 (2008) ADSCrossRefGoogle Scholar
  200. K. Willacy, The chemistry of multiply deuterated molecules in protoplanetary disks. I. The outer disk. Astrophys. J. 660, 44 (2007) ADSCrossRefGoogle Scholar
  201. K. Willacy, W.D. Langer, The importance of photoprocessing in protostellar disks. Astrophys. J. 544, 903 (2000) ADSCrossRefGoogle Scholar
  202. K. Willacy, N.J. Turner, Turbulent mixing and the abundance of water ice at the snow-line of a protostellar disk (2015, in preparation) Google Scholar
  203. K. Willacy, P.M. Woods, Deuterium chemistry in protoplanetary disks. II. The inner 30 AU. Astrophys. J. Lett. 703, 479 (2009) ADSCrossRefGoogle Scholar
  204. K. Willacy, H.H. Klahr, T.J. Millar, Th. Henning, Gas and grain chemistry in a protoplanetary disk. Astron. Astrophys. 338, 995 (1998) ADSGoogle Scholar
  205. K. Willacy, W.D. Langer, M. Allen, G. Bryden, Turbulence-driven diffusion in protoplanetary disks: Chemical effects in the outer regions. Astrophys. J. 644, 1202 (2006) ADSCrossRefGoogle Scholar
  206. E.S. Wirström, W.D. Geppert, A. Hjalmarson, C.M. Persson, J.H. Black, P. Bergman, T.J. Millar, M. Hamberg, E. Vigren, Observational tests of interstellar methanol formation. Astron. Astrophys. 533, 24 (2011) ADSCrossRefGoogle Scholar
  207. E.S. Wirström, S.B. Charnley, M.A. Cordiner, S.N. Milam, Isotopic anomalies in primitive solar system matter: Spin-state-dependent fractionation of nitrogen and deuterium in interstellar clouds. Astrophys. J. 757, L11 (2012) ADSCrossRefGoogle Scholar
  208. P.M. Woods, K. Willacy, Benzene formation in the inner regions of protostellar disks. Astrophys. J. 655, L49 (2007) ADSCrossRefGoogle Scholar
  209. P.M. Woods, K. Willacy, Carbon isotope fractionation in protoplanetary disks. Astrophys. J. 693, 1360 (2009) ADSCrossRefGoogle Scholar
  210. C.E. Woodward, M.S. Kelley, D. Bockelée-Morvan, R.D. Gehrz, Water in comet C/2003 K4 (LINEAR) with Spitzer. Astrophys. J. 671, 1065 (2007) ADSCrossRefGoogle Scholar
  211. S. Wyckoff, S.C. Tegler, L. Engel, Nitrogen abundance in comet Halley. Astrophys. J. 367, 641 (1991) ADSCrossRefGoogle Scholar
  212. E.D. Young, Time-dependent oxygen isotopic effects of CO self-shielding across the solar protoplanetary disk. Earth Planet. Sci. Lett. 262, 468 (2007) ADSCrossRefGoogle Scholar
  213. M. Yu, K. Willacy, S. Dodson-Robinson, N. Turner, N.J. Evans II, Peering into the giant planet forming region of an MRI-active disk with rare CO isotopologues. Astrophys. J. (2014, submitted) Google Scholar
  214. H. Yurimoto, K. Kuramoto, Molecular cloud origin for the oxygen isotope heterogeneity in the solar system. Science 305, 1763 (2004) ADSCrossRefGoogle Scholar
  215. H. Yurimoto, K. Kuramoto, A.N. Krot, E.R.D. Scott, J.N. Cuzzi, M.H. Thiemens, J.R. Lyons, Origin and evolution of oxygen isotopic compositions of the solar system, in Protostars and Planets V (University of Arizona Press, Tucson, 2007) Google Scholar
  216. V. Zubko, E. Dwek, R.G. Arendt, Interstellar dust models consistent with extinction, emission, and abundance constraints. Astrophys. J. Suppl. Ser. 152, 211 (2004) ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • K. Willacy
    • 1
  • C. Alexander
    • 2
  • M. Ali-Dib
    • 3
  • C. Ceccarelli
    • 4
    • 5
  • S. B. Charnley
    • 6
  • M. Doronin
    • 7
    • 8
  • Y. Ellinger
    • 7
  • P. Gast
    • 9
  • E. Gibb
    • 10
  • S. N. Milam
    • 6
  • O. Mousis
    • 11
  • F. Pauzat
    • 7
  • C. Tornow
    • 9
  • E. S. Wirström
    • 12
  • E. Zicler
    • 7
  1. 1.MS 169-506, NASA Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaUSA
  2. 2.MS 321-590, NASA Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaUSA
  3. 3.Institut UTINAM, CNRS/INSU, UMR 6213Université de Franche-ComtéBesançonFrance
  4. 4.IPAGUniv. Grenoble AlpesGrenobleFrance
  5. 5.IPAGCNRSGrenobleFrance
  6. 6.Astrochemistry Laboratory, Mail Code 691NASA Goddard Space Flight CenterGreenbeltUSA
  7. 7.Laboratoire de Chimie Théorique (LCT)Sorbonne Université, UPMC Univ Paris 06, CNRS UMR, 7616Paris CEDEX 05France
  8. 8.Laboratoire de Physique Moléculaire pour l’Atmosphère et l’Astrophysique (LERMA/LPMAA)Sorbonne Université, UPMC Univ Paris 06, CNRS UMR, 7092Paris CEDEX 05France
  9. 9.Institute of Planetary Research (DLR)BerlinGermany
  10. 10.Department of Physics and AstronomyUniversity of Missouri – St. LouisSt. LouisUSA
  11. 11.LAM (Laboratoire d’Astrophysique de Marseille) UMR 736Aix-Marseille Université, CNRSMarseilleFrance
  12. 12.Onsala Space Observatory, Department of Earth and Space SciencesChalmers University of TechnologyOnsalaSweden

Personalised recommendations