Advertisement

Space Science Reviews

, Volume 195, Issue 1–4, pp 357–422 | Cite as

Characterizing Atmospheric Escape from Mars Today and Through Time, with MAVEN

  • R. J. Lillis
  • D. A. Brain
  • S. W. Bougher
  • F. Leblanc
  • J. G. Luhmann
  • B. M. Jakosky
  • R. Modolo
  • J. Fox
  • J. Deighan
  • X. Fang
  • Y. C. Wang
  • Y. Lee
  • C. Dong
  • Y. Ma
  • T. Cravens
  • L. Andersson
  • S. M. Curry
  • N. Schneider
  • M. Combi
  • I. Stewart
  • J. Clarke
  • J. Grebowsky
  • D. L. Mitchell
  • R. Yelle
  • A. F. Nagy
  • D. Baker
  • R. P. Lin
Article

Abstract

Two of the primary goals of the MAVEN mission are to determine how the rate of escape of Martian atmospheric gas to space at the current epoch depends upon solar influences and planetary parameters and to estimate the total mass of atmosphere lost to space over the history of the planet. Along with MAVEN’s suite of nine science instruments, a collection of complementary models of the neutral and plasma environments of Mars’ upper atmosphere and near-space environment are an indispensable part of the MAVEN toolkit, for three primary reasons. First, escaping neutrals will not be directly measured by MAVEN and so neutral escape rates must be derived, via models, from in situ measurements of plasma temperatures and neutral and plasma densities and by remote measurements of the extended exosphere. Second, although escaping ions will be directly measured, all MAVEN measurements are limited in spatial coverage, so global models are needed for intelligent interpolation over spherical surfaces to calculate global escape rates. Third, MAVEN measurements will lead to multidimensional parameterizations of global escape rates for a range of solar and planetary parameters, but further global models informed by MAVEN data will be required to extend these parameterizations to the more extreme conditions that likely prevailed in the early solar system, which is essential for determining total integrated atmospheric loss. We describe these modeling tools and the strategies for using them in concert with MAVEN measurements to greater constrain the history of atmospheric loss on Mars.

Keywords

Mars Atmosphere Escape Maven Models 

References

  1. E. Alge, N.G. Adams, D. Smith, Measurements of the dissociative recombination coefficients of \(\mbox{O}^{+}2\), \(\mathrm{No}^{+}\) and \(\mathrm{Nh}^{+4}\) in the temperature-range 200–600 K. J. Phys. B, At. Mol. Opt. Phys. 16, 1433–1444 (1983) ADSCrossRefGoogle Scholar
  2. D.E. Anderson, Mariner 6, 7, and 9 ultraviolet spectrometer experiment—analysis of hydrogen Lyman-Alpha data. J. Geophys. Res. 79, 1513–1518 (1974) ADSCrossRefGoogle Scholar
  3. L. Andersson, R.E. Ergun, A.I.F. Stewart, The combined atmospheric photochemistry and ion tracing code: reproducing the Viking Lander results and initial outflow results. Icarus 206, 120–129 (2010) ADSCrossRefGoogle Scholar
  4. L. Andersson, R.E. Ergun, G. Delory, The Langmuir probe and waves experiment for MAVEN. Space Sci. Rev. (2014, submitted) Google Scholar
  5. M. Angelats i Coll, The first Mars thermospheric general circulation model: the Martian atmosphere from the ground to 240 km. Geophys. Res. Lett. 32, L04201 (2005) ADSGoogle Scholar
  6. W. Atwell, P. Saganti, F.A. Cucinotta, C.J. Zeitlin, A space radiation shielding model of the Martian radiation environment experiment (MARIE). Adv. Space Res. 33, 2219–2221 (2004) ADSCrossRefGoogle Scholar
  7. S.L. Baliunas, G.W. Henry, R.A. Donahue, F.C. Fekel, W.H. Soon, Properties of Sun-like stars with planets: rho(1) Cancri, tau Bootis, and nu Andromedae. Astrophys. J. 474, L119–L122 (1997) ADSCrossRefGoogle Scholar
  8. S. Barabash, A. Fedorov, R. Lundin, J.A. Sauvaud, Martian atmospheric erosion rates. Science 315, 501–503 (2007a) ADSCrossRefGoogle Scholar
  9. S. Barabash, R. Lundin, H. Andersson, K. Brinkfeldt, A. Grigoriev, H. Gunell, M. Holmström, M. Yamauchi, K. Asamura, P. Bochsler, P. Wurz, R. Cerulli-Irelli, A. Mura, A. Milillo, M. Maggi, S. Orsini, A.J. Coates, D.R. Linder, D.O. Kataria, C.C. Curtis, K.C. Hsieh, B.R. Sandel, R.A. Frahm, J.R. Sharber, J.D. Winningham, M. Grande, E. Kallio, H. Koskinen, P. Riihelä, W. Schmidt, T. Säles, J.U. Kozyra, N. Krupp, J. Woch, S. Livi, J.G. Luhmann, S. McKenna-Lawlor, E.C. Roelof, D.J. Williams, J.A. Sauvaud, A. Fedorov, J.J. Thocaven, The Analyzer of Space Plasmas and Energetic Atoms (ASPERA-3) for the Mars Express mission. Space Sci. Rev. 126, 113–164 (2007b) ADSCrossRefGoogle Scholar
  10. G.A. Bird, New chemical-reaction model for direct simulation Monte-Carlo studies. Prog. Astronaut. Aeronaut. 159, 185–196 (1994) Google Scholar
  11. S.W. Bougher, H. Shinagawa, The Mars thermosphere-ionosphere: predictions for the arrival of Planet-B. Earth Planets Space 50, 247–257 (1998) ADSCrossRefGoogle Scholar
  12. S.W. Bougher, R.G. Roble, E.C. Ridley, R.E. Dickinson, The Mars thermosphere. 2. General-circulation with coupled dynamics and composition. J. Geophys. Res., Solid Earth 95, 14811–14827 (1990) CrossRefGoogle Scholar
  13. S. Bougher, G. Keating, R. Zurek, J. Murphy, R. Haberle, J. Hollingsworth, R.T. Clancy, Mars global surveyor aerobraking: atmospheric trends and model interpretation. Adv. Space Res. 23, 1887–1897 (1999) ADSCrossRefGoogle Scholar
  14. S.W. Bougher, S. Engel, D.P. Hinson, J.R. Murphy, MGS radio science electron density profiles: interannual variability and implications for the Martian neutral atmosphere. J. Geophys. Res., Planets 109, E03010 (2004) ADSGoogle Scholar
  15. S.W. Bougher, J.M. Bell, J.R. Murphy, M.A. Lopez-Valverde, P.G. Withers, Polar warming in the Mars thermosphere: seasonal variations owing to changing insolation and dust distributions. Geophys. Res. Lett. 33, L02203 (2006) ADSCrossRefGoogle Scholar
  16. S.W. Bougher, P.L. Blelly, M. Combi, J.L. Fox, I. Mueller-Wodarg, A. Ridley, R.G. Roble, Neutral upper atmosphere and ionosphere modeling. Space Sci. Rev. 139, 107–141 (2008) ADSCrossRefGoogle Scholar
  17. S.W. Bougher, T.E. Cravens, J. Grebowsky, J. Luhmann, The aeronomy of Mars: characterization by MAVEN of the upper atmospheric reservoir that regulates volatile escape. Space Sci. Rev. (2014). doi: 10.1007/s11214-014-0053-7 Google Scholar
  18. S.W. Bougher, D. Pawlowski, J.M. Bell, S. Nelli, T. McDunn, J.R. Murphy, M. Chizek, A. Ridley, Mars global ionosphere-thermosphere model: solar cycle, seasonal, and diurnal variations of the Mars upper atmosphere. J. Geophys. Res., Planets 120, 311–342 (2015) ADSCrossRefGoogle Scholar
  19. D.A. Brain, Variability of the altitude of the Martian sheath. Geophys. Res. Lett. 32, L18203 (2005) ADSCrossRefGoogle Scholar
  20. D.A. Brain, Mars global surveyor measurements of the Martian solar wind interaction. Space Sci. Rev. 126, 77–112 (2006) ADSCrossRefGoogle Scholar
  21. D.A. Brain, B.M. Jakosky, Atmospheric loss since the onset of the Martian geologic record: combined role of impact erosion and sputtering. J. Geophys. Res., Planets 103, 22689–22694 (1998) ADSCrossRefGoogle Scholar
  22. D.A. Brain, F. Bagenal, M.H. Acuña, J.E.P. Connerney, Martian magnetic morphology: contributions from the solar wind and crust. J. Geophys. Res. 108, 1424 (2003). doi: 10.1029/2002JA009482 CrossRefGoogle Scholar
  23. D.A. Brain, D.L. Mitchell, J.S. Halekas, The magnetic field draping direction at Mars from April 1999 through August 2004. Icarus 182, 464–473 (2006) ADSCrossRefGoogle Scholar
  24. D. Brain, S. Barabash, A. Boesswetter, S. Bougher, S. Brecht, G. Chanteur, D. Hurley, E. Dubinin, X. Fang, M. Fraenz, J. Halekas, E. Harnett, M. Holmstrom, E. Kallio, H. Lammer, S. Ledvina, M. Liemohn, K. Liu, J. Luhmann, Y. Ma, R. Modolo, A. Nagy, U. Motschmann, H. Nilsson, H. Shinagawa, S. Simon, N. Terada, A comparison of global models for the solar wind interaction with Mars. Icarus 206, 139–151 (2010a) ADSCrossRefGoogle Scholar
  25. D.A. Brain, D. Hurley, M.R. Combi, The solar wind interaction with Mars: recent progress and future directions. Icarus 206, 1–4 (2010b) ADSCrossRefGoogle Scholar
  26. D.A. Brain, S.W. Bougher, S.H. Brecht, G.M. Chanteur, S. Curry, C. Dong, E. Dubinin, F. Duru, X. Fang, A. Fedorov, M. Fraenz, J.S. Halekas, E.M. Harnett, S. Hess, M. Holmstrom, R. Jarvinen, E.J. Kallio, A. Kidder, S.A. Ledvina, M.W. Liemohn, J.G. Luhmann, Y. Ma, R. Modolo, A.F. Nagy, D. Najib, H. Nilsson, C.S. Paty, D. Ulusen, Comparison of global models for the escape of Martian atmospheric plasma. Publication: American Geophysical Union, Fall Meeting 2012, abstract #P13C-1969 Google Scholar
  27. D.A. Brain, S. Barabash, S.W. Bougher, F. Duru, B.M. Jakosky, R. Modolo, Solar wind interaction and atmospheric escape, in Mars Book II (2015) Google Scholar
  28. R. Bruno, V. Carbone, The solar wind as a turbulence laboratory. Living Rev. Sol. Phys. 10, 2 (2013) ADSCrossRefGoogle Scholar
  29. M. Chaffin, J.-Y. Chaufray, I. Stewart, M. Montmessin, N. Schneider, Unexpected variability of martian hydrogen escape. Geophys. Res. Lett. 41, 2 (2014). doi: 10.1002/2013GL058578 CrossRefGoogle Scholar
  30. J.W. Chamberlain, Planetary coronae and atmospheric evaporation. Planet. Space Sci. 11, 901–960 (1963) ADSCrossRefGoogle Scholar
  31. J.W. Chamberlain, Charge-exchange in a planetary corona—its effect on distribution and escape of hydrogen. J. Geophys. Res. Space Phys. 82, 1–9 (1977) ADSCrossRefGoogle Scholar
  32. G.M. Chanteur, E. Dubinin, R. Modolo, M. Fraenz, Capture of solar wind alpha-particles by the Martian atmosphere. Geophys. Res. Lett. 36, L23105 (2009) ADSCrossRefGoogle Scholar
  33. E. Chassefière, F. Leblanc, Mars atmospheric escape and evolution; interaction with the solar wind. Planet. Space Sci. 52, 1039–1058 (2004) ADSCrossRefGoogle Scholar
  34. E. Chassefière, F. Leblanc, B. Langlais, The combined effects of escape and magnetic field histories at Mars. Planet. Space Sci. 55, 343–357 (2007) ADSCrossRefGoogle Scholar
  35. B.K. Chatterjee, R. Johnsen, Clustering reactions of \(\mbox{H2CN}^{+}\) ions with HCN. J. Chem. Phys. 87, 2399 (1987) ADSCrossRefGoogle Scholar
  36. J.Y. Chaufray, R. Modolo, F. Leblanc, G. Chanteur, R.E. Johnson, J.G. Luhmann, Mars solar wind interaction: formation of the Martian corona and atmospheric loss to space. J. Geophys. Res. 112, E09009 (2007) ADSCrossRefGoogle Scholar
  37. J.Y. Chaufray, J.L. Bertaux, F. Leblanc, E. Quémerais, Observation of the hydrogen corona with SPICAM on Mars express. Icarus 195, 598–613 (2008) ADSCrossRefGoogle Scholar
  38. P.R. Christensen, B. Jakosky, H.H. Kieffer, M.C. Malin, H.Y. McSween, K. Nealson, G.L. Mehall, S.H. Silverman, S. Ferry, M. Caplinger, M. Ravine, The Thermal Emission Imaging System (THEMIS) for the Mars 2001 Odyssey mission. Space Sci. Rev. 110, 85–130 (2004) ADSCrossRefGoogle Scholar
  39. F. Cipriani, F. Leblanc, J.J. Berthelier, Martian corona: nonthermal sources of hot heavy species. J. Geophys. Res. 112, E07001 (2007). doi: 10.1029/2006JE002818 ADSCrossRefGoogle Scholar
  40. J.T. Clarke, J.-L. Bertaux, J.-Y. Chaufray, G.R. Gladstone, E. Quemerais, J.K. Wilson, D. Bhattacharyya, A rapid decrease of the hydrogen corona of Mars. Geophys. Res. Lett. 41, 8013–8020 (2014). doi: 10.1002/2014GL061803 ADSCrossRefGoogle Scholar
  41. P.A. Cloutier, C.C. Law, D.H. Crider, P.W. Walker, Y. Chen, M.H. Acuna, J.E.P. Connerney, R.P. Lin, K.A. Anderson, D.L. Mitchell, C.W. Carlson, J. McFadden, D.A. Brain, H. Reme, C. Mazelle, J.A. Sauvaud, C. d’Uston, D. Vignes, S.J. Bauer, N.F. Ness, Venus-like interaction of the solar wind with Mars. Geophys. Res. Lett. 26, 2685–2688 (1999) ADSCrossRefGoogle Scholar
  42. J.E.P. Connerney, M.H. Acuña, P.J. Wasilewski, N.F. Ness, H. Rème, C. Mazelle, D. Vignes, R.P. Lin, D.L. Mitchell, P.A. Cloutier, Response to “Questions about Magnetic Lineations in the Ancient Crust of Mars” (2000) by C.G.A. Harrison. Science 287, 547a (2000) CrossRefGoogle Scholar
  43. J. Connerney, J. Espley, P. Lawton, S. Murphy, J. Odom, R. Oliversen, D. Shepperd, The MAVEN magnetic field investigation. Space Sci. Rev. (2015). doi: 10.1007/s11214-015-0169-4 Google Scholar
  44. D.H. Crider, D. Vignes, A.M. Krymskii, T.K. Breus, N.F. Ness, D.L. Mitchell, J.A. Slavin, M. Acuña, A proxy for determining solar wind dynamic pressure at Mars using Mars Global Surveyor data. J. Geophys. Res. 108(A12), 1461 (2003). doi: 10.1029/2003JA009875 CrossRefGoogle Scholar
  45. S. Curry, M.W. Liemohn, X. Fang, Y. Ma, D. Najib, D. Brain, Model comparison of oxygen ion loss at Mars. Publication: American Geophysical Union, Fall Meeting 2011, abstract #SA13A-1872 Google Scholar
  46. S.M. Curry, M. Liemohn, X. Fang, D. Brain, Y. Ma, Simulated kinetic effects of the corona and solar cycle on high altitude ion transport at Mars. J. Geophys. Res. Space Phys. 118, 3700–3711 (2013a) ADSCrossRefGoogle Scholar
  47. S.M. Curry, M. Liemohn, X. Fang, Y. Ma, J. Espley, The influence of production mechanisms on pick-up ion loss at Mars. J. Geophys. Res. Space Phys. 118, 554–569 (2013b) ADSCrossRefGoogle Scholar
  48. G.T. Delory, J.G. Luhmann, D. Brain, R.J. Lillis, D.L. Mitchell, R.A. Mewaldt, T.V. Falkenberg, Energetic particles detected by the electron reflectometer instrument on the Mars Global Surveyor, 1999–2006. Space Weather 10, S06003 (2012) ADSCrossRefGoogle Scholar
  49. Y. Deng, A.D. Richmond, A.J. Ridley, H.L. Liu, Assessment of the non-hydrostatic effect on the upper atmosphere using a general circulation model (GCM). Geophys. Res. Lett. 35, L01104 (2008) ADSGoogle Scholar
  50. C. Diéval, G. Stenberg, H. Nilsson, S. Barabash, A statistical study of proton precipitation onto the Martian upper atmosphere: Mars Express observations. J. Geophys. Res. Space Phys. 118, 1972–1983 (2013) ADSCrossRefGoogle Scholar
  51. C. Dong, S.W. Bougher, Y. Ma, G. Toth, A. Nagy, D. Najib, Solar wind interaction with Mars upper atmosphere: results from the one-way coupling between the multi-fluid MHD model and the MTGCM model. Geophys. Res. Lett. 41, 2708–2715 (2014). doi: 10.1002/2014GL059515 ADSCrossRefGoogle Scholar
  52. E. Dubinin, Upper ionosphere of Mars is not axially symmetrical. Earth Planets Space 64, 113–120 (2012) ADSCrossRefGoogle Scholar
  53. E. Dubinin, M. Fraenz, A. Fedorov, R. Lundin, N. Edberg, F. Duru, O. Vaisberg, Ion energization and escape on Mars and Venus. Space Sci. Rev. 162, 173–211 (2011) ADSCrossRefGoogle Scholar
  54. E. Dubinin, M. Fraenz, J. Woch, T.L. Zhang, J. Wei, A. Fedorov, S. Barabash, R. Lundin, Bursty escape fluxes in plasma sheets of Mars and Venus. Geophys. Res. Lett. 39, L01104 (2012) ADSCrossRefGoogle Scholar
  55. D.J. Dunlop, J. Arkani-Hamed, Magnetic minerals in the Martian crust. J. Geophys. Res. 110, E12S04 (2005). doi: 10.1029/2005JE002404 ADSGoogle Scholar
  56. N.J.T. Edberg, H. Nilsson, A.O. Williams, M. Lester, S.E. Milan, S.W.H. Cowley, M. Fränz, S. Barabash, Y. Futaana, Pumping out the atmosphere of Mars through solar wind pressure pulses. Geophys. Res. Lett. 37, L03107 (2010) ADSGoogle Scholar
  57. F. Eparvier, P.C. Chamberlin, T.N. Woods, E.M.B. Thiemann, The solar extreme ultraviolet monitor for MAVEN. Space Sci. Rev. (2014) Google Scholar
  58. J.R. Espley, G.T. Delory, P.A. Cloutier, Initial observations of low-frequency magnetic fluctuations in the Martian ionosphere. J. Geophys. Res. 111, E06S22 (2006) CrossRefGoogle Scholar
  59. X. Fang, M.W. Liemohn, A.F. Nagy, Y. Ma, D.L. De Zeeuw, J.U. Kozyra, T.H. Zurbuchen, Pickup oxygen ion velocity space and spatial distribution around Mars. J. Geophys. Res. 113, A02210 (2008) ADSGoogle Scholar
  60. X. Fang, M.W. Liemohn, A.F. Nagy, J.G. Luhmann, Y. Ma, On the effect of the Martian crustal magnetic field on atmospheric erosion. Icarus 206, 130–138 (2010) ADSCrossRefGoogle Scholar
  61. X.H. Fang, S.W. Bougher, R.E. Johnson, J.G. Luhmann, Y.J. Ma, Y.C. Wang, M.W. Liemohn, The importance of pickup oxygen ion precipitation to the Mars upper atmosphere under extreme solar wind conditions. Geophys. Res. Lett. 40, 1922–1927 (2013) ADSCrossRefGoogle Scholar
  62. A. Fedorov, E. Budnik, J.A. Sauvaud, C. Mazelle, S. Barabash, R. Lundin, M. Acuna, M. Holmstrom, A. Grigoriev, M. Yamauchi, H. Andersson, J.J. Thocaven, D. Winningham, R. Frahm, J.R. Sharber, J. Scherrer, A.J. Coates, D.R. Linder, D.O. Kataria, E. Kallio, H. Koskinen, T. Sales, P. Riihela, W. Schmidt, J. Kozyra, J. Luhmann, E. Roelof, D. Williams, S. Livi, C.C. Curtis, K.C. Hsieh, B.R. Sandel, M. Grande, M. Carter, S. McKenna-Lawler, S. Orsini, R. Cerulli-Irelli, M. Maggi, P. Wurz, P. Bochsler, N. Krupp, J. Woch, M. Franz, K. Asamura, C. Dierker, Structure of the Martian wake. Icarus 182, 329–336 (2006) ADSCrossRefGoogle Scholar
  63. P.D. Feldman, A.J. Steffl, J.W. Parker, M.F. A’Hearn, J.L. Bertaux, S.A. Stern, H.A. Weaver, D.C. Slater, M. Versteeg, H.B. Throop, N.J. Cunningham, L.M. Feaga, Rosetta-Alice observations of exospheric hydrogen and oxygen on Mars. Icarus 214, 394–399 (2011) ADSCrossRefGoogle Scholar
  64. F. Forget, F. Hourdin, R. Fournier, C. Hourdin, O. Talagrand, M. Collins, S.R. Lewis, P.L. Read, J.-P. Huot, Improved general circulation models of the Martian atmosphere from the surface to above 80 km. J. Geophys. Res. 104, 24155 (1999) ADSCrossRefGoogle Scholar
  65. J.L. Fox, A. Hac, Spectrum of hot O at the exobases of the terrestrial planets. J. Geophys. Res. 1022, 24005–24012 (1997) ADSCrossRefGoogle Scholar
  66. J.L. Fox, A.B. Hać, Photochemical escape of oxygen from Mars: a comparison of the exobase approximation to a Monte Carlo method. Icarus 204, 527–544 (2009) ADSCrossRefGoogle Scholar
  67. J.L. Fox, A. Hać, Isotope fractionation in the photochemical escape of O from Mars. Icarus 208, 176–191 (2010) ADSCrossRefGoogle Scholar
  68. J.L. Fox, A.B. Hać, The escape of O from Mars: Sensitivity to the elastic cross sections. Icarus 228, 375–385 (2014) ADSCrossRefGoogle Scholar
  69. Y. Futaana, S. Barabash, M. Yamauchi, S. McKenna-Lawlor, R. Lundin, J.G. Luhmann, D. Brain, E. Carlsson, J.A. Sauvaud, J.D. Winningham, R.A. Frahm, P. Wurz, M. Holmström, H. Gunell, E. Kallio, W. Baumjohann, H. Lammer, J.R. Sharber, K.C. Hsieh, H. Andersson, A. Grigoriev, K. Brinkfeldt, H. Nilsson, K. Asamura, T.L. Zhang, A.J. Coates, D.R. Linder, D.O. Kataria, C.C. Curtis, B.R. Sandel, A. Fedorov, C. Mazelle, J.J. Thocaven, M. Grande, H.E.J. Koskinen, T. Sales, W. Schmidt, P. Riihela, J. Kozyra, N. Krupp, J. Woch, M. Fränz, E. Dubinin, S. Orsini, R. Cerulli-Irelli, A. Mura, A. Milillo, M. Maggi, E. Roelof, P. Brandt, K. Szego, J. Scherrer, P. Bochsler, Mars express and Venus Express multi-point observations of geoeffective solar flare events in December 2006. Planet. Space Sci. 56, 873–880 (2008) ADSCrossRefGoogle Scholar
  70. F. González-Galindo, F. Forget, M.A. López-Valverde, M. Angelats i Coll, E. Millour, A ground-to-exosphere Martian general circulation model: 1. Seasonal, diurnal, and solar cycle variation of thermospheric temperatures. J. Geophys. Res. 114, E04001 (2009) ADSGoogle Scholar
  71. F. González-Galindo, J.Y. Chaufray, M.A. Lopez-Valverde, G. Gilli, F. Forget, F. Leblanc, R. Modolo, S. Hess, M. Yagi, Three-dimensional Martian ionosphere model: I. The photochemical ionosphere below 180 km. J. Geophys. Res., Planets 118, 2105–2123 (2013) ADSCrossRefGoogle Scholar
  72. J.T. Gosling, S.J. Bame, W.C. Feldman, D.J. Mccomas, J.L. Phillips, B. Goldstein, M. Neugebauer, J. Burkepile, A.J. Hundhausen, L. Acton, The band of solar-wind variability at low heliographic latitudes near solar-activity minimum—plasma results from the Ulysses rapid latitude scan. Geophys. Res. Lett. 22, 3329–3332 (1995) ADSCrossRefGoogle Scholar
  73. M. Gurtner, L. Desorgher, E.O. Fluckiger, M.R. Moser,Advances in Space Research Simulation of the interaction of space radiation with the Martian atmosphere and surface. Adv. Space Res. 36, 2176–2181 (2005) ADSCrossRefGoogle Scholar
  74. J.S. Halekas, E.R. Taylor, G. Dalton, G. Johnson, D.W. Curtis, J.P. McFadden, D.L. Mitchell, R.P. Lin, B.M. Jakosky, The MAVEN solar wind ion analyzer. Space Sci. Rev. (2013). doi: 10.1007/s11214-013-0029-z Google Scholar
  75. W.B. Hanson, S. Sanatani, D. Zuccaro, Retarding potential analyzer measurements from Viking Landers. Trans. Am. Geophys. Union 57, 966 (1976) Google Scholar
  76. T. Hara, K. Seki, Y. Futaana, M. Yamauchi, M. Yagi, Y. Matsumoto, M. Tokumaru, A. Fedorov, S. Barabash, Heavy-ion flux enhancement in the vicinity of the Martian ionosphere during CIR passage: Mars Express ASPERA-3 observations. J. Geophys. Res. 116, A09222 (2011) CrossRefGoogle Scholar
  77. T. Hara, K. Seki, H. Hasegawa, D.A. Brain, K. Matsunaga, M.H. Saito, D. Shiota, Formation processes of flux ropes downstream from Martian crustal magnetic fields inferred from Grad-Shafranov reconstruction. J. Geophys. Res. Space Phys. 119, 1262–1271 (2014) ADSCrossRefGoogle Scholar
  78. P. Hartogh, A.S. Medvedev, T. Kuroda, R. Saito, G. Villanueva, A.G. Feofilov, A.A. Kutepov, U. Berger, Description and climatology of a new general circulation model of the Martian atmosphere. J. Geophys. Res. 110(E11), E11008 (2005) ADSCrossRefGoogle Scholar
  79. D.M. Hassler, C. Zeitlin, R.F. Wimmer-Schweingruber, S. Böttcher, C. Martin, J. Andrews, E. Böhm, D.E. Brinza, M.A. Bullock, S. Burmeister, B. Ehresmann, M. Epperly, D. Grinspoon, J. Köhler, O. Kortmann, K. Neal, J. Peterson, A. Posner, S. Rafkin, L. Seimetz, K.D. Smith, Y. Tyler, G. Weigle, G. Reitz, F.A. Cucinotta, The Radiation Assessment Detector (RAD) investigation. Space Sci. Rev. 170, 503–558 (2012) ADSCrossRefGoogle Scholar
  80. N.G. Heavens, M.I. Richardson, A. Kleinbohl, D.M. Kass, D.J. McCleese, W. Abdou, J.L. Benson, J.T. Schofield, J.H. Shirley, P.M. Wolkenberg, The vertical distribution of dust in the Martian atmosphere during northern spring and summer: observations by the Mars Climate Sounder and analysis of zonal average vertical dust profiles. J. Geophys. Res., Planets 116, E04003 (2011) ADSGoogle Scholar
  81. M. Izakov, O. Krasicki, Effect of nonthermal escape of atoms on Martian atmosphere composition Trans. Am. Geophys. Union 58, 749 (1977) Google Scholar
  82. B.M. Jakosky, R.P. Lin, J.M. Grebowsky, J.G. Luhmann, D.F. Mitchell, o. Beutelschies G., The Mars Atmosphere and Volatile Evolution (MAVEN) mission. Space Sci. Rev. (2015, this issue). doi: 10.1007/s11214-015-0139-x
  83. R.E. Johnson, Plasma-induced sputtering of an atmosphere. Space Sci. Rev. 69, 215–253 (1994) ADSCrossRefGoogle Scholar
  84. R.E. Johnson, J.G. Luhmann, Sputter contribution to the atmospheric corona on Mars. J. Geophys. Res. 103, 3649–3653 (1998) ADSCrossRefGoogle Scholar
  85. R.E. Johnson, D. Schnellenberger, M.C. Wong, The sputtering of an oxygen thermosphere by energetic \(\mbox{O}^{+}\). J. Geophys. Res., Planets 105, 1659–1670 (2000) ADSCrossRefGoogle Scholar
  86. M.A. Kahre, J.R. Murphy, R.M. Haberle, Modeling the Martian dust cycle and surface dust reservoirs with the NASA Ames general circulation model. J. Geophys. Res. 111, E06008 (2006) ADSCrossRefGoogle Scholar
  87. E. Kallio, S. Barabash, Magnetized Mars: spatial distribution of oxygen ions. Earth Planets Space 64, 149–156 (2012) ADSCrossRefGoogle Scholar
  88. E. Kallio, S. Barabash, P. Janhunen, R. Jarvinen, Magnetized Mars: transformation of Earth-like magnetosphere to Venus-like induced magnetosphere. Planet. Space Sci. 56, 823–827 (2008) ADSCrossRefGoogle Scholar
  89. E. Kallio, J.-Y. Chaufray, R. Modolo, D. Snowden, R. Winglee, Modeling of Venus, Mars, and Titan. Space Sci. Rev. 162, 267–307 (2011) ADSCrossRefGoogle Scholar
  90. V. Kharchenko, A. Dalgarno, B. Zygelman, J.H. Yee, Energy transfer in collisions of oxygen atoms in the terrestrial atmosphere. J. Geophys. Res. 105, 24899 (2000) ADSCrossRefGoogle Scholar
  91. J. Kim, A.F. Nagy, J.L. Fox, T.E. Cravens, Solar cycle variability of hot oxygen atoms at Mars. J. Geophys. Res. 103, 339–342 (1998) Google Scholar
  92. D. Koutroumpa, R. Modolo, G. Chanteur, J.Y. Chaufray, V. Kharchenko, R. Lallement, Solar wind charge exchange X-ray emission from Mars. Astron. Astrophys. 545, A153 (2012) ADSCrossRefGoogle Scholar
  93. V.A. Krasnopolsky, Mars’ upper atmosphere and ionosphere at low, medium, and high solar activities: implications for evolution of water. J. Geophys. Res. 107, 5128 (2002) CrossRefGoogle Scholar
  94. H. Lammer, Origin and Evolution of Planetary Atmospheres (Springer, Berlin, 2013) CrossRefGoogle Scholar
  95. D.E. Larson, R.J. Lillis, K. Hatch, M. Robinson, D. Glaser, J. Chen, D.W. Curtis, C. Tiu, R.P. Lin, J.G. Luhmann, B.M. Jakosky, The MAVEN solar energetic particle investigation. Space Sci. Rev. (2015, this issue) Google Scholar
  96. J. Laskar, A.C.M. Correia, M. Gastineau, F. Joutel, B. Levrard, P. Robutel, Long term evolution and chaotic diffusion of the insolation quantities of Mars. Icarus 170, 343–364 (2004) ADSCrossRefGoogle Scholar
  97. F. Leblanc, R.E. Johnson, Sputtering of the Martian atmosphere by solar wind pick-up ions. Planet. Space Sci. 49, 645–656 (2001) ADSCrossRefGoogle Scholar
  98. F. Leblanc, R.E. Johnson, Role of molecular species in pickup ion sputtering of the Martian atmosphere. J. Geophys. Res. 107, 5010 (2002) CrossRefGoogle Scholar
  99. F. Leblanc, J. Luhmann, R.E. Johnson, E. Chassefiere, Some expected impacts of a solar energetic particle event at Mars. J. Geophys. Res. 107, 1058 (2002) CrossRefGoogle Scholar
  100. S.A. Ledvina, Y.J. Ma, E. Kallio, Modeling and simulating flowing plasmas and related phenomena. Space Sci. Rev. 139, 143–189 (2008) ADSCrossRefGoogle Scholar
  101. F. Lefèvre, Three-dimensional modeling of ozone on Mars. J. Geophys. Res. 109, E07004 (2004) ADSCrossRefGoogle Scholar
  102. C.B. Leovy, Control of the homopause level. Icarus 50, 311–321 (1982) ADSCrossRefGoogle Scholar
  103. R.J. Lillis, D.A. Brain, Nightside electron precipitation at Mars: geographic variability and dependence on solar wind conditions. J. Geophys. Res. Space Phys. 118, 3546–3556 (2013) ADSCrossRefGoogle Scholar
  104. R.J. Lillis, H.V. Frey, M. Manga, Rapid decrease in Martian crustal magnetization in the Noachian era: implications for the dynamo and climate of early Mars. Geophys. Res. Lett. 35, L14203 (2008a) ADSCrossRefGoogle Scholar
  105. R.J. Lillis, H.V. Frey, M. Manga, D.L. Mitchell, R.P. Lin, M.H. Acuña, S.W. Bougher, An improved crustal magnetic field map of Mars from electron reflectometry: highland volcano magmatic history and the end of the Martian dynamo. Icarus 194, 575–596 (2008b) ADSCrossRefGoogle Scholar
  106. R.J. Lillis, D.A. Brain, G.T. Delory, D.L. Mitchell, J.G. Luhmann, R.P. Lin, Evidence for superthermal secondary electrons produced by SEP ionization in the Martian atmosphere. J. Geophys. Res., Planets 117, E03004 (2012) ADSGoogle Scholar
  107. R.J. Lillis, S. Robbins, M. Manga, J.S. Halekas, H.V. Frey, Time history of the Martian dynamo from crater magnetic field analysis. J. Geophys. Res., Planets 118, 1488–1511 (2013) ADSCrossRefGoogle Scholar
  108. J. Luhmann, L.H. Brace, Near-Mars space. Rev. Geophys. 29, 121–140 (1991) ADSCrossRefGoogle Scholar
  109. J.G. Luhmann, J.U. Kozyra, Dayside pickup oxygen ion precipitation at Venus and Mars spatial distributions energy deposition and consequences. J. Geophys. Res. 96, 5457–5467 (1991) ADSCrossRefGoogle Scholar
  110. J.G. Luhmann, R.E. Johnson, M.H.G. Zhang, Evolutionary impact of sputtering of the Martian atmosphere by \(\mbox{O}(+)\) pickup ions. Geophys. Res. Lett. 19(21), 2151–2154 (1992) ADSCrossRefGoogle Scholar
  111. R. Lundin, A. Zakharov, R. Pellinen, S.W. Barabasj, H. Borg, E.M. Dubinin, B. Hultqvist, H. Koskinen, I. Liede, N. Pissarenko, Aspera phobos measurements of the ion outflow from the Martian ionosphere. Geophys. Res. Lett. 17, 873–876 (1990) ADSCrossRefGoogle Scholar
  112. R. Lundin, S. Barabash, A. Fedorov, M. Holmström, H. Nilsson, J.A. Sauvaud, M. Yamauchi, Solar forcing and planetary ion escape from Mars. Geophys. Res. Lett. 35, L09203 (2008) ADSGoogle Scholar
  113. R. Lundin, S. Barabash, M. Yamauchi, H. Nilsson, D. Brain, On the relation between plasma escape and the Martian crustal magnetic field. Geophys. Res. Lett. 38, L02102 (2011) ADSCrossRefGoogle Scholar
  114. Y. Ma, Three-dimensional, multispecies, high spatial resolution MHD studies of the solar wind interaction with Mars. J. Geophys. Res. 109, A07211 (2004) ADSCrossRefGoogle Scholar
  115. Y.-J. Ma, A.F. Nagy, Ion escape fluxes from Mars. Geophys. Res. Lett. 34, L08201 (2007) ADSCrossRefGoogle Scholar
  116. Y. Ma, A.F. Nagy, K.C. Hansen, D. De Zeeuw, T. Gombosi, K. Powell, Three-dimensional multispecies MHD studies of the solar wind interaction with Mars in the presence of crustal fields. J. Geophys. Res. 107, 1282 (2002) CrossRefGoogle Scholar
  117. Y. Ma, A.F. Nagy, I.V. Sokolov, K.C. Hansen, Three-dimensional, multispecies, high spatial resolution MHD studies of the solar wind interaction with Mars. J. Geophys. Res. 109, A07211 (2004) ADSCrossRefGoogle Scholar
  118. Y. Ma, X.H. Fang, C.T. Russell, A.F. Nagy, G. Toth, J.G. Luhmann, D.A. Brain, C.F. Dong, Effects of crustal field rotation on the solar wind plasma interaction with Mars. Geophys. Res. Lett. 41, 6563–6569 (2014) ADSCrossRefGoogle Scholar
  119. J.B. Madeleine, F. Forget, E. Millour, L. Montabone, M.J. Wolff, Revisiting the radiative impact of dust on Mars using the LMD Global Climate Model. J. Geophys. Res., Planets 116, E11010 (2011) ADSCrossRefGoogle Scholar
  120. P.R. Mahaffy, C.R. Webster, M. Cabane, The sample analysis at Mars investigation and instrument suite. Space Sci. Rev. 170, 401–478 (2012) ADSCrossRefGoogle Scholar
  121. P.R. Mahaffy, M. Benna, T. King, D.N. Harpold, R. Arvey, M. Barciniak, M. Bendt, D. Carrigan, T. Errigo, V. Holmes, C.S. Johnson, J. Kellogg, P. Kimvilakani, M. Lefavor, J. Hengemihle, F. Jaeger, E. Lyness, J. Maurer, A. Melak, F. Noreiga, M. Noriega, K. Patel, B. Prats, E. Raaen, F. Tan, E. Weidner, C. Gundersen, S. Battel, B.P. Block, K. Arnett, R. Miller, C. Cooper, C. Edmonson, J.T. Nolan, The neutral gas and ion mass spectrometer on the Mars atmosphere and volatile evolution mission. Space Sci. Rev. (2014). doi: 10.1007/s11214-014-0091-1 zbMATHGoogle Scholar
  122. P. Makela, N. Gopalswamy, S. Akiyama, H. Xie, S. Yashiro, Energetic storm particle events in coronal mass ejection-driven shocks. J. Geophys. Res. Space Phys. 116, A08101 (2011) ADSGoogle Scholar
  123. L. Maltagliati, F. Montmessin, A. Fedorova, O. Korablev, F. Forget, J.L. Bertaux, Evidence of water vapor in excess of saturation in the atmosphere of Mars. Science 333, 1868–1871 (2011) ADSCrossRefGoogle Scholar
  124. D.J. McCleese, J.T. Schofield, F.W. Taylor, S.B. Calcutt, M.C. Foote, D.M. Kass, C.B. Leovy, D.A. Paige, P.L. Read, R.W. Zurek, Mars climate sounder: an investigation of thermal and water vapor structure, dust and condensate distributions in the atmosphere, and energy balance of the polar regions. J. Geophys. Res., Planets 112, E05S06 (2007) Google Scholar
  125. W. McClintock, N.M. Schneider, G.M. Holsclaw, J. Clarke, A. Hoskins, I. Stewart, F. Montmessin, R. Yelle, The Imaging Ultraviolet Spectrograph (IUVS) for the MAVEN mission. Space Sci. Rev. (2014). doi: 10.1007/s11214-014-0098-7 zbMATHGoogle Scholar
  126. A.S. McEwen, M.C. Malin, M.H. Carr, W.K. Hartmann, Voluminous volcanism on early Mars revealed in Valles Marineris. Nature 397, 584–586 (1999) ADSCrossRefGoogle Scholar
  127. J. McFadden, O. Kortmann, G. Dalton G. J, R. Abiad, D. Curtis, R. Sterling, K. Hatch, P. Berg, C. Tiu, M. Marckwordt, R. Lin, B. Jakosky, The MAVEN Suprathermal and Thermal Ion Composition (STATIC) instrument. Space Sci. Rev. (2014, this issue) Google Scholar
  128. H.J. Melosh, A.M. Vickery, Impact erosion of the primordial atmosphere of Mars. Nature 338, 487–489 (1989) ADSCrossRefGoogle Scholar
  129. C. Milbury, G. Schubert, C.A. Raymond, S.E. Smrekar, B. Langlais, The history of Mars’ dynamo as revealed by modeling magnetic anomalies near Tyrrhenus Mons and Syrtis Major. J. Geophys. Res. 117, 10007 (2012) CrossRefGoogle Scholar
  130. D.L. Mitchell, R. Lin, C. Mazelle, H. Reme, P.A. Cloutier, J. Connerney, M.H. Acuna, N. Ness, Probing Mars’ crustal magnetic field and ionosphere with the MGS Electron Reflectometer. J. Geophys. Res. 106, 419–427 (2001) Google Scholar
  131. D.L. Mitchell, C. Mazelle, D.W. Curtis, The MAVEN solar wind electron analyzer. Space Sci. Rev. (2014, submitted) Google Scholar
  132. R. Modolo, G.M. Chanteur, E. Dubinin, A.P. Matthews, Influence of the solar EUV flux on the Martian plasma environment. Ann. Geophys. 23, 433–444 (2005) ADSCrossRefGoogle Scholar
  133. R. Modolo, G.M. Chanteur, E. Dubinin, A.P. Matthews, Simulated solar wind plasma interaction with the Martian exosphere: influence of the solar EUV flux on the bow shock and the magnetic pile-up boundary. Ann. Geophys. 24, 3403–3410 (2006) ADSCrossRefGoogle Scholar
  134. R. Modolo, G.M. Chanteur, E. Dubinin, Dynamic Martian magnetosphere: transient twist induced by a rotation of the IMF. Geophys. Res. Lett. 39, L01106 (2012) ADSCrossRefGoogle Scholar
  135. F. Montmessin, Origin and role of water ice clouds in the Martian water cycle as inferred from a general circulation model. J. Geophys. Res. 109, E10004 (2004) ADSCrossRefGoogle Scholar
  136. D.D. Morgan, D.A. Gurnett, D.L. Kirchner, R.L. Huff, D.A. Brain, W.V. Boynton, M.H. Acuña, J.J. Plaut, G. Picardi, Solar control of radar wave absorption by the Martian ionosphere. Geophys. Res. Lett. 33, L13202 (2006) ADSCrossRefGoogle Scholar
  137. A.F. Nagy, D. Winterhalter, K. Sauer, T.E. Cravens, S. Brecht, C. Mazelle, D. Crider, E. Kallio, A. Zakharov, E. Dubinin, M. Verigin, G. Kotova, W.I. Axford, C. Bertucci, J.G. Trotignon, The plasma environment of Mars. Space Sci. Rev. 111, 33–114 (2004) ADSCrossRefGoogle Scholar
  138. C.M.C. Nairn, R. Grard, A. Skalsky, J.G. Trotignon, Plasma and wave observations in the night sector of Mars. J. Geophys. Res. Space Phys. 96, 11227–11233 (1991) ADSCrossRefGoogle Scholar
  139. D. Najib, A.F. Nagy, G. Tóth, Y. Ma, Three-dimensional, multifluid, high spatial resolution MHD model studies of the solar wind interaction with Mars. J. Geophys. Res. 116, A05204 (2011) ADSCrossRefGoogle Scholar
  140. F. Nemec, D.D. Morgan, C. Di´eval, D.A. Gurnett, Y. Futaana, Enhanced ionization of the Martian nightside ionosphere during solar energetic particle events. Geophys. Res. Lett. 41(3), 793–798 (2014) ADSCrossRefGoogle Scholar
  141. G. Newkirk, A.J. Hundhausen, V. Pizzo, Solar cycle modulation of galactic cosmic rays: speculation on the role of coronal transients. J. Geophys. Res. 86, 5387 (1981) ADSCrossRefGoogle Scholar
  142. A.O. Nier, M.B. McElroy, Composition and structure of Mars’ upper atmosphere: results from the neutral mass spectrometers on Viking 1 and 2. J. Geophys. Res. 82, 4341–4349 (1977) ADSCrossRefGoogle Scholar
  143. H. Nilsson, E. Carlsson, H. Gunell, Y. Futaana, S. Barabash, R. Lundin, A. Fedorov, Y. Soobiah, A. Coates, M. Franz, E. Roussos, Investigation of the influence of magnetic anomalies on ion distributions at Mars. Space Sci. Rev. 126, 355–372 (2006) ADSCrossRefGoogle Scholar
  144. H. Nilsson, E. Carlsson, D.A. Brain, M. Yamauchi, M. Holmström, S. Barabash, R. Lundin, Y. Futaana, Ion escape from Mars as a function of solar wind conditions: a statistical study. Icarus 206, 40–49 (2010) ADSCrossRefGoogle Scholar
  145. H. Nilsson, N.J.T. Edberg, G. Stenberg, S. Barabash, M. Holmstrom, Y. Futaana, R. Lundin, A. Fedorov, Heavy ion escape from Mars, influence from solar wind conditions and crustal magnetic fields. Icarus 215, 475–484 (2011) ADSCrossRefGoogle Scholar
  146. D.J. Pawlowski, A.J. Ridley, Modeling the thermospheric response to solar flares. J. Geophys. Res. Space Phys. 113, A10309 (2008) ADSCrossRefGoogle Scholar
  147. D.J. Pawlowski, A.J. Ridley, Modeling the ionospheric response to the 28 October 2003 solar flare due to coupling with the thermosphere. Radio Sci. 44, RS0A23 (2009a) CrossRefGoogle Scholar
  148. D.J. Pawlowski, A.J. Ridley, Quantifying the effect of thermospheric parameterization in a global model. J. Atmos. Sol.-Terr. Phys. 71, 2017–2026 (2009b) ADSCrossRefGoogle Scholar
  149. D.J. Pawlowski, S.W. Bougher, A.J. Ridley, J.R. Murphy, Modeling the Martian upper atmosphere using the Mars global ionosphere-thermosphere model. Publication: American Geophysical Union, Fall Meeting 2012, abstract #SA44A-01 Google Scholar
  150. K. Powell, P. Roe, T. Linde, T. Gombosi, D. De Zeeuw, A solution-adaptive upwind scheme for ideal magnetohydrodynamics. J. Comput. Phys. 154, 284–309 (1999) MathSciNetADSCrossRefzbMATHGoogle Scholar
  151. R. Ramstad, Y. Futaana, S. Barabash, H. Nilsson, S.M. del Campo, R. Lundin, K. Schwingenschuh, Phobos 2/ASPERA data revisited: planetary ion escape rate from Mars near the 1989 solar maximum. Geophys. Res. Lett. 40, 477–481 (2013) ADSCrossRefGoogle Scholar
  152. E. Richer, G.M. Chanteur, R. Modolo, E. Dubinin, Reflection of solar wind protons on the Martian bow shock: investigations by means of 3-dimensional simulations. Geophys. Res. Lett. 39, 17 (2012) CrossRefGoogle Scholar
  153. A.J. Ridley, Y. Deng, G. Tóth, The global ionosphere–thermosphere model. J. Atmos. Sol.-Terr. Phys. 68, 839–864 (2006) ADSCrossRefGoogle Scholar
  154. S. Robbins, B. Hynek, R. Lillis, W. Bottke, Large impact crater histories of Mars: the effect of different model crater age techniques. Icarus 225, 173–184 (2013) ADSCrossRefGoogle Scholar
  155. R. Schunk, A. Nagy, Ionospheres (Cambridge University Press, Cambridge, 2000) CrossRefGoogle Scholar
  156. V. Sheel, S.A. Haider, P. Withers, K. Kozarev, I. Jun, S. Kang, G. Gronoff, C. Simon Wedlund, Numerical simulation of the effects of a solar energetic particle event on the ionosphere of Mars. J. Geophys. Res. 117, A05312 (2012) ADSCrossRefGoogle Scholar
  157. M. Smith, Thermal emission spectrometer observations of Martian planet-encircling dust storm 2001A. Icarus 157, 259–263 (2002) ADSCrossRefGoogle Scholar
  158. M.D. Smith, THEMIS observations of Mars aerosol optical depth from 2002–2008. Icarus 202, 444–452 (2009) ADSCrossRefGoogle Scholar
  159. M.D. Smith, S.W. Bougher, T. Encrenaz, F. Forget, A. Kleinbohl, Thermal structure and composition of the Mars atmosphere, in Mars Book II (2014) Google Scholar
  160. A. Spiga, F. Forget, A new model to simulate the Martian mesoscale and microscale atmospheric circulation: validation and first results. J. Geophys. Res., Planets 114, E02009 (2009) ADSGoogle Scholar
  161. V.A. Tenishev, M.R. Combi, DSMC simulation of the cometary coma. AIP Conf. Proc. 663, 696–703 (2003) ADSCrossRefGoogle Scholar
  162. N. Terada, Y.N. Kulikov, H. Lammer, H.I. Lichtenegger, T. Tanaka, H. Shinagawa, T. Zhang, Atmosphere and water loss from early Mars under extreme solar wind and extreme ultraviolet conditions. Astrobiology 9, 55–70 (2009) ADSCrossRefGoogle Scholar
  163. G. Tóth, I.V. Sokolov, T.I. Gombosi, D.R. Chesney, C.R. Clauer, D.L. De Zeeuw, K.C. Hansen, K.J. Kane, W.B. Manchester, R.C. Oehmke, K.G. Powell, A.J. Ridley, I.I. Roussev, Q.F. Stout, O. Volberg, R.A. Wolf, S. Sazykin, A. Chan, B. Yu, J. Kóta, Space Weather Modeling Framework: a new tool for the space science community. J. Geophys. Res. 110, A12226 (2005) ADSCrossRefGoogle Scholar
  164. D. Tyler, J.R. Barnes, R.M. Haberle, Simulation of surface meteorology at the Pathfinder and VL1 sites using a Mars mesoscale model. J. Geophys. Res. 107, 5018 (2002) CrossRefGoogle Scholar
  165. A.J. Tylka, New insights on solar energetic particles from Wind and ACE. J. Geophys. Res. 106, 25333 (2001) ADSCrossRefGoogle Scholar
  166. D. Ulusen, D.A. Brain, J.G. Luhmann, D.L. Mitchell, Investigation of Mars’ ionospheric response to solar energetic particle events. J. Geophys. Res. Space Phys. 117, A5 (2012) Google Scholar
  167. A. Valeille, M.R. Combi, S.W. Bougher, V. Tenishev, A.F. Nagy, Three-dimensional study of Mars upper thermosphere/ionosphere and hot oxygen corona: 2. Solar cycle, seasonal variations, and evolution over history. J. Geophys. Res., Planets 114, 11005 (2009a) ADSCrossRefGoogle Scholar
  168. A. Valeille, V. Tenishev, S.W. Bougher, M.R. Combi, A.F. Nagy, Three-dimensional study of Mars upper thermosphere/ionosphere and hot oxygen corona: 1. General description and results at equinox for solar low conditions. J. Geophys. Res. 114, E12005 (2009b) CrossRefGoogle Scholar
  169. A. Valeille, M.R. Combi, V. Tenishev, S.W. Bougher, A.F. Nagy, A study of suprathermal oxygen atoms in Mars upper thermosphere and exosphere over the range of limiting conditions. Icarus 206, 18–27 (2010) ADSCrossRefGoogle Scholar
  170. M.I. Verigin, K.I. Gringauz, G.A. Kotova, A.P. Remizov, N.M. Shutte, H. Rosenbauer, S. Livi, A. Richter, W. Riedler, K. Schwingenschuh, K. Szegő, I. Apáthy, M. Tátrallyay, The dependence of the Martian magnetopause and bow shock on solar wind ram pressure according to Phobos 2 TAUS ion spectrometer measurements. J. Geophys. Res. 98, 1303 (1993) ADSCrossRefGoogle Scholar
  171. R.M. Walker, Interaction of energetic nuclear particles in space with the Lunar surface. Annu. Rev. Earth Planet. Sci. 3, 99–128 (1975) ADSCrossRefGoogle Scholar
  172. Y.-C. Wang, J.G. Luhmann, F. Leblanc, X. Fang, R.E. Johnson, Y. Ma, W.-H. Ip, L. Li, Modeling of the \(\mbox{O}^{+}\) pickup ion sputtering efficiency dependence on solar wind conditions for the Martian atmosphere. J. Geophys. Res. 119(1), 93–108 (2014). doi: 10.1002/2013JE004413 CrossRefGoogle Scholar
  173. D.F. Webb, Understanding CMEs and their source regions. J. Atmos. Sol.-Terr. Phys. 62, 1415–1426 (2000) ADSCrossRefGoogle Scholar
  174. T.N. Woods, Solar irradiance variability during the October 2003 solar storm period. Geophys. Res. Lett. 31, L10802 (2004) ADSCrossRefGoogle Scholar
  175. M. Yagi, F. Leblanc, J.Y. Chaufray, F. Gonzalez-Galindo, S. Hess, R. Modolo, Mars exospheric thermal and non-thermal components: seasonal and local variations. Icarus 221, 682–693 (2012) ADSCrossRefGoogle Scholar
  176. K. Zahnle, J. Walker, The evolution of solar ultraviolet luminosity. Rev. Geophys. 20, 280–292 (1982) ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • R. J. Lillis
    • 1
  • D. A. Brain
    • 2
  • S. W. Bougher
    • 3
  • F. Leblanc
    • 4
  • J. G. Luhmann
    • 1
  • B. M. Jakosky
    • 2
  • R. Modolo
    • 4
  • J. Fox
    • 5
  • J. Deighan
    • 2
  • X. Fang
    • 2
  • Y. C. Wang
    • 1
  • Y. Lee
    • 3
  • C. Dong
    • 2
  • Y. Ma
    • 6
  • T. Cravens
    • 7
  • L. Andersson
    • 2
  • S. M. Curry
    • 1
  • N. Schneider
    • 2
  • M. Combi
    • 3
  • I. Stewart
    • 2
  • J. Clarke
    • 8
  • J. Grebowsky
    • 9
  • D. L. Mitchell
    • 1
  • R. Yelle
    • 10
  • A. F. Nagy
    • 3
  • D. Baker
    • 2
  • R. P. Lin
    • 1
  1. 1.Space Sciences LaboratoryUniversity of California BerkeleyBerkeleyUSA
  2. 2.Laboratory for Atmospheric and Space PhysicsUniversity of ColoradoBoulderUSA
  3. 3.Department of Atmospheric, Oceanic and Space SciencesUniversity of MichiganAnn ArborUSA
  4. 4.Laboratoire de Météorologie DynamiqueParisFrance
  5. 5.Department of PhysicsWright State UniversityDaytonUSA
  6. 6.Institute of Geophysics and Planetary PhysicsUniversity of California Los AngelesLos AngelesUSA
  7. 7.Department of Physics and AstronomyUniversity of KansasLawrenceUSA
  8. 8.Astronomy DepartmentBoston UniversityBostonUSA
  9. 9.NASA Goddard Space Flight Ctr.GreenbeltUSA
  10. 10.Lunar and Planetary LaboratoryUniversity of ArizonaTucsonUSA

Personalised recommendations