Advertisement

Space Science Reviews

, Volume 197, Issue 1–4, pp 47–83 | Cite as

Cometary Isotopic Measurements

  • Dominique Bockelée-Morvan
  • Ursina Calmonte
  • Steven Charnley
  • Jean Duprat
  • Cécile Engrand
  • Adeline Gicquel
  • Myrtha Hässig
  • Emmanuël Jehin
  • Hideyo Kawakita
  • Bernard Marty
  • Stefanie Milam
  • Andrew Morse
  • Philippe Rousselot
  • Simon Sheridan
  • Eva Wirström
Article

Abstract

Isotopic ratios in comets provide keys for the understanding of the origin of cometary material, and the physical and chemical conditions in the early Solar Nebula. We review here measurements acquired on the D/H, 14N/15N, 16O/18O, 12C/13C, and 32S/34S ratios in cometary grains and gases, and discuss their cosmogonic implications. The review includes analyses of potential cometary material available in collections on Earth, recent measurements achieved with the Herschel Space Observatory, large optical telescopes, and Rosetta, as well as recent results obtained from models of chemical-dynamical deuterium fractionation in the early solar nebula. Prospects for future measurements are presented.

Keywords

Comets Isotopes 

Notes

Acknowledgements

This work was supported by NASA’s Planetary Astronomy and Planetary Atmospheres Programs (SNM and SBC), and by the Swedish Space Board (ESW).

References

  1. P. Ábrahám et al., Episodic formation of cometary material in the outburst of a young Sun-like star. Nature 459, 224–226 (2009) CrossRefGoogle Scholar
  2. N.G. Adams, D. Smith, 14N/15N isotope fractionation in the reaction N2H++N2—interstellar significance. Astrophys. J. 247, L123–L125 (1981) ADSCrossRefGoogle Scholar
  3. Y. Aikawa, E. Herbst, Deuterium fractionation in protoplanetary disks. Astrophys. J. 526, 314–326 (1999) ADSCrossRefGoogle Scholar
  4. J. Aléon, Multiple origins of nitrogen isotopic anomalies in meteorites and comets. Astrophys. J. 72, 1342–1351 (2010) ADSCrossRefGoogle Scholar
  5. C.M.O.D. Alexander, R. Bowden, M.L. Fogel, K.T. Howard, C.D.K. Herd, L.R. Nittler, The provenances of asteroids, and their contributions to the volatile inventories of the terrestrial planets. Science 337(6095), 721–723 (2012) ADSCrossRefGoogle Scholar
  6. K. Altwegg, Habilitationsschrift. University of Bern (1996) Google Scholar
  7. K. Altwegg et al., 67P/Churyumov–Gerasimenko, a Jupiter family comet with a high D/H ratio. Science 347, 1261952 (2014) CrossRefGoogle Scholar
  8. E. Anders, Do stony meteorites come from comets? Icarus 24, 363–371 (1975) ADSCrossRefGoogle Scholar
  9. E. Anders, N. Grevesse, Abundances of the elements—meteoritic and solar. Geochim. Cosmochim. Acta 53, 197–214 (1989) ADSCrossRefGoogle Scholar
  10. C. Arpigny, E. Jehin, J. Manfroid, D. Hutsemékers, R. Schulz, J.A. Stüwe, J.-M. Zucconi, I. Ilyin, Anomalous nitrogen isotope ratio in comets. Science 301, 1522–1525 (2003) ADSCrossRefGoogle Scholar
  11. L.B. Asprey, The preparation of very pure fluorine gas. J. Fluorine Chem. 7, 359–361 (1976) CrossRefGoogle Scholar
  12. J. Bally, W.D. Langer, Isotope-selective photodestruction of carbon monoxide. Astrophys. J. 255, 143–148 (1982) ADSCrossRefGoogle Scholar
  13. H. Balsiger, K. Altwegg, J. Geiss, D/H and 18O/16O ratio in the hydronium ion and in neutral water from in situ ion measurements in comet P/Halley. J. Geophys. Res. 100, 5827–5834 (1995) ADSCrossRefGoogle Scholar
  14. H. Balsiger et al., ROSINA—Rosetta Orbiter Spectrometer for Ion and Neutral Analysis. Space Sci. Rev. 128, 745–801 (2007) ADSCrossRefGoogle Scholar
  15. N. Bardin, G. Slodzian, T.-D. Wu, D. Baklouti, E. Dartois, C. Engrand, R. Brunetto, J.-L. Guerquin-Kern, J. Duprat, D/H measurements in ultracarbonaceous antarctic micrometeorites using polyatomic ions with SIMS. Lunar Planet. Sci. Conf. Abstr. 45, 2647 (2014) ADSGoogle Scholar
  16. E.A. Bergin et al., Herschel observations of EXtra-Ordinary Sources (HEXOS): the present and future of spectral surveys with Herschel/HIFI. Astron. Astrophys. 521, L20–L27 (2010) ADSCrossRefGoogle Scholar
  17. J.-P. Bibring, P. Lamy, Y. Langevin, A. Soufflot, M. Berthé, J. Borg, F. Poulet, S. Mottola, CIVA. Space Sci. Rev. 128, 363–381 (2007a) CrossRefGoogle Scholar
  18. J.-P. Bibring, H. Rosenbauer, H. Boehnhardt, S. Ulamec, J. Biele, S. Espinasse, B. Feuerbacher, P. Gaudon, P. Hemmerich, P. Kletzkine, D. Moura, R. Mugnuolo, G. Nietner, B. Pätz, R. Roll, H. Scheuerle, K. Szegö, K. Wittmann (Philae Team), Rosetta lander (“Philae”) investigations. Space Sci. Rev. 128, 205–220 (2007b) ADSCrossRefGoogle Scholar
  19. N. Biver, Comets with ALMA. ESA SP 577, 151–156 (2005) ADSGoogle Scholar
  20. N. Biver, D. Bockelée-Morvan, J. Crovisier, D.C. Lis, R. Moreno, P. Colom, F. Henry, F. Herpin, G. Paubert, M. Womack, Radio wavelength molecular observations of comets C/1999 T1 (McNaught–Hartley), C/2001 A2 (LINEAR), C/2000 WM1 (LINEAR) and 153P/Ikeya–Zhang. Astron. Astrophys. 449, 1255–1270 (2006) ADSCrossRefGoogle Scholar
  21. N. Biver, D. Bockelée-Morvan, J. Crovisier, A. Lecacheux, U. Frisk, Å. Hjalmarson, M. Olberg, H.-G. Florén, A. Sandqvist, S. Kwok, Submillimetre observations of comets with Odin: 2001–2005. Planet. Space Sci. 55, 1058–1068 (2007) ADSCrossRefGoogle Scholar
  22. N. Biver et al., Composition and Outburst Follow-up Observations of Comet 17P/Holmes at the Nançay, IRAM and CSO Radio Observatories. LPI Contributions, vol. 1405 (2008), p. 8146 Google Scholar
  23. N. Biver et al., Ammonia and other parent molecules in comet 10P/Tempel 2 from Herschel/HIFI and ground-based radio observations. Astron. Astrophys. 539, 68 (2012) ADSCrossRefGoogle Scholar
  24. L. Bizzocchi, P. Caselli, E. Leonardo, L. Dore, Detection of 15NNH+ in L1544: non-LTE modelling of dyazenilium hyperfine line emission and accurate 14N/15N values. Astron. Astrophys. 555, A109–A120 (2013) ADSCrossRefGoogle Scholar
  25. L. Bizzocchi, P. Caselli, S. Spezzano, E. Leonardo, Deuterated methanol in the pre-stellar core L1544. Astron. Astrophys. 569, A27–A34 (2014) ADSCrossRefGoogle Scholar
  26. G.A. Blake, E.C. Sutton, C.R. Masson, T.G. Phillips, Molecular abundances in OMC-1—the chemical composition of interstellar molecular clouds and the influence of massive star formation. Astrophys. J. 315, 621–645 (1987) ADSCrossRefGoogle Scholar
  27. G.A. Blake, C. Qi, M.R. Hogerheijde, M.A. Gurwell, D.O. Muhleman, Sublimation from icy jets as a probe of the interstellar volatile content of comets. Nature 398, 213–216 (1999) ADSCrossRefGoogle Scholar
  28. D. Bockelée-Morvan, Cometary science with ALMA. Astrophys. Space Sci. 313, 183–189 (2008) ADSCrossRefGoogle Scholar
  29. D. Bockelée-Morvan, An overview of comet composition, in The Molecular Universe, ed. by J. Cernicharo, R. Bachiller. IAU Symposium, vol. 280 (Cambridge University press, Cambridge, 2011), pp. 261–274 Google Scholar
  30. D. Bockelée-Morvan et al., Deuterated water in comet C/1996 B2 (Hyakutake) and its implications for the origin of comets. Icarus 133, 147–162 (1998) ADSCrossRefGoogle Scholar
  31. D. Bockelée-Morvan et al., New molecules found in comet C/1995 O1 (Hale-Bopp). Investigating the link between cometary and interstellar material. Astron. Astrophys. 353, 1101–1114 (2000) ADSGoogle Scholar
  32. D. Bockelée-Morvan, D. Gautier, F. Hersant, J.-M. Huré, F. Robert, Turbulent radial mixing in the solar nebula as the source of crystalline silicates in comets. Astron. Astrophys. 384, 1107–1118 (2002) ADSCrossRefGoogle Scholar
  33. D. Bockelée-Morvan, N. Biver, E. Jehin, A.L. Cochran, H. Wiesemeyer, J. Manfroid, D. Hutsemékers, C. Arpigny, J. Boissier, W. Cochran, P. Colom, J. Crovisier, N. Milutinovic, R. Moreno, J.X. Prochaska, I. Ramirez, R. Schulz, J.-M. Zucconi, Large excess of heavy nitrogen in both hydrogen cyanide and cyanogen from comet 17P/Holmes. Astrophys. J. 679, L49–L52 (2008) ADSCrossRefGoogle Scholar
  34. D. Bockelée-Morvan et al., Herschel measurements of the D/H and 16O/18O ratios in water in the Oort-cloud comet C/2009 P1 (Garradd). Astron. Astrophys. 544, L15 (2012) ADSCrossRefGoogle Scholar
  35. B.P. Bonev, M.J. Mumma, E.L. Gibb, M.A. DiSanti, G.L. Villanueva, K. Magee-Sauer, R.S. Ellis, Comet C/2004 Q2 (Machholz): parent volatiles, a search for deuterated methane, and constraint on the CH4 spin temperature. Astrophys. J. 699, 1563–1572 (2009) ADSCrossRefGoogle Scholar
  36. T.L. Bourke, P.C. Myers, N.J. Evans II., M.M. Dunham, J. Kauffmann, Y.L. Shirley, A. Crapsi, C.H. Young, T.L. Huard, T.Y. Brooke, N. Chapman, L. Cieza, C.W. Lee, P. Teuben, Z. Wahhaj, The Spitzer c2d survey of nearby dense cores. II. Discovery of a low-luminosity object in the “Evolved Starless Core” L1521F. Astrophys. J. 649, L37–L40 (2006) ADSCrossRefGoogle Scholar
  37. J.P. Bradley, Interplanetary dust particles, in Meteorites, Comets and Planets: Treatise on Geochemistry, ed. by A.M. Davis, H.D. Holland, K.K. Turekian (Elsevier/Pergamon, Oxford, 2005), pp. 689–711 Google Scholar
  38. J.P. Bradley, How and where did gems form? Geochim. Cosmochim. Acta 107(0), 336–340 (2013) ADSCrossRefGoogle Scholar
  39. J.P. Bradley, D.E. Brownlee, Cometary particles—thin sectioning and electron beam analysis. Science 231, 1542–1544 (1986) ADSCrossRefGoogle Scholar
  40. R. Brasser, A. Morbidelli, Oort cloud and scattered disc formation during a late dynamical instability in the solar system. Icarus 225, 40–49 (2013) ADSCrossRefGoogle Scholar
  41. G. Briani, M. Gounelle, Y. Marrocchi, S. Mostefaoui, H. Leroux, E. Quirico, A. Meibom, Pristine extraterrestrial material with unprecedented nitrogen isotopic variation. Proc. Nat. Acad. Sci. 106, 10522–10527 (2009) ADSCrossRefGoogle Scholar
  42. J.C. Bridges, H.G. Changela, S. Nayakshin, N.A. Starkey, I.A. Franchi, Chondrule fragments from Comet Wild 2: evidence for high temperature processing in the outer solar system. Earth Planet. Sci. Lett. 341, 186–194 (2012) ADSCrossRefGoogle Scholar
  43. R.H. Brown, D.S. Lauretta, B. Schmidt, J. Moores, Experimental and theoretical simulations of ice sublimation with implications for the chemical, isotopic, and physical evolution of icy objects. Planet. Space Sci. 60, 166–180 (2012) ADSCrossRefGoogle Scholar
  44. D.E. Brownlee, Cosmic dust: collection and research. Annu. Rev. Earth Planet. Sci. 13, 147–173 (1985) ADSCrossRefGoogle Scholar
  45. D. Brownlee, The stardust mission: analyzing samples from the edge of the solar system. Annu. Rev. Earth Planet. Sci. 42, 179–205 (2014) ADSCrossRefGoogle Scholar
  46. D.E. Brownlee, D.J. Joswiak, D.J. Schlutter, R.O. Pepin, J.P. Bradley, S.G. Love, Identification of individual cometary IDPs by thermally stepped He release, in Lunar Planet. Sci., vol. XXVI (1995), pp. 183–184 Google Scholar
  47. D.E. Brownlee et al., Stardust: comet and interstellar dust sample return mission. J. Geophys. Res., Planets 108, 8111 (2003) ADSCrossRefGoogle Scholar
  48. D.E. Brownlee et al., Surface of young Jupiter family comet 81 P/Wild 2: view from the Stardust Spacecraft. Science 304, 1764–1769 (2004) ADSCrossRefGoogle Scholar
  49. D. Brownlee et al., Comet 81P/Wild 2 under a microscope. Science 314, 1711–1716 (2006) ADSCrossRefGoogle Scholar
  50. R. Brunetto, J. Borg, E. Dartois, F.J.M. Rietmeijer, F. Grossemy, C. Sandt, L. Le Sergeant d’Hendecourt, A. Rotundi, P. Dumas, Z. Djouadi, F. Jamme, Mid-IR, Far-IR, Raman micro-spectroscopy, and FESEM-EDX study of IDP L2021C5: clues to its origin. Icarus 212(2), 896–910 (2011) ADSCrossRefGoogle Scholar
  51. H. Busemann, A.F. Young, C.M.O.D. Alexander et al., Interstellar chemistry recorded in organic matter from primitive meteorites. Science 312, 727–730 (2006) ADSCrossRefGoogle Scholar
  52. H. Busemann, A.N. Nguyen, G.D. Cody, P. Hoppe, A.L.D. Kilcoyne, R.M. Stroud, T.J. Zega, L.R. Nittler, Ultra-primitive interplanetary dust particles from the comet 26P/Grigg-Skjellerup dust stream collection. Earth Planet. Sci. Lett. 288(1-2), 44–57 (2009) ADSCrossRefGoogle Scholar
  53. H. Campins, T.D. Swindle, Expected characteristics of cometary meteorites. Meteorit. Planet. Sci. 33, 1201–1211 (1998) ADSCrossRefGoogle Scholar
  54. C. Ceccarelli, P. Caselli, D. Bockelée-Morvan, O. Mousis, S. Pizzarello, F. Robert, D. Semenov, Deuterium fractionation: the Ariadne’s thread from the pre-collapse phase to meteorites and comets today, in Protostars and Planets VI, ed. by H. Beuther, R. Klessen, C. Dullemond, Th. Henning (University of Arizona Press, Tucson, 2014), pp. 859–882 Google Scholar
  55. S.B. Charnley, S.D. Rodgers, The end of interstellar chemistry as the origin of nitrogen in comets and meteorites. Astrophys. J. 569, L133–L137 (2002) ADSCrossRefGoogle Scholar
  56. S.B. Charnley, S.D. Rodgers, Interstellar reservoirs of cometary matter. Space Sci. Rev. 138, 59–73 (2008) ADSCrossRefGoogle Scholar
  57. S.B. Charnley, A.G.G.M. Tielens, S.D. Rodgers, Deuterated methanol in the Orion compact ridge. Astrophys. J. 482, L203–L206 (1997) ADSCrossRefGoogle Scholar
  58. S.B. Charnley, P. Ehrenfreund, T.J. Millar, A.C.A. Boogert, A.J. Markwick, H.M. Butner, R. Ruiterkamp, S.D. Rodgers, Observational tests for grain chemistry: posterior isotopic labeling. Mon. Not. R. Astron. Soc. 347, 157–162 (2004) ADSCrossRefGoogle Scholar
  59. L.I. Cleeves, E.A. Bergin, C.M.O.D. Alexander, F. Du, D. Graninger, K.I. Öberg, T.J. Harries, The ancient heritage of water ice in the solar system. Science 345, 1590–1593 (2014) ADSCrossRefGoogle Scholar
  60. A. Cochran, A.-C. Levasseur-Regourd, M. Cordiner, E. Hadamcik, J. Lasue, A. Gicquel, D.G. Schleicher, S.B. Charnley, M.J. Mumma, L. Paganini, D. Bockelée-Morvan, N. Biver, Y.-J. Kuan, The composition of comets: a pre-Rosetta look. Space Sci. Rev. (2015, this issue) Google Scholar
  61. J. Crovisier, D. Bockelée-Morvan, P. Colom, N. Biver, D. Despois, D.C. Lis (The Team for Target-of-Opportunity Radio Observations of Comets), The composition of ices in comet C/1995 O1 (Hale-Bopp) from radio spectroscopy. Further results and upper limits on undetected species. Astron. Astrophys. 418, 1141–1157 (2004) ADSCrossRefGoogle Scholar
  62. F. Daniel, M. Gérin, E. Roueff, J. Cernicharo, N. Marcelino, F. Lique, D.C. Lis, D. Teyssier, N. Biver, D. Bockelée-Morvan, Nitrogen isotopic ratios in Barnard 1: a consistent study of the N2H+, NH3, CN, HCN, and HNC isotopologues. Astron. Astrophys. 560, AA3 (2013) ADSCrossRefGoogle Scholar
  63. A.C. Danks, D.L. Lambert, C. Arpigny, The 12C/13C ratio in comet Kohoutek 1973f. Astrophys. J. 194, 745–751 (1974) ADSCrossRefGoogle Scholar
  64. E. Dartois, C. Engrand, R. Brunetto, J. Duprat, T. Pino, E. Quirico, L. Remusat, N. Bardin, G. Briani, S. Mostefaoui, G. Morinaud, B. Crane, N. Szwec, L. Delauche, F. Jamme, C. Sandt, P. Dumas, Ultracarbonaceous antarctic micrometeorites, probing the solar system beyond the nitrogen snow-line. Icarus 224(1), 243–252 (2013) ADSCrossRefGoogle Scholar
  65. J. Davidson, H. Busemann, I.A. Franchi, A NanoSIMS and Raman spectroscopic comparison of interplanetary dust particles from comet Grigg-Skjellerup and non-Grigg Skjellerup collections. Meteorit. Planet. Sci. 47, 1748–1771 (2012) ADSCrossRefGoogle Scholar
  66. A. Decock, E. Jehin, P. Rousselot, D. Hutsemékers, J. Manfroid, D. Cordier, in International Comet Workshop, April 1–3, 2014, Toulouse, France (2014) Google Scholar
  67. E. Dobricǎ, C. Engrand, E. Quirico, G. Montagnac, J. Duprat, Raman characterization of carbonaceous matter in concordia antarctic micrometeorites. Meteorit. Planet. Sci. 46(9), 1363–1375 (2011) ADSCrossRefGoogle Scholar
  68. E. Dobricǎ, C. Engrand, H. Leroux, J.N. Rouzaud, J. Duprat, Transmission electron microscopy of concordia ultracarbonaceous antarctic micrometeorites (UCAMMs): mineralogical properties. Geochim. Cosmochim. Acta 76, 68–82 (2012) ADSCrossRefGoogle Scholar
  69. L. Dones, P.R. Weissman, H.F. Levison, M.J. Duncan, Oort cloud formation and dynamics, in Comets II, ed. by M.C. Festou et al., (University of Arizona Press, Tucson, 2004), pp. 153–174 Google Scholar
  70. K. Dressler, D.A. Ramsay, The electronic absorption spectra of NH2 and ND2. Philos. Trans. R. Soc. Lond. A 251, 553–602 (1959) ADSCrossRefGoogle Scholar
  71. J. Duprat, E. Dobrica, C. Engrand, J. Aléon, Y. Marrocchi, S. Mostefaoui, A. Meibom, H. Leroux, J.N. Rouzaud, M. Gounelle, F. Robert, Extreme deuterium excesses in ultracarbonaceous micrometeorites from central antarctic snow. Science 328(5979), 742–745 (2010) ADSCrossRefGoogle Scholar
  72. J. Duprat, N. Bardin, C. Engrand, D. Baklouti, R. Brunetto, E. Dartois, L. Delauche, M. Godard, G. Slodzian, T.-D. Wu, J.-L. Guerkin-Kern, Isotopic analysis of organic matter in ultra-carbonaceous micrometeorites. Meteorit. Planet. Sci. 49(S1), A103 (2014) Google Scholar
  73. P. Eberhardt, R. Meier, D. Krankowsky, R.R. Hodges, Methanol and hydrogen sulfide in comet P/Halley. Astron. Astrophys. 288, 315–329 (1994) ADSGoogle Scholar
  74. P. Eberhardt, M. Reber, D. Krankowsky, R.R. Hodges, The D/H and 18O/16O ratios in water from comet P/Halley. Astron. Astrophys. 302, 301–316 (1995) ADSGoogle Scholar
  75. J.E. Elsila, D.P. Glavin, J.P. Dworkin, Cometary glycine detected in samples returned by Stardust. Meteorit. Planet. Sci. 44, 1323–1330 (2009) ADSCrossRefGoogle Scholar
  76. G.B. Esplugues, J. Cernicharo, S. Viti, J.R. Goicoechea, B. Tercero, N. Marcelino, A. Palau, T.A. Bell, E.A. Bergin, N.R. Crockett, S. Wang, Combined IRAM and Herschel/HIFI study of cyano(di)acetylene in Orion KL: tentative detection of DC3N. Astron. Astrophys. 559, A51 (2013) ADSCrossRefGoogle Scholar
  77. A.E. Finzi, F.B. Zazzera, C. Dainese, F. Malnati, P.G. Magnani, E. Re, P. Bologna, S. Espinasse, A. Olivieri, SD2—how to sample a comet. Space Sci. Rev. 128, 281–299 (2007) ADSCrossRefGoogle Scholar
  78. C. Floss, F.J. Stadermann, J.P. Bradley, Z.R. Dai, S. Bajt, G. Graham, A.S. Lea, Identification of isotopically primitive interplanetary dust particles: a NanoSIMS isotopic imaging study. Geochim. Cosmochim. Acta 70, 2371–2399 (2006) ADSCrossRefGoogle Scholar
  79. C. Floss, T. Noguchi, T. Yada, Ultracarbonaceous antarctic micrometeorites: origins and relationships to other primitive extraterrestrial materials, in Lunar and Planetary Science Conference, vol. 43 (2012), p. 1217 Google Scholar
  80. C. Floss, F.J. Stadermann, A.T. Kearsley, M.J. Burchell, W.J. Ong, The abundance of presolar grains in comet 81P/Wild 2. Astrophys. J. 763(2), 140–151 (2013) ADSCrossRefGoogle Scholar
  81. F. Fontani, T. Sakai, K. Furuya, N. Sakai, Y. Aikawa, S. Yamamoto, DNC/HNC and N2D+/N2H+ ratios in high-mass star-forming cores. Mon. Not. R. Astron. Soc. 440, 448–456 (2014) ADSCrossRefGoogle Scholar
  82. T. Fouchet, P.G.J. Irwin, P. Parrish, S.B. Calcutt, F.W. Taylor, C.A. Nixon, T. Owen, Search for spatial variation in the jovian 15N/14N ratio from Cassini/CIRS observations. Icarus 172, 50–58 (2004) ADSCrossRefGoogle Scholar
  83. J. Geiss, G. Gloeckler, Abundances of deuterium and Helium-3 in the protosolar cloud. Space Sci. Rev. 84, 239–250 (1998) ADSCrossRefGoogle Scholar
  84. M. Gérin, N. Marcelino, N. Biver, E. Roueff, L.H. Coudert, M. Elkeurti, D.C. Lis, D. Bockelé-Morvan, Detection of 15NH2D in dense cores: a new tool for measuring the 14N/15N ratio in the cold ISM. Astron. Astrophys. 498, L9–L12 (2009) ADSCrossRefGoogle Scholar
  85. E.L. Gibb, B.P. Bonev, G. Villanueva, M.A. DiSanti, M.J. Mumma, E. Sudholt, Y. Radeva, Chemical composition of comet C/2007 N3 (Lulin): another “Atypical” comet. Astrophys. J. 750, 102–115 (2012) ADSCrossRefGoogle Scholar
  86. A. Gicquel, S.N. Milam, G.L. Villanueva, A.J. Remijan, I.M. Coulson, Y.-L. Chuang, S.B. Charnley, M.A. Cordiner, Y.-J. Kuan, Ground-based multiwavelength observations of comet 103P/Hartley 2. Astrophys. J. 794, 1–10 (2014) ADSCrossRefGoogle Scholar
  87. K. Giles, N.G. Adams, D. Smith, A study of the reactions of \(\mbox{H}_{3}^{+}\), H2D+, \(\mbox{HD}_{2}^{+}\), and \(\mbox{D}_{3}^{+}\) with H2, HD, D2 using a variable-temperature selected ion flow tube. J. Phys. Chem. 96, 7645 (1992) CrossRefGoogle Scholar
  88. F. Goesmann, H. Rosenbauer, R. Roll, C. Szopa, F. Raulin, R. Sternberg, G. Israel, U. Meierhenrich, W. Thiemann, G. Munoz-Caro, COSAC, the COmetary SAmpling and Composition experiment on Philae. Space Sci. Rev. 128, 257–280 (2007) ADSCrossRefGoogle Scholar
  89. M. Gounelle, P. Spurny, P.A. Bland, The orbit and atmospheric trajectory of the orgueil meteorite from historical records. Meteorit. Planet. Sci. 41, 135–150 (2006) ADSCrossRefGoogle Scholar
  90. J.M. Greenberg, What are comets made of—a model based on interstellar dust, in Comet Discoveries, Statistics, and Observational Selection. IAU Colloq., vol. 61 (1982), pp. 131–163 Google Scholar
  91. S. Gulkis et al., Remote sensing of a comet at millimeter and submillimeter wavelengths from an orbiting spacecraft. Planet. Space Sci. 55, 1050–1057 (2007) ADSCrossRefGoogle Scholar
  92. H. Haack, R. Michelsen, G. Stober, D. Keuer, W. Singer, I. Williams, CM Chondrites from Comets? New Constraints from the Orbit of the Maribo CM Chondrite Fall LPI Contributions, vol. 1639 (2011), p. 9100 Google Scholar
  93. P. Haenecour, C. Floss, A. Wang, T. Yada, Coordinated Analysis of Isotopic Anomalies in Antarctic Micrometeorites. LPI Contributions, vol. 1783 (2014), p. 5017 Google Scholar
  94. M.S. Hanner, M.E. Zolensky, The mineralogy of cometary dust, in Astromineralogy, ed. by T. Henning (Springer, Berlin, 2010), pp. 203–226 CrossRefGoogle Scholar
  95. D.E. Harker, S.J. Desch, Annealing of silicate dust by nebular shocks at 10 AU. Astrophys. J. 565, L109–L112 (2002) ADSCrossRefGoogle Scholar
  96. P. Hartogh et al., Ocean-like water in the Jupiter-family comet 103P/Hartley 2. Nature 478, 218–220 (2011) ADSCrossRefGoogle Scholar
  97. M. Hässig, K. Altwegg, H. Balsiger, J.J. Berthelier, U. Calmonte, M. Combi, J. De Keyser, B. Fiethe, S.A. Fuselier, M. Rubin, ROSINA/DFMS capabilities to measure isotopic ratios in water at comet 67P/Churyumov-Gerasimenko. Planet. Space Sci. 84, 148–152 (2013) ADSCrossRefGoogle Scholar
  98. A.N. Heays, R. Visser, R. Gredel, W. Ubachs, B.R. Lewis, S.T. Gibson, E.F. van Dishoeck, Isotope selective photodissociation of N2 by the interstellar radiation field and cosmic rays. Astron. Astrophys. 562, A61 (2014) ADSCrossRefGoogle Scholar
  99. E. Herbst, E.F. van Dishoeck, Complex organic interstellar molecules. Annu. Rev. Astron. Astrophys. 47, 427–480 (2009) ADSCrossRefGoogle Scholar
  100. F. Hersant, D. Gautier, J.-M. Huré, A two-dimensional model for the primordial nebula constrained by D/H measurements in the solar system: implications for the formation of giant planets. Astrophys. J. 554, 391–407 (2001) ADSCrossRefGoogle Scholar
  101. P. Hily-Blant, L. Bonal, A. Faure, E. Quirico, The 15N-enrichment in dark clouds and solar system objects. Icarus 223, 582–590 (2013a) ADSCrossRefGoogle Scholar
  102. P. Hily-Blant, G. Pineau des Forêts, A. Faure, R. Le Gal, M. Padovani, The CN/C15N isotopic ratio towards dark clouds. Astron. Astrophys. 557, A65 (2013b) ADSCrossRefGoogle Scholar
  103. D.A. Howe, T.J. Millar, P. Schilke, C.M. Walmsley, Observations of deuterated cyanoacetylene in dark clouds. Mon. Not. R. Astron. Soc. 267, 59–68 (1994) ADSCrossRefGoogle Scholar
  104. W.F. Huebner, J.J. Keady, S.P. Lyon, Solar photorates for planetary atmospheres and atmospheric pollutants. Astrophys. Space Sci. 195, 1–289 (1992) ADSCrossRefGoogle Scholar
  105. D. Hutsemékers, J. Manfroid, E. Jehin, C. Arpigny, A. Cochran, R. Schulz, J.A. Stüwe, J.-M. Zucconi, Isotopic abundances of carbon and nitrogen in Jupiter-family and Oort-cloud comets. Astron. Astrophys. 440, 21–24 (2005) ADSCrossRefGoogle Scholar
  106. D. Hutsemékers, J. Manfroid, E. Jehin, J.-M. Zucconi, C. Arpigny, The 16OH/18OH and OD/OH isotope ratios in comet C/2002 T7 (LINEAR). Astron. Astrophys. 490, L31–L34 (2008) ADSCrossRefGoogle Scholar
  107. M. Ikeda, T. Hirota, S. Yamamoto, The H 13CN/HC15N abundance ratio in dense cores: possible source-to-source variation of isotope abundances? Astrophys. J. 575, 250–256 (2002) ADSCrossRefGoogle Scholar
  108. H.A. Ishii, J.P. Bradley, Z.R. Dai, M. Chi, A.T. Kearsley, M.J. Burchell, N.D. Browning, F. Molster, Comparison of comet 81P/Wild 2 dust with interplanetary dust from comets. Science 319, 447–450 (2008) ADSCrossRefGoogle Scholar
  109. E. Jacquet, F. Robert, Water transport in protoplanetary disks and the hydrogen isotopic composition of chondrites. Icarus 223, 722–732 (2013) ADSCrossRefGoogle Scholar
  110. E. Jehin, J. Manfroid, A.L. Cochran, C. Arpigny, J.-M. Zucconi, D. Hutsemékers, W.D. Cochran, M. Endl, R. Schulz, The anomalous 14N/15N ratio in comets 122P/1995 S1 (de Vico) and 153P/2002 C1 (Ikeya-Zhang). Astrophys. J. 613, 161–164 (2004) ADSCrossRefGoogle Scholar
  111. E. Jehin, J. Manfroid, D. Hutsemékers, A.L. Cochran, C. Arpigny, W.M. Jackson, H. Rauer, R. Schulz, J.-M. Zucconi, Deep impact: high-resolution optical spectroscopy with the ESO VLT and the Keck I telescope. Astrophys. J. 641, 145–148 (2006) ADSCrossRefGoogle Scholar
  112. E. Jehin, J. Manfroid, D. Hutsemékers, C. Arpigny, J.-M. Zucconi, Isotopic ratios in comets: status and perspectives. Earth Moon Planets 105, 167–180 (2009) ADSCrossRefGoogle Scholar
  113. E. Jehin, D. Hutsemékers, J. Manfroid, A. Decock, M. Weiler, H. Kawakita, Y. Shinnaka, M. Hashimoto, D. Bockelée-Morvan, N. Biver, J. Crovisier, P. Hartogh, in EPSC-DPS Joint Meeting 2011, October 2–7, 2011 Nantes, France (2011), p. 1463 Google Scholar
  114. E. Jehin, J. Manfroid, H. Kawakita, D. Hutsemékers, M. Weiler, C. Arpigny, A. Cochran, O. Hainaut, H. Rauer, R. Schulz, J.-M. Zucconi, Optical spectroscopy of the B and C fragments of comet 73P/Schwassmann-Wachmann 3 at the ESO VLT, in Asteroids, Comets, Meteors 2008, July 14–18, 2008, Baltimore, Maryland. LPI Contributions, vol. 1405, p. 8319 (2008) Google Scholar
  115. E.K. Jessberger, J. Kissel, Chemical properties of cometary dust and a note on carbon isotopes, in Comets in the Post-Halley Era 167, IAU Colloq., vol. 116 (1991), pp. 1075–1092 Google Scholar
  116. D. Jewitt, H.E. Matthews, T. Owen, R. Meier, Measurements of 12C/13C, 14N/15N, and 32S/34S ratios in comet Hale-Bopp (C/1995 O1). Science 278, 90–93 (1997) ADSCrossRefGoogle Scholar
  117. J.K. Jørgensen, F.L. Schöier, E.F. van Dishoeck, Molecular inventories and chemical evolution of low-mass protostellar envelopes. Astron. Astrophys. 416, 603–622 (2004) ADSCrossRefGoogle Scholar
  118. Y. Kakazu, C. Engrand, J. Duprat, G. Briani, N. Bardin, S. Mostefaoui, R. Duhamel, L. Remusat, Bulk oxygen isotopic composition of utracarbonaceous antarctic micrometeorites with the nanosims. Meteorit. Planet. Sci. 49(S1), A195 (2014) Google Scholar
  119. J.J. Kavelaars, O. Mousis, J.-M. Petit, H.A. Weaver, On the formation location of Uranus and Neptune as constrained by dynamical and chemical models of comets. Astrophys. J. 734, LL30 (2011) ADSCrossRefGoogle Scholar
  120. H. Kawakita, H. Kobayashi, Formation conditions of icy materials in comet C/2004 Q2 (Machholz). II. Diagnostics using nuclear spin temperatures and deuterium-to-hydrogen ratios in cometary molecules. Astrophys. J. 693, 388–396 (2009) ADSCrossRefGoogle Scholar
  121. H. Kawakita, J.-I. Watanabe, Fluorescence efficiencies of monodeuterio-methane in comets: toward the determination of the deuterium/hydrogen ratio in methane. Astrophys. J. 582, 534–539 (2003) ADSCrossRefGoogle Scholar
  122. H. Kawakita, J.-i. Watanabe, D. Kinoshita, M. Ishiguro, E. Nakamura, Saturated hydrocarbons in comet 153P/Ikeya-Zhang: ethane, methane, and monodeuterio-methane. Astrophys. J. 590, 573–578 (2003) ADSCrossRefGoogle Scholar
  123. H. Kawakita, J.-i. Watanabe, R. Furusho, T. Fuse, D.C. Boice, Nuclear spin temperature and deuterium-to-hydrogen ratio of methane in comet C/2001 Q4 (NEAT). Astrophys. J. Lett. 623, L49–L52 (2005) ADSCrossRefGoogle Scholar
  124. L.P. Keller, S. Messenger, On the origins of gems grains: a reply. Geochim. Cosmochim. Acta 107, 341–344 (2013) ADSCrossRefGoogle Scholar
  125. L.P. Keller, K.L. Thomas, D.S. McKay, Carbon in primitive interplanetary dust particles, in Analysis of Interplanetary Dust, ed. by M.E. Zolensky, T.L. Wilson, F.J.M. Rietmeijer, G.J. Flynn. AIP Conf. Proc. (Am. Inst. of Phys., New York, 1994), pp. 159–164 Google Scholar
  126. L.P. Keller, S. Messenger, G.J. Flynn, S. Clemett, S. Wirick, C. Jacobsen, The nature of molecular cloud material in interplanetary dust. Geochim. Cosmochim. Acta 68, 2577–2589 (2004) ADSCrossRefGoogle Scholar
  127. J. Kissel, F.R. Krueger, The organic component in dust from comet halley as measured by the puma mass spectrometer on board VEGA 1. Nature 326, 755–760 (1987) ADSCrossRefGoogle Scholar
  128. M. Kleine, S. Wyckoff, P.A. Wehinger, B.A. Peterson, The carbon isotope abundance ratio in comet Halley. Astrophys. J. 439, 1021–1033 (1995) ADSCrossRefGoogle Scholar
  129. J.D. Kramers, M.A.G. Andreoli, M. Atanasova, G.A. Belyanin, D.L. Block, C. Franklyn, C. Harris, M. Lekgoathi, C.S. Montross, T. Ntsoane, V. Pischedda, P. Segonyane, K.S. Viljoen, J.E. Westraadt, Unique chemistry of a diamond-bearing pebble from the Libyan desert glass strewnfield, SW Egypt: evidence for a shocked comet fragment. Earth Planet. Sci. Lett. 382, 21–31 (2013) ADSCrossRefGoogle Scholar
  130. D.L. Lambert, A.C. Danks, High-resolution spectra of C2 Swan bands from comet West 1976 VI. Astrophys. J. 268, 428–446 (1983) ADSCrossRefGoogle Scholar
  131. W.D. Langer, T.E. Graedel, M.A. Frerking, P.B. Armentrout, Carbon and oxygen isotope fractionation in dense interstellar clouds. Astrophys. J. 27, 581–604 (1984) ADSCrossRefGoogle Scholar
  132. M.E. Lawler, D.E. Brownlee, CHON as a component of dust from comet Halley. Nature 359, 810–812 (1992) ADSCrossRefGoogle Scholar
  133. A. Lecacheux, N. Biver, J. Crovisier, D. Bockelée-Morvan, P. Baron, R.S. Booth, P. Encrenaz, H.-G. Florén, U. Frisk, Å. Hjalmarson, S. Kwok, K. Mattila, L. Nordh, M. Olberg, A.O.H. Olofsson, H. Rickman, A. Sandqvist, F. von Schèle, G. Serra, S. Torchinsky, K. Volk, A. Winnberg, Observations of water in comets with Odin. Astron. Astrophys. 402, 55–58 (2003) ADSCrossRefGoogle Scholar
  134. J.-E. Lee, E.A. Bergin, J.R. Lyons, Oxygen isotope anomalies of the Sun and the original environment of the solar system. Meteorit. Planet. Sci. 43, 1351–1362 (2008) ADSCrossRefGoogle Scholar
  135. D.C. Lis, D. Bockelée-Morvan, J. Boissier, J. Crovisier, N. Biver, S.B. Charnley, Hydrogen isocyanide in comet 73P/Schwassmann-Wachmann (Fragment B). Astrophys. J. 675, 931–936 (2008) ADSCrossRefGoogle Scholar
  136. D.C. Lis, A. Wootten, M. Gerin, E. Roueff, Nitrogen isotopic fractionation in interstellar ammonia. Astrophys. J. 710, L49–L52 (2010) ADSCrossRefGoogle Scholar
  137. D.C. Lis, N. Biver, D. Bockelée-Morvan, P. Hartogh, E.A. Bergin, G.A. Blake, J. Crovisier, M. de Val-Borro, E. Jehin, M. Küppers, J. Manfroid, R. Moreno, M. Rengel, S. Szutowicz, A Herschel study of D/H in water in the Jupiter-Family comet 45P/Honda-Mrkos-Pajdusakova and prospects for D/H measurements with CCAT. Astrophys. J. 774, L3 (2013) ADSCrossRefGoogle Scholar
  138. K.E. Mandt, J.H. Waite, W. Lewis et al., Isotopic evolution of the major constituents of Titan’s atmosphere based on Cassini data. Planet. Space Sci. 57, 1917–1930 (2009) ADSCrossRefGoogle Scholar
  139. K. Mandt, O. Mousis, B. Marty, T. Cavalié, W. Harris, P. Hartogh, K. Willacy, Constraints from comets on the formation and volatile acquisition of the planets and satellites. Space Sci. Rev. (2015, this issue) Google Scholar
  140. J. Manfroid, E. Jehin, D. Hutsemékers, A. Cochran, J.-M. Zucconi, C. Arpigny, R. Schulz, J.A. Stüwe, Isotopic abundance of nitrogen and carbon in distant comets. Astron. Astrophys. 432, 5–8 (2005) ADSCrossRefGoogle Scholar
  141. J. Manfroid, E. Jehin, D. Hutsemékers, A. Cochran, J.-M. Zucconi, C. Arpigny, R. Schulz, J.A. Stüwe, I. Ilyin, The CN isotopic ratios in comets. Astron. Astrophys. 503, 613–624 (2009) ADSCrossRefGoogle Scholar
  142. J.G. Mangum, R.L. Plambeck, A. Wootten, Fossil DCN in Orion-KL. Astrophys. J. 369, 169–174 (1991) ADSCrossRefGoogle Scholar
  143. R.E. March, J.F.J. Todd, Quadrupole Ion Trap Mass Spectrometry (Wiley, New York, 2005) CrossRefGoogle Scholar
  144. B. Marty, The origins and concentrations of water, carbon, nitrogen and noble gases on Earth. Earth Planet. Sci. Lett. 313, 56–66 (2012) ADSCrossRefGoogle Scholar
  145. B. Marty, R.L. Palma, R.O. Pepin, L. Zimmermann, D.J. Schlutter, P.G. Burnard, A.J. Westphal, C.J. Snead, S. Bajt, R.H. Becker, J.E. Simones, Helium and neon abundances and compositions in cometary matter. Science 319(5859), 75–78 (2008) ADSCrossRefGoogle Scholar
  146. B. Marty, M. Chaussidon, R.C. Wiens, A.J.G. Jurewicz, D.S. Burnett, A 15N-poor isotopic composition for the solar system as shown by genesis solar wind samples. Science 332, 1533–1536 (2011) ADSCrossRefGoogle Scholar
  147. J.E.P. Matzel, H.A. Ishii, D. Joswiak, I.D. Hutcheon, J.P. Bradley, D. Brownlee, P.K. Weber, N. Teslich, G. Matrajt, K.D. McKeegan, G.J. MacPherson, Constraints on the formation age of cometary material from the NASA stardust mission. Science 328(5977), 483–486 (2010) ADSCrossRefGoogle Scholar
  148. K.D. McKeegan et al., Isotopic compositions of cometary matter returned by stardust. Science 314, 1724–1728 (2006) ADSCrossRefGoogle Scholar
  149. H.Y. McSween Jr., P.R. Weissman, Cosmochemical implications of the physical processing of cometary nuclei. Geochim. Cosmochim. Acta 53, 3263–3271 (1989) ADSCrossRefGoogle Scholar
  150. R. Meier, T.C. Owen, H.E. Matthews, D.C. Jewitt, D. Bockelée-Morvan, N. Biver, J. Crovisier, D. Gautier, A determination of the HDO/H2O ratio in comet C/1995 O1 (Hale-Bopp). Science 279, 842–844 (1998a) ADSCrossRefGoogle Scholar
  151. R. Meier, T.C. Owen, D.C. Jewitt, H. Matthews, M. Senay, N. Biver, D. Bockelée-Morvan, J. Crovisier, D. Gautier, Deuterium in comet C/1995 O1 (Hale-Bopp): detection of DCN. Science 279, 1707–1710 (1998b) ADSCrossRefGoogle Scholar
  152. R. Meier, D. Wellnitz, S.J. Kim, M.F. A’Hearn, The NH and CH bands of comet C/1996 B2 (Hyakutake). Icarus 136, 268–279 (1998c) ADSCrossRefGoogle Scholar
  153. S. Messenger, Identification of molecular-cloud material in interplanetary dust particles. Nature 404, 968–971 (2000) ADSCrossRefGoogle Scholar
  154. S. Messenger, L.P. Keller, F.J. Stadermann, R.M. Walker, E. Zinner, Samples of stars beyond the solar system: silicate grains in interplanetary dust. Science 300(5616), 105–108 (2003) ADSCrossRefGoogle Scholar
  155. S. Messenger, L.P. Keller, D.S. Lauretta, Supernova olivine from cometary dust. Science 309(5735), 737–741 (2005) ADSCrossRefGoogle Scholar
  156. S.N. Milam, S.B. Charnley, Observations of nitrogen fractionation in prestellar cores: nitriles tracing interstellar chemistry. Technical report. Lunar and Planetary Institute Science Conference Abstracts vol. 43, p. 2618 (2012) Google Scholar
  157. S.N. Milam, C. Savage, M.A. Brewster, L.M. Ziurys, S. Wyckoff, The 12C/13C isotope gradient derived from millimeter transitions of CN: the case for galactic chemical evolution. Astrophys. J. 634, 1126–1132 (2005) ADSCrossRefGoogle Scholar
  158. T.J. Millar, A. Bennett, E. Herbst, Deuterium fractionation in dense interstellar clouds. Astrophys. J. 340, 906–920 (1989) ADSCrossRefGoogle Scholar
  159. Y.C. Minh, W.M. Irvine, D. McGonagle, L.M. Ziurys, Observations of the H2S toward OMC-1. Astrophys. J. 360, 136–141 (1990) ADSCrossRefGoogle Scholar
  160. O. Mousis, D. Gautier, D. Bockelée-Morvan, F. Robert, B. Dubrulle, A. Drouart, Constraints on the formation of comets from D/H ratios measured in H2O and HCN. Icarus 148, 513–525 (2000) ADSCrossRefGoogle Scholar
  161. T. Nakamura, T. Noguchi, Y. Ozono, T. Osawa, K. Nagao, Mineralogy of ultracarbonaceous large micrometeorites. Meteorit. Planet. Sci. Suppl. 40, 5046 (2005) ADSGoogle Scholar
  162. T. Nakamura, T. Noguchi, A. Tsuchiyama, T. Ushikubo, N.T. Kita, J.W. Valley, M.E. Zolensky, Y. Kakazu, K. Sakamoto, E. Mashio, K. Uesugi, T. Nakano, Chondrule-like objects in short-period comet 81P/Wild 2. Science 321, 1664–1667 (2008) ADSCrossRefGoogle Scholar
  163. D. Nakashima, T. Ushikubo, D.J. Joswiak, D.E. Brownlee, G. Matrajt, M.K. Weisberg, M.E. Zolensky, N.T. Kita, Oxygen isotopes in crystalline silicates of comet Wild 2: a comparison of oxygen isotope systematics between Wild 2 particles and chondritic materials. Earth Planet. Sci. Lett. 357, 355–365 (2012) ADSCrossRefGoogle Scholar
  164. D. Nakashima, T. Ushikubo, N.T. Kita, M.K. Weisberg, M.E. Zolensky, D.S. Ebel, Late formation of a comet Wild 2 crystalline silicate particle, Pyxie, inferred from Al-Mg chronology of plagioclase. Earth Planet. Sci. Lett. 410, 54–61 (2015) ADSCrossRefGoogle Scholar
  165. J. Neill, N.R. Crockett, E.A. Bergin, J.C. Pearson, L.-H. Xu, Deuterated molecules in Orion KL from Herschel/HIFI. Astrophys. J. 777, 85–104 (2013) ADSCrossRefGoogle Scholar
  166. H.B. Niemann, S.K. Atreya, J.E. Demick, D. Gautier, J.A. Haberman, D.N. Harpold, W.T. Kasprzak, J.I. Lunine, T.C. Owen, F. Raulin, Composition of Titan’s lower atmosphere and simple surface volatiles as measured by the Cassini-Huygens probe gas chromatograph mass spectrometer experiment. J. Geophys. Res., Planets 115, 12006 (2010) ADSCrossRefGoogle Scholar
  167. A.O. Nier, D.J. Schlutter, The thermal history of interplanetry dust particles collected in the Earth’s stratosphere. Meteoritics 28, 675–681 (1993) ADSCrossRefGoogle Scholar
  168. T. Noguchi, N. Ohashi, S. Tsujimoto, T. Mitsunari, J.P. Bradley, T. Nakamura, S. Toh, T. Stephan, N. Iwata, N. Imae, Cometary dust in Antarctic ice and snow: past and present chondritic porous micrometeorites preserved on the Earth’s surface. Earth Planet. Sci. Lett. 410, 1–11 (2015) ADSCrossRefGoogle Scholar
  169. R.C. Ogliore, G.R. Huss, K. Nagashima, A.L. Butterworth, Z. Gainsforth, J. Stodolna, A.J. Westphal, D. Joswiak, T. Tyliszczak, Incorporation of a late-forming chondrule into Comet Wild 2. Astrophys. J. Lett. 745, L19 (2012) ADSCrossRefGoogle Scholar
  170. T. Owen, The isotope ratio 12C/13C in comet Tago-Sato (1969g). Astrophys. J. 184, 33–44 (1973) ADSCrossRefGoogle Scholar
  171. T. Owen, P.R. Mahaffy, H.B. Niemann, S. Atreya, M. Wong, Protosolar nitrogen. Astrophys. J. Lett. 553, L77 (2001) ADSCrossRefGoogle Scholar
  172. L. Pagani, E. Roueff, P. Lesaffre, Ortho-H2 and the age of interstellar dark clouds. Astrophys. J. 739, L35–L38 (2011) ADSCrossRefGoogle Scholar
  173. B. Parise, C. Ceccarelli, A.G.G.M. Tielens, A. Castets, E. Caux, B. Lefloch, S. Maret, Testing grain surface chemistry: a survey of deuterated formaldehyde and methanol in low-mass class 0 protostars. Astron. Astrophys. 453, 949–958 (2006) ADSCrossRefGoogle Scholar
  174. L. Piani, F. Robert, L. Remusat, Micron-scale D/H heterogeneity in chondrite matrices: a signature of the pristine solar system water? Earth Planet. Sci. Lett. 415, 154–164 (2015) ADSCrossRefGoogle Scholar
  175. L. Remusat, F. Palhol, F. Robert, S. Derenne, C. France-Lanord, Enrichment of deuterium in insoluble organic matter from primitive meteorites: a solar system origin? Earth Planet. Sci. Lett. 243, 15–25 (2006) ADSCrossRefGoogle Scholar
  176. L. Remusat, Y. Guan, Y. Wang, J.M. Eiler, Accretion and preservation of D-rich organic particles in carbonaceous chondrites: evidence for important transport in the early solar system nebula. Astrophys. J. 713(2), 1048–1058 (2010) ADSCrossRefGoogle Scholar
  177. H. Roberts, G.A. Fuller, T.J. Millar, J. Hatchell, J.V. Buckle, Molecular D/H ratios in the dense gas surrounding low-mass protostars. Planet. Space Sci. 50, 1173–1178 (2002) ADSCrossRefGoogle Scholar
  178. H. Roberts, E. Herbst, T.J. Millar, Enhanced deuterium fractionation in dense interstellar cores resulting from multiply deuterated \(\mbox{H}_{3}^{+}\). Astrophys. J. 591, L41–L44 (2003) ADSCrossRefGoogle Scholar
  179. S.D. Rodgers, S.B. Charnley, Nitrogen isotopic fractionation of interstellar nitriles. Astrophys. J. 689, 1448–1455 (2008) ADSCrossRefGoogle Scholar
  180. E. Roueff, J.C. Loison, K.M. Hickson, Isotopic fractionation of carbon, deuterium, and nitrogen: a full chemical study. Astron. Astrophys. 576, A99 (2015), 18 pp. ADSCrossRefGoogle Scholar
  181. P. Rousselot, E. Jehin, J. Manfroid, D. Hutsemékers, The 12C2/12C13C isotopic ratio in comets C/2001 Q4 (NEAT) and C/2002 T7 (LINEAR). Astron. Astrophys. 545, A24–A30 (2012) ADSCrossRefGoogle Scholar
  182. P. Rousselot et al., Toward a unique nitrogen isotopic ratio in cometary ices. Astrophys. J. 780, L17–L21 (2014) ADSCrossRefGoogle Scholar
  183. M. Rubin, K. Altwegg, H. Balsiger et al., Molecular nitrogen in comet 67P/Churyumov-Gerasimenko indicates a low formation temperature. Science 348, 232–235 (2015) ADSCrossRefGoogle Scholar
  184. J. Santrock, S.A. Studley, J.M. Hayes, Isotopic analyses based on the mass spectrum of carbon dioxide. Anal. Chem. 57, 1444–1448 (1985) CrossRefGoogle Scholar
  185. B. SchläPpi et al., Influence of spacecraft outgassing on the exploration of tenuous atmospheres with in situ mass spectrometry. J. Geophys. Res. Space Phys. 115, 12313 (2010) ADSCrossRefGoogle Scholar
  186. R.Y. Shah, H. Wootten, Deuterated ammonia in galactic protostellar cores. Astrophys. J. 554, 933–947 (2001) ADSCrossRefGoogle Scholar
  187. Y. Shinnaka, H. Kawakita, H. Kobayashi, E. Jehin, J. Manfroid, D. Hutsemékers, C. Arpigny, Astrophys. J. 729, 81–95 (2011) ADSCrossRefGoogle Scholar
  188. Y. Shinnaka, H. Kawakita, M. Nagashima, K. Hitomi, A. Decock, E. Jehin, D.C. Boice, High-dispersion spectroscopic observations of comet C/2012 S1 (ISON) with the Subaru telescope. AAS/Division for Planetary Sciences Meeting Abstracts 46, #209.14 (2014a) Google Scholar
  189. Y. Shinnaka, H. Kawakita, H. Kobayashi, M. Nagashima, D.C. Boice, 14NH2/15NH2 ratio in comet C/2012 S1 (ISON) observed during its outburst in 2013 November. Astrophys. J. 782, L16–L19 (2014b) ADSCrossRefGoogle Scholar
  190. S.B. Simon, D.J. Joswiak, H.A. Ishii, J.P. Bradley, M. Chi, L. Grossman, J. Aléon, D.E. Brownlee, S. Fallon, I.D. Hutcheon, G. Matrajt, K.D. McKeegan, A refractory inclusion returned by Stardust from comet 81P/Wild 2. Meteorit. Planet. Sci. 43, 1861–1877 (2008) ADSCrossRefGoogle Scholar
  191. G. Slodzian, T.-D. Wu, N. Bardin, J. Duprat, C. Engrand, J.-L. Guerquin-Kern, Simultaneous hydrogen and heavier element isotopic ratio images with a scanning submicron ion probe and mass resolved polyatomic ions. Microsc. Microanal. 20, 577–581 (2013) ADSCrossRefGoogle Scholar
  192. F.J. Stadermann, P. Hoppe, C. Floss, P.R. Heck, F. Horz, J. Huth, A.T. Kearsley, J. Leitner, K.K. Marhas, K.D. McKeegan, T. Stephan, Stardust in stardust—the C, N, and O isotopic compositions of Wild 2 cometary matter in al foil impacts. Meteorit. Planet. Sci. 43(1-2), 299–313 (2008) ADSCrossRefGoogle Scholar
  193. N.A. Starkey, I.A. Franchi, Insight into the silicate and organic reservoirs of the comet forming region. Geochim. Cosmochim. Acta 105, 73–91 (2013) ADSCrossRefGoogle Scholar
  194. N.A. Starkey, I.A. Franchi, M.R. Lee, Isotopic diversity in interplanetary dust particles and preservation of extreme 16O-depletion. Geochim. Cosmochim. Acta 142, 115–131 (2014) ADSCrossRefGoogle Scholar
  195. A. Stawikowski, J.L. Greenstein, The isotope ratio 12C/13C in a comet. Astrophys. J. 140, 1280–1291 (1964) ADSCrossRefGoogle Scholar
  196. V. Taquet, S.B. Charnley, O. Sipilä, Multilayer formation and evaporation of deuterated ices in prestellar and protostellar cores. Astrophys. J. 791, 1–20 (2014) ADSCrossRefGoogle Scholar
  197. P.P. Tennekes, J. Harju, M. Juvela, L.V. Tóth, HCN and HNC mapping of the protostellar core Chamaeleon-MMS1. Astron. Astrophys. 456, 1037–1043 (2006) ADSCrossRefGoogle Scholar
  198. R. Terzieva, E. Herbst, The possibility of nitrogen isotopic fractionation in interstellar clouds. Mon. Not. R. Astron. Soc. 317, 563–568 (2000) ADSCrossRefGoogle Scholar
  199. K.L. Thomas, G.E. Blanford, L.P. Keller, W. Klöck, D. McKay, Carbon abundance and silicate mineralogy of anhydrous interplanetary dust particles. Geochim. Cosmochim. Acta 57, 1551–1566 (1993) ADSCrossRefGoogle Scholar
  200. B.E. Turner, Detection of doubly deuterated interstellar formaldehyde (D2CO)—an indicator of active grain surface chemistry. Astrophys. J. 362, L29–L33 (1990) ADSCrossRefGoogle Scholar
  201. B.E. Turner, Deuterated molecules in translucent and dark clouds. Astrophys. J. Suppl. Ser. 136, 579–629 (2001) ADSCrossRefGoogle Scholar
  202. H.C. Urey, Origin of tektites. Nature 179, 556–557 (1957) ADSCrossRefGoogle Scholar
  203. V. Vanysek, in Comets, Asteroids, Meteorites: Interrelations, Evolution and Origins, ed. by A.H. Delsemme. IAU Colloq., vol. 39 (1977), p. 499 Google Scholar
  204. G.L. Villanueva, M.J. Mumma, B.P. Bonev, M.A. Di Santi, E.L. Gibb, H. Böhnhardt, M. Lippi, A sensitive search for deuterated water in comet 8p/Tuttle. Astrophys. J. 690, L5–L9 (2009) ADSCrossRefGoogle Scholar
  205. J.H. Waite Jr. et al., Liquid water on Enceladus from observations of ammonia and 40Ar in the plume. Nature 460, 487–490 (2009) ADSCrossRefGoogle Scholar
  206. K.J. Walsh, A. Morbidelli, S.N. Raymond, D.P. O’Brien, A.M. Mandell, A low mass for Mars from Jupiter’s early gas-driven migration. Nature 475, 206–209 (2011) ADSCrossRefGoogle Scholar
  207. S.F. Wampfler, J.K. Jorgensen, M. Bizzarro, S.E. Bisschop, Observations of nitrogen isotope fractionation in deeply embedded protostars. Astron. Astrophys. 20, 577–581 (2014) Google Scholar
  208. W.D. Watson, V.G. Anicich, W.T. Huntress Jr., Measurement and significance of the equilibrium reaction 13C++12CO⇌12C++13CO for alteration of the 13C/12C ratio in interstellar molecules. Astrophys. J. 205, L165–L168 (1976) ADSCrossRefGoogle Scholar
  209. H.A. Weaver, M.F. A’Hearn, C. Arpigny, M.R. Combi, P.D. Feldman, G.-P. Tozzi, N. Dello Russo, M.C. Festou, Atomic Deuterium Emission and the D/H Ratio in Comets. LPI Contributions, vol. 1405 (2008), p. 8216 Google Scholar
  210. M.K. Weisberg, H.C. Connolly, On the relationship between chondrites, comets, and asteroids, a petrologic perspective, in Lunar Planet. Sci., vol. XXXIX (2008) Google Scholar
  211. K. Willacy, A.C. Alexander, M. Ali-Dib, S.B. Ceccarelli Charnley, M. Doronin, Y. Ellinger, P. Gast, E. Gibb, S.N. Milam, O. Mousis, F. Pauzat, C. Tornow, E.S. Wirström, E. Zicler, Space Science Reviews (2015). this volume Google Scholar
  212. E.S. Wirström, W.D. Geppert, Å. Hjalmarson, C.M. Persson, J.H. Black, P. Bergman, T.J. Millar, M. Hamberg, E. Vigren, Observational tests of interstellar methanol formation. Astron. Astrophys. 533, 24–34 (2011) ADSCrossRefGoogle Scholar
  213. E.S. Wirström, S.B. Charnley, M.A. Cordiner, S.N. Milam, Isotopic anomalies in primitive solar system matter: spin-state-dependent fractionation of nitrogen and deuterium in interstellar clouds. Astrophys. J. 757, L11–L15 (2012) ADSCrossRefGoogle Scholar
  214. D.H. Wooden, Cometary refractory grains: interstellar and nebular sources. Space Sci. Rev. 138, 75–108 (2008) ADSCrossRefGoogle Scholar
  215. P.M. Woods, K. Willacy, Carbon isotope fractionation in protoplanetary disks. Astrophys. J. 693, 1360–1378 (2009) ADSCrossRefGoogle Scholar
  216. A. Wootten, ALMA capabilities for observations of spectral line emission. Astrophys. Space Sci. 313, 9–12 (2008) ADSCrossRefGoogle Scholar
  217. I.P. Wright, S.J. Barber, G.H. Morgan, A.D. Morse, S. Sheridan, D.J. Andrews, J. Maynard, D. Yau, S.T. Evans, M.R. Leese, J.C. Zarnecki, B.J. Kent, N.R. Waltham, M.S. Whalley, S. Heys, D.L. Drummond, R.L. Edeson, E.C. Sawyer, R.F. Turner, C.T. Pillinger, Ptolemy—an instrument to measure stable isotopic ratios of key volatiles on a cometary nucleus. Space Sci. Rev. 128, 363–381 (2007) ADSCrossRefGoogle Scholar
  218. S. Wyckoff, P. Wehinger, Chemical abundance of comets, in Reports of Planetary Astronomy (1988), pp. 145–146 Google Scholar
  219. S. Wyckoff, E. Lindholm, P.A. Wehinger, B.A. Peterson, J.-M. Zucconi, M.C. Festou, The C-12/C-13 abundance ratio in comet Halley. Astrophys. J. 339, 488–500 (1989) ADSCrossRefGoogle Scholar
  220. S. Wyckoff, M. Kleine, B.A. Peterson, P.A. Wehinger, L.M. Ziurys, Carbon isotope abundances in comets. Astrophys. J. 535, 991–999 (2000) ADSCrossRefGoogle Scholar
  221. L. Yang, F.J. Ciesla, C.M.O. Alexander, The D/H ratio of water in the solar nebula during its formation and evolution. Icarus 226, 256–267 (2013) ADSCrossRefGoogle Scholar
  222. H. Yurimoto, K. Kuramoto, Molecular cloud origin for the oxygen isotope heterogeneity in the solar system. Science 305, 1763–1766 (2004) ADSCrossRefGoogle Scholar
  223. L.M. Ziurys, C. Savage, M.A. Brewster, A.J. Apponi, T.C. Pesch, S. Wyckoff, Cyanide chemistry in comet Hale-Bopp (C/1995 O1). Astrophys. J. 527, L67–L71 (1999) ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Dominique Bockelée-Morvan
    • 1
  • Ursina Calmonte
    • 2
  • Steven Charnley
    • 3
  • Jean Duprat
    • 4
  • Cécile Engrand
    • 4
  • Adeline Gicquel
    • 5
  • Myrtha Hässig
    • 6
  • Emmanuël Jehin
    • 7
  • Hideyo Kawakita
    • 8
  • Bernard Marty
    • 9
  • Stefanie Milam
    • 3
  • Andrew Morse
    • 10
  • Philippe Rousselot
    • 11
  • Simon Sheridan
    • 10
  • Eva Wirström
    • 12
  1. 1.Observatoire de ParisCNRS, UPMC, Université Paris-DiderotMeudonFrance
  2. 2.Physics Institute, Space Research and Planetary ScienceUniversity of BernBernSwitzerland
  3. 3.Astrochemistry LaboratoryCode 691 NASA Goddard Space Flight Center GreenbeltGreenbeltUSA
  4. 4.Centre de Sciences Nucléaires et de Sciences de la matière (CSNSM)Université Paris-Sud, UMR 8609-CNRS/IN2P3OrsayFrance
  5. 5.Max Planck Institute for Solar System ResearchGöttingenGermany
  6. 6.Southwest Research InstituteSan AntonioUSA
  7. 7.Département d’Astrophysiquede Géophysique et d’Océanographie de Université de LiègeLiègeBelgium
  8. 8.Koyama Astronomical ObservatoryKyoto Sangyo Univ.KitaJapan
  9. 9.CRPG-CNRSUniversité de LorraineVandoeuvre-lès-NancyFrance
  10. 10.Space SciencesThe Open UniversityMilton KeynesUK
  11. 11.Observatoire des Sciences de l’Univers THETA, Institut UTINAM—UMR CNRS 6213University of Franche-ComtéBesançon CedexFrance
  12. 12.Onsala Space ObservatoryChalmers University of TechnologyOnsalaSweden

Personalised recommendations