Space Science Reviews

, Volume 196, Issue 1–4, pp 1–14 | Cite as

Prospects and Challenges for Helioseismology

  • J. Toomre
  • M. J. Thompson


Helioseismology has advanced considerably our knowledge of the interior of the Sun over the past three decades. Our understanding of the Sun’s internal structure, its dynamics, rotation, convection and magnetism, have all been advanced. Yet there are challenges, areas where the results from helioseismology are tantalizing but inconclusive, and aspects where the interpretation of the data has still to be put on a firm footing. In this paper we shall focus on a number of those challenges and give our assessment of where progress needs to be made in the next decade.


Sun Helioseismology 


  1. H.M. Antia, S. Basu, Determining solar abundances using helioseismology. Astrophys. J. 644, 1292–1298 (2006). doi: 10.1086/503707 ADSCrossRefGoogle Scholar
  2. T. Appourchaux, K. Belkacem, A.-M. Broomhall, W.J. Chaplin, D.O. Gough, G. Houdek, J. Provost, F. Baudin, P. Boumier, Y. Elsworth, R.A. García, B.N. Andersen, W. Finsterle, C. Fröhlich, A. Gabriel, G. Grec, A. Jiménez, A. Kosovichev, T. Sekii, T. Toutain, S. Turck-Chièze, The quest for the solar G modes. Astron. Astrophys. Rev. 18, 197–277 (2010). doi: 10.1007/s00159-009-0027-z ADSCrossRefGoogle Scholar
  3. M. Asplund, N. Grevesse, A.J. Sauval, The solar chemical composition, in Cosmic Abundances as Records of Stellar Evolution and Nucleosynthesis, ed. by T.G. Barnes III, F.N. Bash. Astronomical Society of the Pacific Conference Series, vol. 336 (2005), p. 25 Google Scholar
  4. M. Asplund, N. Grevesse, A.J. Sauval, C. Allende Prieto, D. Kiselman, Line formation in solar granulation. IV. [O I], O I and OH lines and the photospheric O abundance. Astron. Astrophys. 417, 751–768 (2004). doi: 10.1051/0004-6361:20034328 ADSCrossRefGoogle Scholar
  5. M. Asplund, N. Grevesse, A.J. Sauval, P. Scott, The chemical composition of the Sun. Annu. Rev. Astron. Astrophys. 47, 481–522 (2009). doi: 10.1146/annurev.astro.46.060407.145222 ADSCrossRefGoogle Scholar
  6. J.N. Bahcall, S. Basu, A.M. Serenelli, What is the neon abundance of the Sun? Astrophys. J. 631, 1281–1285 (2005a). doi: 10.1086/431926 ADSCrossRefGoogle Scholar
  7. J.N. Bahcall, A.M. Serenelli, S. Basu, New solar opacities, abundances, helioseismology, and neutrino fluxes. Astrophys. J. Lett. 621, 85–88 (2005b). doi: 10.1086/428929 ADSCrossRefGoogle Scholar
  8. J.N. Bahcall, S. Basu, M. Pinsonneault, A.M. Serenelli, Helioseismological implications of recent solar abundance determinations. Astrophys. J. 618, 1049–1056 (2005c). doi: 10.1086/426070 ADSCrossRefGoogle Scholar
  9. C.S. Baldner, S. Basu, Solar cycle related changes at the base of the convection zone. Astrophys. J. 686, 1349–1361 (2008). doi: 10.1086/591514 ADSCrossRefGoogle Scholar
  10. C.S. Baldner, S. Basu, R.S. Bogart, O. Burtseva, I. González Hernández, D. Haber, F. Hill, R. Howe, K. Jain, R.W. Komm, M.C. Rabello-Soares, S. Tripathy, Latest results found with ring-diagram analysis. Sol. Phys. 287, 57–69 (2013). doi: 10.1007/s11207-012-0171-x ADSCrossRefGoogle Scholar
  11. S. Basu, H.M. Antia, Helioseismology and solar abundances. Phys. Rep. 457, 217–283 (2008). doi: 10.1016/j.physrep.2007.12.002 ADSCrossRefGoogle Scholar
  12. S. Basu, H.M. Antia, Revisiting the issue of solar abundances. J. Phys. Conf. Ser. 440(1), 012017 (2013). doi: 10.1088/1742-6596/440/1/012017 ADSCrossRefGoogle Scholar
  13. S. Basu, J. Christensen-Dalsgaard, W.J. Chaplin, Y. Elsworth, G.R. Isaak, R. New, J. Schou, M.J. Thompson, S. Tomczyk, Solar internal sound speed as inferred from combined BiSON and LOWL oscillation frequencies. Mon. Not. R. Astron. Soc. 292, 243 (1997) ADSCrossRefGoogle Scholar
  14. V.A. Baturin, W. Däppen, D.O. Gough, S.V. Vorontsov, Seismology of the solar envelope: sound-speed gradient in the convection zone and its diagnosis of the equation of state. Mon. Not. R. Astron. Soc. 316, 71–83 (2000). doi: 10.1046/j.1365-8711.2000.03459.x ADSCrossRefGoogle Scholar
  15. A.C. Birch, D.C. Braun, S.M. Hanasoge, R. Cameron, Surface-focused seismic holography of sunspots: II. Expectations from numerical simulations using sound-speed perturbations. Sol. Phys. 254, 17–27 (2009). doi: 10.1007/s11207-008-9282-9 ADSCrossRefGoogle Scholar
  16. A.C. Birch, D.C. Braun, K.D. Leka, G. Barnes, B. Javornik, Helioseismology of pre-emerging active regions. II. Average emergence properties. Astrophys. J. 762, 131 (2013). doi: 10.1088/0004-637X/762/2/131 ADSCrossRefGoogle Scholar
  17. D.C. Braun, Comment on ‘Detection of emerging sunspot regions in the solar interior’. Science 336, 296 (2012). doi: 10.1126/science.1215425 ADSCrossRefGoogle Scholar
  18. D.C. Braun, A.C. Birch, M. Rempel, T.L. Duvall, Helioseismology of a realistic magnetoconvective sunspot simulation. Astrophys. J. 744, 77 (2012). doi: 10.1088/0004-637X/744/1/77 ADSCrossRefGoogle Scholar
  19. E. Caffau, H.-G. Ludwig, P. Bonifacio, R. Faraggiana, M. Steffen, B. Freytag, I. Kamp, T.R. Ayres, The solar photospheric abundance of carbon. Analysis of atomic carbon lines with the CO5BOLD solar model. Astron. Astrophys. 514, 92 (2010). doi: 10.1051/0004-6361/200912227 ADSCrossRefGoogle Scholar
  20. E. Caffau, H.-G. Ludwig, M. Steffen, B. Freytag, P. Bonifacio, Solar chemical abundances determined with a CO5BOLD 3D model atmosphere. Sol. Phys. 268, 255–269 (2011). doi: 10.1007/s11207-010-9541-4 ADSCrossRefGoogle Scholar
  21. P.S. Cally, Magnetic and thermal phase shifts in the local helioseismology of sunspots. Mon. Not. R. Astron. Soc. 395, 1309–1318 (2009). doi: 10.1111/j.1365-2966.2009.14708.x ADSCrossRefGoogle Scholar
  22. P. Charbonneau, Dynamo models of the solar cycle. Living Rev. Sol. Phys. 7, 3 (2010). doi: 10.12942/lrsp-2010-3 ADSCrossRefGoogle Scholar
  23. P. Charbonneau, Solar dynamo theory. Annu. Rev. Astron. Astrophys. 52, 251–290 (2014). doi: 10.1146/annurev-astro-081913-040012 ADSCrossRefGoogle Scholar
  24. D.-Y. Chou, A. Serebryanskiy, Searching for the signature of the magnetic fields at the base of the solar convection zone with solar cycle variations of p-mode travel time. Astrophys. J. Lett. 578, 157–160 (2002). doi: 10.1086/344635 ADSCrossRefGoogle Scholar
  25. D.-Y. Chou, A. Serebryanskiy, In search of the solar cycle variations of p-mode frequencies generated by perturbations in the solar interior. Astrophys. J. 624, 420–427 (2005). doi: 10.1086/428925 ADSCrossRefGoogle Scholar
  26. A.R. Choudhuri, M. Schussler, M. Dikpati, The solar dynamo with meridional circulation. Astron. Astrophys. 303, 29 (1995) ADSGoogle Scholar
  27. J. Christensen-Dalsgaard, Helioseismology. Rev. Mod. Phys. 74, 1073–1129 (2002). doi: 10.1103/RevModPhys.74.1073 ADSCrossRefGoogle Scholar
  28. J. Christensen-Dalsgaard, M.J. Thompson, Observational results and issues concerning the tachocline, in The Solar Tachocline, ed. by D.W. Hughes, R. Rosner, N.O. Weiss (2007), p. 53 CrossRefGoogle Scholar
  29. J. Christensen-Dalsgaard, D.O. Gough, M.J. Thompson, The depth of the solar convection zone. Astrophys. J. 378, 413–437 (1991). doi: 10.1086/170441 ADSCrossRefGoogle Scholar
  30. J. Christensen-Dalsgaard, C.R. Proffitt, M.J. Thompson, Effects of diffusion on solar models and their oscillation frequencies. Astrophys. J. Lett. 403, 75–78 (1993). doi: 10.1086/186725 ADSCrossRefGoogle Scholar
  31. J. Christensen-Dalsgaard, T.L. Duvall Jr., D.O. Gough, J.W. Harvey, E.J. Rhodes Jr., Speed of sound in the solar interior. Nature 315, 378–382 (1985). doi: 10.1038/315378a0 ADSCrossRefGoogle Scholar
  32. T. Corbard, M.J. Thompson, The subsurface radial gradient of solar angular velocity from MDI f-mode observations. Sol. Phys. 205, 211–229 (2002). doi: 10.1023/A:1014224523374 ADSCrossRefGoogle Scholar
  33. W. Däppen, D.O. Gough, On the determination of the helium abundance of the solar convection zone, in Liege International Astrophysical Colloquia, vol. 25 (1984), pp. 264–268 Google Scholar
  34. W. Däppen, D.O. Gough, Progress report on helium abundance determination, in NATO ASIC Proc. 169: Seismology of the Sun and the Distant Stars, ed. by D.O. Gough (1986), pp. 275–280 CrossRefGoogle Scholar
  35. W. Däppen, D.O. Gough, M.J. Thompson, Further progress on the helium abundance determination, in Seismology of the Sun and Sun-Like Stars, ed. by E.J. Rolfe. ESA Special Publication, vol. 286 (1988), pp. 505–510 Google Scholar
  36. K. DeGrave, J. Jackiewicz, M. Rempel, Time-distance helioseismology of two realistic sunspot simulations. Astrophys. J. 794, 18 (2014a). doi: 10.1088/0004-637X/794/1/18 ADSCrossRefGoogle Scholar
  37. K. DeGrave, J. Jackiewicz, M. Rempel, Validating time-distance helioseismology with realistic quiet-Sun simulations. Astrophys. J. 788, 127 (2014b). doi: 10.1088/0004-637X/788/2/127 ADSCrossRefGoogle Scholar
  38. F.-L. Deubner, D. Gough, Helioseismology: oscillations as a diagnostic of the solar interior. Annu. Rev. Astron. Astrophys. 22, 593–619 (1984). doi: 10.1146/annurev.aa.22.090184.003113 ADSCrossRefGoogle Scholar
  39. M. Dikpati, P.A. Gilman, Flux-transport solar dynamos. Space Sci. Rev. 144, 67–75 (2009). doi: 10.1007/s11214-008-9484-3 ADSCrossRefGoogle Scholar
  40. F.W.W. Dilke, D.O. Gough, The solar spoon. Nature 240, 262–294 (1972). doi: 10.1038/240262a0 ADSCrossRefGoogle Scholar
  41. T.L. Duvall, S.M. Hanasoge, Subsurface supergranular vertical flows as measured using large distance separations in time-distance helioseismology. Sol. Phys. 287, 71–83 (2013). doi: 10.1007/s11207-012-0010-0 ADSCrossRefGoogle Scholar
  42. T.L. Duvall, S.M. Hanasoge, S. Chakraborty, Additional evidence supporting a model of shallow, high-speed supergranulation. Sol. Phys. 289, 3421–3433 (2014). doi: 10.1007/s11207-014-0537-3 ADSCrossRefGoogle Scholar
  43. T.L. Duvall Jr., W.A. Dziembowski, P.R. Goode, D.O. Gough, J.W. Harvey, J.W. Leibacher, Internal rotation of the Sun. Nature 310, 22–25 (1984). doi: 10.1038/310022a0 ADSCrossRefGoogle Scholar
  44. P. Eggenberger, G. Meynet, A. Maeder, A. Miglio, J. Montalban, F. Carrier, S. Mathis, C. Charbonnel, S. Talon, Effects of rotational mixing on the asteroseismic properties of solar-type stars. Astron. Astrophys. 519, 116 (2010). doi: 10.1051/0004-6361/201014713 ADSCrossRefGoogle Scholar
  45. N.A. Featherstone, Exploring convection and dynamos in the cores and envelopes of stars. PhD thesis, University of Colorado at Boulder, 2011 Google Scholar
  46. N.A. Featherstone, B.W. Hindman, M.J. Thompson, Ring-analysis flow measurements of sunspot outflows. J. Phys. Conf. Ser. 271(1), 012002 (2011). doi: 10.1088/1742-6596/271/1/012002 ADSCrossRefGoogle Scholar
  47. S.T. Fletcher, A.-M. Broomhall, D. Salabert, S. Basu, W.J. Chaplin, Y. Elsworth, R.A. Garcia, R. New, A seismic signature of a second dynamo? Astrophys. J. Lett. 718, 19–22 (2010). doi: 10.1088/2041-8205/718/1/L19 ADSCrossRefGoogle Scholar
  48. P.M. Giles, Time-distance measurements of large-scale flows in the solar convection zone. PhD thesis, Stanford University, 2000 Google Scholar
  49. P.A. Gilman, R. Howe, Meridional motion and the slope of isorotation contours, in GONG+ 2002. Local and Global Helioseismology: The Present and Future, ed. by H. Sawaya-Lacoste. ESA Special Publication, vol. 517 (2003), pp. 283–285 Google Scholar
  50. L. Gizon, A.C. Birch, Local helioseismology. Living Rev. Sol. Phys. 2, 6 (2005). doi: 10.12942/lrsp-2005-6 ADSCrossRefGoogle Scholar
  51. L. Gizon, A.C. Birch, Helioseismology challenges models of solar convection. Proc. Natl. Acad. Sci. 109, 11896–11897 (2012). doi: 10.1073/pnas.1208875109 ADSCrossRefGoogle Scholar
  52. L. Gizon, A.C. Birch, H.C. Spruit, Local helioseismology: three-dimensional imaging of the solar interior. Annu. Rev. Astron. Astrophys. 48, 289–338 (2010). doi: 10.1146/annurev-astro-082708-101722 ADSCrossRefGoogle Scholar
  53. I. González Hernández, C. Lindsey, D.C. Braun, R.S. Bogart, P.H. Scherrer, F. Hill, Far-side helioseismic maps: the next generation. J. Phys. Conf. Ser. 440(1), 012029 (2013). doi: 10.1088/1742-6596/440/1/012029 ADSCrossRefGoogle Scholar
  54. D. Gough, J. Toomre, Seismic observations of the solar interior. Annu. Rev. Astron. Astrophys. 29, 627–685 (1991). doi: 10.1146/annurev.aa.29.090191.003211 ADSCrossRefGoogle Scholar
  55. D.O. Gough, Theory of solar oscillations, in Future Missions in Solar, Heliospheric & Space Plasma Physics, ed. by E. Rolfe, B. Battrick. ESA Special Publication, vol. 235 (1985), pp. 183–197 Google Scholar
  56. B.J. Greer, B.W. Hindman, J. Toomre, Multi-ridge fitting for ring-diagram helioseismology. Sol. Phys. 289, 2823–2843 (2014). doi: 10.1007/s11207-014-0514-x ADSCrossRefGoogle Scholar
  57. B.J. Greer, B.W. Hindman, N.A. Featherstone, J. Toomre, Helioseismic imaging of fast convective flows throughout the near-surface shear layer. Astrophys. J. Lett. (2015, in press). arXiv:1504.00699
  58. N. Grevesse, A. Noels, Cosmic abundances of the elements, in Origin and Evolution of the Elements, ed. by N. Prantzos, E. Vangioni-Flam, M. Casse (1993), pp. 15–25 Google Scholar
  59. J.A. Guzik, Challenges in solar and stellar model physics (2014). arXiv:1401.0547
  60. D.A. Haber, B.W. Hindman, J. Toomre, R.S. Bogart, R.M. Larsen, F. Hill, Evolving submerged meridional circulation cells within the upper convection zone revealed by ring-diagram analysis. Astrophys. J. 570, 855–864 (2002). doi: 10.1086/339631 ADSCrossRefGoogle Scholar
  61. S.M. Hanasoge, A. Birch, L. Gizon, J. Tromp, The adjoint method applied to time-distance helioseismology. Astrophys. J. 738, 100 (2011). doi: 10.1088/0004-637X/738/1/100 ADSCrossRefGoogle Scholar
  62. S.M. Hanasoge, T.L. Duvall, K.R. Sreenivasan, Anomalously weak solar convection. Proc. Natl. Acad. Sci. 109, 11928–11932 (2012). doi: 10.1073/pnas.1206570109 ADSCrossRefGoogle Scholar
  63. S. Hanasoge, M.S. Miesch, M. Roth, J. Schou, M. Schüssler, M.J. Thompson, Solar dynamics, rotation, convection and overshoot. Space Sci. Rev. (2015, this issue). doi: 10.1007/s11214-015-0144-0 Google Scholar
  64. G. Hazra, B.B. Karak, A.R. Choudhuri, Is a deep one-cell meridional circulation essential for the flux transport solar dynamo? Astrophys. J. 782, 93 (2014). doi: 10.1088/0004-637X/782/2/93 ADSCrossRefGoogle Scholar
  65. F. Hill, P.B. Stark, R.T. Stebbins, E.R. Anderson, H.M. Antia, T.M. Brown, T.L. Duvall Jr., D.A. Haber, J.W. Harvey, D.H. Hathaway, R. Howe, R.P. Hubbard, H.P. Jones, J.R. Kennedy, S.G. Korzennik, A.G. Kosovichev, J.W. Leibacher, K.G. Libbrecht, J.A. Pintar, E.J. Rhodes Jr., J. Schou, M.J. Thompson, S. Tomczyk, C.G. Toner, R. Toussaint, W.E. Williams, The solar acoustic spectrum and eigenmode parameters. Science 272, 1292–1295 (1996). doi: 10.1126/science.272.5266.1292 ADSCrossRefGoogle Scholar
  66. B.W. Hindman, L. Gizon, T.L. Duvall Jr., D.A. Haber, J. Toomre, Comparison of solar subsurface flows assessed by ring and time-distance analyses. Astrophys. J. 613, 1253–1262 (2004). doi: 10.1086/423263 ADSCrossRefGoogle Scholar
  67. R. Howe, Solar interior rotation and its variation. Living Rev. Sol. Phys. 6, 1 (2009). doi: 10.12942/lrsp-2009-1 ADSCrossRefGoogle Scholar
  68. R. Howe, J. Christensen-Dalsgaard, F. Hill, R.W. Komm, R.M. Larsen, J. Schou, M.J. Thompson, J. Toomre, Dynamic variations at the base of the solar convection zone. Science 287, 2456–2460 (2000). doi: 10.1126/science.287.5462.2456 ADSCrossRefGoogle Scholar
  69. R. Howe, R. Komm, F. Hill, J. Christensen-Dalsgaard, T.P. Larson, J. Schou, M.J. Thompson, J. Toomre, Rotation-rate variations at the tachocline: an update. J. Phys. Conf. Ser. 271(1), 012075 (2011). doi: 10.1088/1742-6596/271/1/012075 ADSCrossRefGoogle Scholar
  70. R. Howe, J. Christensen-Dalsgaard, F. Hill, R. Komm, T.P. Larson, M. Rempel, J. Schou, M.J. Thompson, The high-latitude branch of the solar torsional oscillation in the rising phase of cycle 24. Astrophys. J. Lett. 767, 20 (2013). doi: 10.1088/2041-8205/767/1/L20 ADSCrossRefGoogle Scholar
  71. S. Ilonidis, J. Zhao, A. Kosovichev, Detection of emerging sunspot regions in the solar interior. Science 333, 993 (2011). doi: 10.1126/science.1206253 ADSCrossRefGoogle Scholar
  72. S.M. Jefferies, S.V. Vorontsov, A new way to model the solar oscillation -ν power spectrum. Sol. Phys. 220, 347–359 (2004). doi: 10.1023/B:SOLA.0000031404.13076.73 ADSCrossRefGoogle Scholar
  73. J.R. Kennedy, S.M. Jefferies, F. Hill, Solar G-mode signatures in P-mode signals, in GONG 1992. Seismic Investigation of the Sun and Stars, ed. by T.M. Brown. Astronomical Society of the Pacific Conference Series, vol. 42 (1993), p. 273 Google Scholar
  74. R. Komm, I. González Hernández, F. Hill, R. Bogart, M.C. Rabello-Soares, D. Haber, Subsurface meridional flow from HMI using the ring-diagram pipeline. Sol. Phys. 287, 85–106 (2013). doi: 10.1007/s11207-012-0073-y ADSCrossRefGoogle Scholar
  75. R. Komm, R. Howe, I. González Hernández, F. Hill, Solar-cycle variation of subsurface zonal flow. Sol. Phys. 289, 3435–3455 (2014). doi: 10.1007/s11207-014-0490-1 ADSCrossRefGoogle Scholar
  76. A.G. Kosovichev, J. Christensen-Dalsgaard, W. Daeppen, W.A. Dziembowski, D.O. Gough, M.J. Thompson, Sources of uncertainty in direct seismological measurements of the solar helium abundance. Mon. Not. R. Astron. Soc. 259, 536–558 (1992) ADSCrossRefGoogle Scholar
  77. A.G. Kosovichev, S. Basu, R. Bogart, T.L. Duvall Jr., I. Gonzalez-Hernandez, D. Haber, T. Hartlep, R. Howe, R. Komm, S. Kholikov, K.V. Parchevsky, S. Tripathy, J. Zhao, Local helioseismology of sunspot regions: comparison of ring-diagram and time-distance results. J. Phys. Conf. Ser. 271(1), 012005 (2011). doi: 10.1088/1742-6596/271/1/012005 ADSCrossRefGoogle Scholar
  78. P. Kumar, E.J. Quataert, J.N. Bahcall, Observational searches for solar G-modes: some theoretical considerations. Astrophys. J. Lett. 458, 83 (1996). doi: 10.1086/309926 ADSCrossRefGoogle Scholar
  79. T.P. Larson, J. Schou, Improvements in global mode analysis. J. Phys. Conf. Ser. 118(1), 012083 (2008). doi: 10.1088/1742-6596/118/1/012083 ADSCrossRefGoogle Scholar
  80. E.M. Lavely, M.H. Ritzwoller, The effect of global-scale, steady-state convection and elastic-gravitational asphericities on helioseismic oscillations. Philos. Trans. R. Soc. Lond. Ser. A 339, 431–496 (1992). doi: 10.1098/rsta.1992.0048 ADSCrossRefGoogle Scholar
  81. C. Lindsey, D.C. Braun, Seismic images of the far side of the Sun. Science 287, 1799–1801 (2000). doi: 10.1126/science.287.5459.1799 ADSCrossRefGoogle Scholar
  82. K. Lodders, Solar system abundances of the elements, in Principles and Perspectives in Cosmochemistry, ed. by A. Goswami, B.E. Reddy (2010), p. 379. doi: 10.1007/978-3-642-10352-0_8 CrossRefGoogle Scholar
  83. Y.-Q. Lou, Solar P-modes modulated by interior G-modes. Astrophys. J. Lett. 556, 121–125 (2001). doi: 10.1086/322270 ADSCrossRefGoogle Scholar
  84. S. Mathis, The interior of the Sun in 3-D: beyond the spherical Sun picture. Astron. Nachr. 331, 883 (2010). doi: 10.1002/asna.201011419 ADSCrossRefGoogle Scholar
  85. S. Mathis, Transport processes in stellar interiors, in Lecture Notes in Physics, ed. by M. Goupil, K. Belkacem, C. Neiner, F. Lignières, J.J. Green. Lecture Notes in Physics, vol. 865 (Springer, Berlin, 2013), p. 23. doi: 10.1007/978-3-642-33380-4_2 Google Scholar
  86. M.S. Miesch, The solar dynamo. Philos. Trans. R. Soc. Lond. Ser. A 370, 3049–3069 (2012). doi: 10.1098/rsta.2011.0507 ADSCrossRefGoogle Scholar
  87. M.S. Miesch, J. Toomre, Turbulence, magnetism, and shear in stellar interiors. Annu. Rev. Fluid Mech. 41, 317–345 (2009). doi: 10.1146/annurev.fluid.010908.165215 ADSCrossRefzbMATHGoogle Scholar
  88. M.S. Miesch, A.S. Brun, M.L. De Rosa, J. Toomre, Structure and evolution of giant cells in global models of solar convection. Astrophys. J. 673, 557–575 (2008). doi: 10.1086/523838 ADSCrossRefGoogle Scholar
  89. M.S. Miesch, N.A. Featherstone, M. Rempel, R. Trampedach, On the amplitude of convective velocities in the deep solar interior. Astrophys. J. 757, 128 (2012). doi: 10.1088/0004-637X/757/2/128 ADSCrossRefGoogle Scholar
  90. U. Mitra-Kraev, M.J. Thompson, Meridional flow profile measurements with SOHO/MDI. Astron. Nachr. 328, 1009–1012 (2007). doi: 10.1002/asna.200710873 ADSCrossRefzbMATHGoogle Scholar
  91. H. Moradi, P.S. Cally, Helioseismic implications of mode conversion, in Astronomical Society of the Pacific Conference Series, ed. by K. Jain, S.C. Tripathy, F. Hill, J.W. Leibacher, A.A. Pevtsov. Astronomical Society of the Pacific Conference Series, vol. 478 (2013), p. 263 Google Scholar
  92. H. Moradi, C. Baldner, A.C. Birch, D.C. Braun, R.H. Cameron, T.L. Duvall, L. Gizon, D. Haber, S.M. Hanasoge, B.W. Hindman, J. Jackiewicz, E. Khomenko, R. Komm, P. Rajaguru, M. Rempel, M. Roth, R. Schlichenmaier, H. Schunker, H.C. Spruit, K.G. Strassmeier, M.J. Thompson, S. Zharkov, Modeling the subsurface structure of sunspots. Sol. Phys. 267, 1–62 (2010). doi: 10.1007/s11207-010-9630-4 ADSCrossRefGoogle Scholar
  93. K. Mussack, D. Gough, Measuring solar abundances with seismology, in Solar-Stellar Dynamos as Revealed by Helio- and Asteroseismology: GONG 2008/SOHO 21, ed. by M. Dikpati, T. Arentoft, I. González Hernández, C. Lindsey, F. Hill. Astronomical Society of the Pacific Conference Series, vol. 416 (2009), p. 203 Google Scholar
  94. A.A. Reinard, J. Henthorn, R. Komm, F. Hill, Evidence that temporal changes in solar subsurface helicity precede active region flaring. Astrophys. J. Lett. 710, 121–125 (2010). doi: 10.1088/2041-8205/710/2/L121 ADSCrossRefGoogle Scholar
  95. O. Richard, W.A. Dziembowski, R. Sienkiewicz, P.R. Goode, On the accuracy of helioseismic determination of solar helium abundance. Astron. Astrophys. 338, 756–760 (1998) ADSGoogle Scholar
  96. M. Roth, M. Stix, Meridional circulation and global solar oscillations. Sol. Phys. 251, 77–89 (2008). doi: 10.1007/s11207-008-9232-6 ADSCrossRefGoogle Scholar
  97. A. Schad, J. Timmer, M. Roth, Global helioseismic evidence for a deeply penetrating solar meridional flow consisting of multiple flow cells. Astrophys. J. Lett. 778, 38 (2013). doi: 10.1088/2041-8205/778/2/L38 ADSCrossRefGoogle Scholar
  98. J. Schou, On the analysis of helioseismic data. PhD thesis, Aarhus University, 1992 Google Scholar
  99. J. Schou, H.M. Antia, S. Basu, R.S. Bogart, R.I. Bush, S.M. Chitre, J. Christensen-Dalsgaard, M.P. Di Mauro, W.A. Dziembowski, A. Eff-Darwich, D.O. Gough, D.A. Haber, J.T. Hoeksema, R. Howe, S.G. Korzennik, A.G. Kosovichev, R.M. Larsen, F.P. Pijpers, P.H. Scherrer, T. Sekii, T.D. Tarbell, A.M. Title, M.J. Thompson, J. Toomre, Helioseismic studies of differential rotation in the solar envelope by the solar oscillations investigation using the Michelson Doppler Imager. Astrophys. J. 505, 390–417 (1998). doi: 10.1086/306146 ADSCrossRefGoogle Scholar
  100. D. Seligman, G.J.D. Petrie, R. Komm, A combined study of photospheric magnetic and current helicities and subsurface kinetic helicities of solar active regions during 2006–2013. Astrophys. J. 795, 113 (2014). doi: 10.1088/0004-637X/795/2/113 ADSCrossRefGoogle Scholar
  101. S. Talon, C. Charbonnel, Angular momentum transport by internal gravity waves. IV. Wave generation by surface convection zone, from the pre-main sequence to the early-AGB in intermediate mass stars. Astron. Astrophys. 482, 597–605 (2008). doi: 10.1051/0004-6361:20078620 ADSCrossRefGoogle Scholar
  102. M.J. Thompson, J. Toomre, E.R. Anderson, H.M. Antia, G. Berthomieu, D. Burtonclay, S.M. Chitre, J. Christensen-Dalsgaard, T. Corbard, M. De Rosa, C.R. Genovese, D.O. Gough, D.A. Haber, J.W. Harvey, F. Hill, R. Howe, S.G. Korzennik, A.G. Kosovichev, J.W. Leibacher, F.P. Pijpers, J. Provost, E.J. Rhodes Jr., J. Schou, T. Sekii, P.B. Stark, P.R. Wilson, Differential rotation and dynamics of the solar interior. Science 272, 1300–1305 (1996). doi: 10.1126/science.272.5266.1300 ADSCrossRefGoogle Scholar
  103. M.J. Thompson, J. Christensen-Dalsgaard, M.S. Miesch, J. Toomre, The internal rotation of the Sun. Annu. Rev. Astron. Astrophys. 41, 599–643 (2003). doi: 10.1146/annurev.astro.41.011802.094848 ADSCrossRefGoogle Scholar
  104. S. Tomczyk, J. Schou, M.J. Thompson, Measurement of the rotation rate in the deep solar interior. Astrophys. J. Lett. 448, 57 (1995). doi: 10.1086/309598 ADSCrossRefGoogle Scholar
  105. S. Turck-Chièze, P.-H. Carton, J. Ballot, J.-C. Barrière, P. Daniel-Thomas, A. Delbart, D. Desforges, R.A. Garcia, R. Granelli, S. Mathur, F. Nunio, Y. Piret, P.L. Pallé, A.J. Jiménez, S.J. Jiménez-Reyes, J.M. Robillot, E. Fossat, A.M. Eff-Darwich, B. Gelly, GOLF-NG spectrometer, a space prototype for studying the dynamics of the deep solar interior. Adv. Space Res. 38, 1812–1818 (2006). doi: 10.1016/j.asr.2005.09.033 ADSCrossRefGoogle Scholar
  106. S.V. Vorontsov, S.M. Jefferies, Modeling solar oscillation power spectra. I. Adaptive response function for Doppler velocity measurements. Astrophys. J. 623, 1202–1214 (2005). doi: 10.1086/427913 ADSCrossRefGoogle Scholar
  107. S.V. Vorontsov, S.M. Jefferies, Modeling solar oscillation power spectra. II. Parametric model of spectral lines observed in Doppler-velocity measurements. Astrophys. J. 778, 75 (2013). doi: 10.1088/0004-637X/778/1/75 ADSCrossRefGoogle Scholar
  108. S.V. Vorontsov, J. Christensen-Dalsgaard, J. Schou, V.N. Strakhov, M.J. Thompson, Helioseismic measurement of solar torsional oscillations. Science 296, 101–103 (2002). doi: 10.1126/science.1069190 ADSCrossRefGoogle Scholar
  109. M.F. Woodard, R.W. Noyes, Change of solar oscillation eigenfrequencies with the solar cycle. Nature 318, 449–450 (1985). doi: 10.1038/318449a0 ADSCrossRefGoogle Scholar
  110. J. Zhao, K. Nagashima, R.S. Bogart, A.G. Kosovichev, T.L. Duvall Jr., Systematic center-to-limb variation in measured helioseismic travel times and its effect on inferences of solar interior meridional flows. Astrophys. J. Lett. 749, 5 (2012). doi: 10.1088/2041-8205/749/1/L5 ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.JILA and Department of Astrophysical and Planetary SciencesUniversity of ColoradoBoulderUSA
  2. 2.High Altitude ObservatoryNational Center for Atmospheric ResearchBoulderUSA

Personalised recommendations