Advertisement

Space Science Reviews

, Volume 195, Issue 1–4, pp 3–48 | Cite as

The Mars Atmosphere and Volatile Evolution (MAVEN) Mission

  • B. M. Jakosky
  • R. P. Lin
  • J. M. Grebowsky
  • J. G. Luhmann
  • D. F. Mitchell
  • G. Beutelschies
  • T. Priser
  • M. Acuna
  • L. Andersson
  • D. Baird
  • D. Baker
  • R. Bartlett
  • M. Benna
  • S. Bougher
  • D. Brain
  • D. Carson
  • S. Cauffman
  • P. Chamberlin
  • J.-Y. Chaufray
  • O. Cheatom
  • J. Clarke
  • J. Connerney
  • T. Cravens
  • D. Curtis
  • G. Delory
  • S. Demcak
  • A. DeWolfe
  • F. Eparvier
  • R. Ergun
  • A. Eriksson
  • J. Espley
  • X. Fang
  • D. Folta
  • J. Fox
  • C. Gomez-Rosa
  • S. Habenicht
  • J. Halekas
  • G. Holsclaw
  • M. Houghton
  • R. Howard
  • M. Jarosz
  • N. Jedrich
  • M. Johnson
  • W. Kasprzak
  • M. Kelley
  • T. King
  • M. Lankton
  • D. Larson
  • F. Leblanc
  • F. Lefevre
  • R. Lillis
  • P. Mahaffy
  • C. Mazelle
  • W. McClintock
  • J. McFadden
  • D. L. Mitchell
  • F. Montmessin
  • J. Morrissey
  • W. Peterson
  • W. Possel
  • J.-A. Sauvaud
  • N. Schneider
  • W. Sidney
  • S. Sparacino
  • A. I. F. Stewart
  • R. Tolson
  • D. Toublanc
  • C. Waters
  • T. Woods
  • R. Yelle
  • R. Zurek
Article

Abstract

The MAVEN spacecraft launched in November 2013, arrived at Mars in September 2014, and completed commissioning and began its one-Earth-year primary science mission in November 2014. The orbiter’s science objectives are to explore the interactions of the Sun and the solar wind with the Mars magnetosphere and upper atmosphere, to determine the structure of the upper atmosphere and ionosphere and the processes controlling it, to determine the escape rates from the upper atmosphere to space at the present epoch, and to measure properties that allow us to extrapolate these escape rates into the past to determine the total loss of atmospheric gas to space through time. These results will allow us to determine the importance of loss to space in changing the Mars climate and atmosphere through time, thereby providing important boundary conditions on the history of the habitability of Mars. The MAVEN spacecraft contains eight science instruments (with nine sensors) that measure the energy and particle input from the Sun into the Mars upper atmosphere, the response of the upper atmosphere to that input, and the resulting escape of gas to space. In addition, it contains an Electra relay that will allow it to relay commands and data between spacecraft on the surface and Earth.

Keywords

Mars Atmosphere Solar-wind interactions MAVEN 

Acronym List (generally not including abbreviations or units)

ACC

Accelerometer

ACS

Attitude Control System

APP

Articulated Payload Platform

b.y.

billion years

b.y.a.

billion years ago

CME

Coronal Mass Ejection

DSMC

Direct Simulation Monte Carlo

EUV

Extreme Ultraviolet light

EUV

Extreme Ultraviolet sensor on the LPW instrument

eV

Electron Volts

GCM

General Circulation Model

GSFC

Goddard Space Flight Center

HGA

High-Gain Antenna

IMF

Interplanetary Magnetic Field

IUVS

Imaging Ultraviolet Spectrograph

LGA

Low-Gain Antenna

LMD

Laboratoire de Météorologie Dynamique

LPW

Langmuir Probe and Waves instrument

MAG

Magnetometer

MAVEN

Mars Atmosphere and Volatile Evolution (Mission)

MGS

Mars Global Surveyor

MHD

Magnetohydrodynamic

MLI

Multi-Layer Insulation

MOI

Mars Orbit Insertion

MPB

Magnetic Pile-up Boundary

MSL

Mars Science Laboratory

NASA

National Aeronautics and Space Administration

NASCAP

NASA/Air Force Spacecraft Charging Analysis Program

NGIMS

Neutral Gas and Ion Mass Spectrometer

OTM

Orbital Trim Maneuver

PTE

Periapsis Timing Estimator

RWA

Reaction Wheel Assembly

SA

Solar Arrays

SEP

Solar Energetic Particle instrument

SEPs

Solar Energetic Particles

SEU

Single-Event Upset

SSL

Space Science Laboratory

STATIC

Suprathermal and Thermal Ion Composition instrument

SWEA

Solar-Wind Electron Analyzer

SWIA

Solar-Wind Ion Analyzer

TCM

Trajectory Correction Maneuver

TWTA

Traveling Wave Tube Assembly

UHF

Ultra-high frequency

3D

Three dimensional

Notes

Acknowledgements

The MAVEN mission would not have been possible without the incredible dedication, commitment, and experience of the many hundreds of people (of all job classifications) who have worked on MAVEN. To call out a few by name would feel like a disservice to those not mentioned. They each have our incredible gratitude and appreciation for their efforts. In addition, we benefitted tremendously from the strong support from each of our partner organizations. Funding for the MAVEN mission was provided by NASA, with additional funding from CNES.

References

  1. M.H. Acuña et al., Global distribution of crustal magnetization discovered by the Mars global surveyor MAG/ER experiment. Science 284, 790 (1999). doi: 10.1126/science.284.5415.790 CrossRefADSGoogle Scholar
  2. M. Acuna et al., Magnetic field of Mars: summary of results from the aerobraking and mapping orbits. J. Geophys. Res. 106(E10), 23403–23417 (2001) CrossRefADSGoogle Scholar
  3. D.E. Anderson, C.W. Hord, J. Geophys. Res. 76, 6666 (1971) CrossRefADSGoogle Scholar
  4. L. Andersson, R.E. Ergun, I. Stewart, The combined atmospheric photochemical and ion tracing code: reproducing the Viking Landers result and initial outflow results. Icarus 206, 120–129 (2010). doi: 10.1016/j.icarus.2009.07.009 CrossRefADSGoogle Scholar
  5. M. André, A. Yau, Theories and observations of ion energization and outflow in the high latitude magnetosphere. Space Sci. Rev. 80(1), 27–48 (1997). doi: 10.1023/A:1004921619885 CrossRefADSGoogle Scholar
  6. D.N. Baker, S.G. Kanekal, X. Li, S.P. Monk, J. Goldstein, J.L. Burch, An extreme distortion of the Van Allen belt arising from the “Halloween” solar storm in 2003. Nature 432, 878–881 (2004) CrossRefADSGoogle Scholar
  7. V. Baker, The Channels of Mars (1982) (University of Texas Press, Austin) Google Scholar
  8. S. Barabash, A. Fedorov, R. Lundin, J.-A. Sauvaud, Martian atmospheric erosion rates. Science 315(5811), 501–503 (2007). doi: 10.1126/science.1134358 CrossRefADSGoogle Scholar
  9. J.-L. Bertaux, F. Leblanc, O. Witasse, E. Quemerais, J. Lilensten, S.A. Stern, B. Sandel, O. Korablev, Discovery of an aurora on Mars. Nature 435(7), 790–794 (2005). doi: 10.1038/nature03603 CrossRefADSGoogle Scholar
  10. J.P. Bibring, Global mineralogical and aqueous Mars history derived from OMEGA/Mars express data. Science 312(5772), 400–404 (2006). doi: 10.1126/science.1122659 CrossRefADSGoogle Scholar
  11. S.W. Bougher, T.E. Cravens, J. Grebowsky, J. Luhmann, The aeronomy of Mars: characterization by MAVEN of the upper atmosphere reservoir that regulates volatile escape. Space Sci. Rev. (2014). doi: 10.1007/s11214-014-0053-7 Google Scholar
  12. L.H. Brace, Langmuir probe: measurements in the ionosphere, in AGU Geophysical Monograph 102, ed. by R. Pfaff (1998) Google Scholar
  13. L.H. Brace, R.F. Theis, W.R. Hoegy, Plasma clouds above the ionopause of Venus and their implications. Planet. Space Sci. 30, 29–37 (1982). doi: 10.1016/0032-0633(82)90069-1 CrossRefADSGoogle Scholar
  14. D.A. Brain, A.H. Baker, J. Briggs, J.P. Eastwood, J.S. Halekas, T.D. Phan, Episodic detachment of Martian crustal magnetic fields leading to bulk atmospheric plasma escape. Geophys. Res. Lett. 37(1), 14108 (2010). doi: 10.1029/2010GL043916 ADSGoogle Scholar
  15. D.A. Brain, F. Bagenal, M.H. Acuña, J.E.P. Connerney, Martian magnetic morphology: contributions from the solar wind and crust. J. Geophys. Res. 108(A), 1424 (2003). doi: 10.1029/2002JA009482 CrossRefGoogle Scholar
  16. D.A. Brain, J.S. Halekas, L.M. Peticolas, R.P. Lin, J.G. Luhmann, D.L. Mitchell, G.T. Delory, S.W. Bougher, M.H. Acuña, H. Rème, On the origin of aurorae on Mars. Geophys. Res. Lett. 33(1), 01201 (2006). doi: 10.1029/2005GL024782 CrossRefADSGoogle Scholar
  17. S.H. Brecht, S.A. Ledvina, J.G. Luhmann, The Martian ionospheric loss rates versus solar EUV flux, in AGU Spring Meeting 2004 (2004). Abstract #SM44A-02 Google Scholar
  18. M.H. Carr, Water on Mars (Oxford University Press, New York, 1996) Google Scholar
  19. M.S. Chaffin, J.-Y. Chaufray, I. Stewart, F. Montmessin, N.M. Schneider, J.-L. Bertaux, Unexpected variability of Martian hydrogen escape. Geophys. Res. Lett. 41(2), 314–320 (2014). doi: 10.1002/2013GL058578 CrossRefADSGoogle Scholar
  20. J.Y. Chaufray, J.L. Bertaux, F. Leblanc, E. Quémerais, Observation of the hydrogen corona with SPICAM on Mars express. Icarus 195(2), 598–613 (2008). doi: 10.1016/j.icarus.2008.01.009 CrossRefADSGoogle Scholar
  21. P.A. Cloutier et al., Venus-like interaction of the solar wind with Mars. Geophys. Res. Lett. 26(1), 2685–2688 (1999). doi: 10.1029/1999GL900591 CrossRefADSGoogle Scholar
  22. D.H. Crider, J. Espley, D.A. Brain, D.L. Mitchell, J.E.P. Connerney, M.H. Acuña, Mars global surveyor observations of the Halloween 2003 solar superstorm’s encounter with Mars. J. Geophys. Res. (2005). doi: 10.1029/2004JA010881 Google Scholar
  23. S.M. Curry, M. Liemohn, X. Fang, Y. Ma, J. Espley, The influence of production mechanisms on pick-up ion loss at Mars. J. Geophys. Res. 118(1), 554–569 (2013). doi: 10.1029/2012JA017665 CrossRefGoogle Scholar
  24. E. Dubinin et al., Electric fields within the martian magnetosphere and ion extraction: ASPERA-3 observations. Icarus 182(2), 337–342 (2006). doi: 10.1016/j.icarus.2005.05.022 CrossRefADSGoogle Scholar
  25. E. Dubinin, R. Lundin, O. Norberg, N. Pissarenko, Ion acceleration in the Martian tail—PHOBOS observations. J. Geophys. Res. 98, 3991–3997 (1993). doi: 10.1029/92JA02233 CrossRefADSGoogle Scholar
  26. J.P. Eastwood, D.A. Brain, J.S. Halekas, J.F. Drake, T.D. Phan, M. Øieroset, D.L. Mitchell, R.P. Lin, M. Acuna, Evidence for collisionless magnetic reconnection at Mars. Geophys. Res. Lett. (2008). doi: 10.1029/2007GL032289 Google Scholar
  27. N.J.T. Edberg, H. Nilsson, A.O. Williams, M. Lester, S.E. Milan, S.W.H. Cowley, M. Fränz, S. Barabash, Y. Futaana, Pumping out the atmosphere of Mars through solar wind pressure pulses. Geophys. Res. Lett. 37(3), 03107 (2010). doi: 10.1029/2009GL041814 CrossRefADSGoogle Scholar
  28. R.C. Elphic, A.I. Ershkovich, On the stability of the ionopause of Venus. J. Geophys. Res. 89, 997–1002 (1984) CrossRefADSGoogle Scholar
  29. R.E. Ergun, L. Andersson, W.K. Peterson, D. Brain, G.T. Delory, D.L. Mitchell, R.P. Lin, A.W. Yau, Role of plasma waves in Mars’ atmospheric loss. Geophys. Res. Lett. 33(1), 14103 (2006). doi: 10.1029/2006GL025785 CrossRefADSGoogle Scholar
  30. J.R. Espley, Observations of low-frequency magnetic oscillations in the Martian magnetosheath, magnetic pileup region, and tail. J. Geophys. Res. (2004). doi: 10.1029/2003JA010193 Google Scholar
  31. J.R. Espley, Low-frequency plasma oscillations at Mars during the October 2003 solar storm. J. Geophys. Res. (2005). doi: 10.1029/2004JA010935 Google Scholar
  32. X. Fang, M.W. Liemohn, A.F. Nagy, Y. Ma, D.L. De Zeeuw, J.U. Kozyra, T.H. Zurbuchen, Pickup oxygen ion velocity space and spatial distribution around Mars. J. Geophys. Res. 113(A), 02210 (2008). doi: 10.1029/2007JA012736 CrossRefGoogle Scholar
  33. X. Fang, S.W. Bougher, R.E. Johnson, J.G. Luhmann, Y. Ma, Y.-C. Wang, M.W. Liemohn, The importance of pickup oxygen ion precipitation to the Mars upper atmosphere under extreme solar wind conditions. Geophys. Res. Lett. 40(10), 1922–1927 (2013). doi: 10.1002/grl.50415 CrossRefADSGoogle Scholar
  34. C.I. Fassett, J.W. Head, Valley network-fed, open-basin lakes on Mars: distribution and implications for noachian surface and subsurface hydrology. Icarus 198(1), 37–56 (2008). doi: 10.1016/j.icarus.2008.06.016 CrossRefADSGoogle Scholar
  35. A. Fedorov et al., Structure of the martian wake. Icarus 182(2), 329–336 (2006). doi: 10.1016/j.icarus.2005.09.021 CrossRefADSGoogle Scholar
  36. J.L. Fox, Upper limits to the outflow of ions at Mars: implications for atmospheric evolution. Geophys. Res. Lett. 24, 2901 (1997). doi: 10.1029/97GL52842 CrossRefADSGoogle Scholar
  37. J.L. Fox, A.B. Hać, Photochemical escape of oxygen from Mars: a comparison of the exobase approximation to a Monte Carlo method. Icarus 204(2), 527–544 (2009). doi: 10.1016/j.icarus.2009.07.005 CrossRefADSGoogle Scholar
  38. Y. Futaana et al., Mars express and Venus express multi-point observations of geoeffective solar flare events in December 2006. Planet. Space Sci. 56(6), 873–880 (2008). doi: 10.1016/j.pss.2007.10.014 CrossRefADSGoogle Scholar
  39. S.B. Ganguli, The polar wind. Rev. Geophys. 34(3), 311–348 (1996). doi: 10.1029/96RG00497 CrossRefADSGoogle Scholar
  40. J.M. Grebowsky, S.A. Curtis, Venus nightside ionospheric holes—the signatures of parallel electric field acceleration regions. Geophys. Res. Lett. 8, 1273–1276 (1981). doi: 10.1029/GL008i012p01273 CrossRefADSGoogle Scholar
  41. M.R.T. Hoke, B.M. Hynek, Roaming zones of precipitation on ancient Mars as recorded in valley networks. J. Geophys. Res. 114(E), 08002 (2009). doi: 10.1029/2008JE003247 CrossRefGoogle Scholar
  42. M.R.T. Hoke, B.M. Hynek, G.E. Tucker, Formation timescales of large Martian valley networks. Earth Planet. Sci. Lett. 312(1), 1–12 (2011). doi: 10.1016/j.epsl.2011.09.053 CrossRefADSGoogle Scholar
  43. B.M. Jakosky, R.M. Haberle, The seasonal behavior of water on Mars, in Mars, ed. by H.H. Kieffer, B.M. Jakosky, C.W. Snyder, M.S. Matthews (University of Arizona Press, Tucson, 1992), pp. 969–1016 Google Scholar
  44. B.M. Jakosky, J.H. Jones, Evolution of water on Mars. Nature 370, 328–329 (1994) CrossRefADSGoogle Scholar
  45. B.M. Jakosky, R.O. Pepin, R.E. Johnson, J.L. Fox, Mars atmospheric loss and isotopic fractionation by solar-wind-induced sputtering and photochemical escape. Icarus 111, 271–288 (1994). doi: 10.1006/icar.1994.1145. ISSN 0019-1035 CrossRefADSGoogle Scholar
  46. H. Jin, T. Mukai, T. Tanaka, K. Maezawa, Oxygen ions escaping from the dayside Martian upper atmosphere, in Advances in Space Research, vol. 27 (2001), pp. 1825–1830 Google Scholar
  47. R.E. Johnson, Plasma-induced sputtering of an atmosphere. Space Sci. Rev. 69(3), 215–253 (1994). doi: 10.1007/BF02101697 CrossRefADSGoogle Scholar
  48. R.E. Johnson, J.G. Luhmann, Sputter contribution to the atmospheric corona on Mars. J. Geophys. Res. 103, 3649 (1998). doi: 10.1029/97JE03266 CrossRefADSGoogle Scholar
  49. J.F. Kasting, CO2 condensation and the climate of early Mars. Icarus 94, 1–13 (1991). doi: 10.1016/0019-1035(91)90137-I. ISSN 0019-1035 CrossRefADSGoogle Scholar
  50. A.M. Krymskii, T.K. Breus, N.F. Ness, M.H. Acuña, J.E.P. Connerney, D.H. Crider, D.L. Mitchell, S.J. Bauer, Structure of the magnetic field fluxes connected with crustal magnetization and topside ionosphere at Mars. J. Geophys. Res. 107(A), 1245 (2002). doi: 10.1029/2001JA000239 CrossRefGoogle Scholar
  51. H. Lammer, H.I.M. Lichtenegger, C. Kolb, I. Ribas, E.F. Guinan, R. Abart, S.J. Bauer, Loss of water from Mars: implications for the oxidation of the soil. Icarus 165(1), 9–25 (2003). doi: 10.1016/S0019-1035(03)00170-2 CrossRefADSGoogle Scholar
  52. J. Laskar, A.C.M. Correia, M. Gastineau, F. Joutel, B. Levrard, P. Robutel, Long term evolution and chaotic diffusion of the insolation quantities of Mars. Icarus 170(2), 343–364 (2004). doi: 10.1016/j.icarus.2004.04.005 CrossRefADSGoogle Scholar
  53. F. Leblanc, R.E. Johnson, Role of molecular species in pickup ion sputtering of the Martian atmosphere. J. Geophys. Res., Planets 107(E), 5010 (2002). doi: 10.1029/2000JE001473 CrossRefADSGoogle Scholar
  54. F. Leblanc, J.G. Luhmann, R.E. Johnson, E. Chassefiere, Some expected impacts of a solar energetic particle event at Mars. J. Geophys. Res. 107(A), 1058 (2002). doi: 10.1029/2001JA900178 CrossRefGoogle Scholar
  55. R.J. Lillis, J.H. Engel, D.L. Mitchell, D.A. Brain, R.P. Lin, S.W. Bougher, M.H. Acuña, Probing upper thermospheric neutral densities at Mars using electron reflectometry. Geophys. Res. Lett. 32(2), 23204 (2005). doi: 10.1029/2005GL024337 CrossRefADSGoogle Scholar
  56. R.J. Lillis, D.A. Brain, S.W. Bougher, F. Leblanc, J.G. Luhmann, B.M. Jakosky, R. Modolo, J.L. Fox, J. Deighan, X. Fang, Y.-C. Wang, Y. Lee, C. Dong, Y. Ma, T.E. Cravens, L. Andersson, S.M. Curry, N. Schneider, M. Combi, I. Stewart, J. Clarke, J. Grebowsky, D.L. Mitchell, R. Yelle, A.F. Nagy, D. Baker, R.P. Lin, Characterizing atmospheric escape from Mars today and through time with MAVEN. Space Sci. Rev. (2014, in review) Google Scholar
  57. J.G. Luhmann, R.E. Johnson, M.H.G. Zhang, Evolutionary impact of sputtering of the Martian atmosphere by O(+) pickup ions. Geophys. Res. Lett. 19, 2151–2154 (1992). doi: 10.1029/92GL02485. ISSN 0094-8276 CrossRefADSGoogle Scholar
  58. J. Luhmann, J.U. Kozyra, Dayside pickup oxygen ion precipitation at Venus and Mars—spatial distributions, energy deposition and consequences. J. Geophys. Res. 96, 5457–5467 (1991) CrossRefADSGoogle Scholar
  59. R. Lundin et al., Auroral plasma acceleration above Martian magnetic anomalies. Space Sci. Rev. 126(1), 333–354 (2006a). doi: 10.1007/s11214-006-9086-x ADSGoogle Scholar
  60. R. Lundin et al., Ionospheric plasma acceleration at Mars: ASPERA-3 results. Icarus 182(2), 308–319 (2006b). doi: 10.1016/j.icarus.2005.10.035 CrossRefADSGoogle Scholar
  61. R. Lundin, H. Borg, B. Hultqvist, A. Zakharov, R. Pellinen, First measurements of the ionospheric plasma escape from Mars. Nature 341, 609–612 (1989). doi: 10.1038/341609a0. ISSN 0028-0836 CrossRefADSGoogle Scholar
  62. P.R. Mahaffy, C.R. Webster, S.K. Atreya, H. Franz, M. Wong, P.G. Conrad, D. Harpold, J.J. Jones, L.A. Leshin, H. Manning, T. Owen, R.O. Pepin, S. Squyres, M. Trainer (MSL Science Team), Abundance and isotopic composition of gases in the martian atmosphere from the Curiosity rover. Science 341(6143), 263–266 (2013). doi: 10.1126/science.1237966 CrossRefADSGoogle Scholar
  63. M.C. Malin, K.S. Edgett, Evidence for persistent flow and aqueous sedimentation on early Mars. Science 302, 1931–1934 (2003) CrossRefADSGoogle Scholar
  64. M.A. Mandell, V.A. Davis, D.L. Cooke, A.T. Wheelock, C.J. Roth, Nascap-2k spacecraft charging code overview. IEEE Trans. Plasma Sci. 34(5), 2084–2093 (2006) CrossRefADSGoogle Scholar
  65. W.E. McClintock, N.M. Schneider, G.M. Holsclaw, J.T. Clarke, A.C. Hoskins, A.I.F. Stewart, F. Montmessin, R.V. Yelle, J. Deighan, The imaging ultraviolet spectrograph (IUVS) for the MAVEN mission. Space Sci. Rev. (2014). doi: 10.1007/s11214-014-0098-7 zbMATHGoogle Scholar
  66. M.B. McElroy, Mars: an evolving atmosphere. Science 175(4), 443–445 (1972). doi: 10.1126/science.175.4020.443 CrossRefADSGoogle Scholar
  67. M.B. McElroy, Y.L. Yung, Oxygen isotopes in the Martian atmosphere: implications for the evolution of volatiles. Planet. Space Sci. 14, 1107–1113 (1976) CrossRefADSGoogle Scholar
  68. M.B. McElroy, T.Y. Kong, Y.L. Yung, Photochemistry and evolution of Mars’ atmosphere—a Viking perspective. J. Geophys. Res. 82, 4379–4388 (1977). doi: 10.1029/JS082i028p04379 CrossRefADSGoogle Scholar
  69. D.L. Mitchell, R.P. Lin, C. Mazelle, H. Rème, P.A. Cloutier, J.E.P. Connerney, M.H. Acuña, N.F. Ness, Probing Mars’ crustal magnetic field and ionosphere with the MGS electron reflectometer. J. Geophys. Res. 106(E), 23419–23428 (2001). doi: 10.1029/2000JE001435 CrossRefADSGoogle Scholar
  70. T. Owen, J.P. Maillard, C. de Bergh, B.L. Lutz, Deuterium on Mars—the abundance of HDO and the value of D/H. Science 240, 1767–1770 (1988). doi: 10.1126/science.240.4860.1767. ISSN 0036-8075 CrossRefADSGoogle Scholar
  71. G. Paschmann, S. Haaland, R. Treumann, Auroral Plasma Physics (Kluwer Academic, Dordrecht, 2003) CrossRefGoogle Scholar
  72. J.B. Pollack, J.F. Kasting, S.M. Richardson, K. Poliakoff, The case for a wet, warm climate on early Mars. NASA Spec. Publ. 71, 203–224 (1987). doi: 10.1016/0019-1035(87)90147-3 Google Scholar
  73. R.M. Ramirez, R. Kopparapu, M.E. Zugger, T.D. Robinson, R. Freedman, J.F. Kasting, Warming early Mars with CO2 and H2. Nat. Geosci. 7(1), 59–63 (2014). doi: 10.1038/ngeo2000 CrossRefADSGoogle Scholar
  74. I. Ribas, The Sun and stars as the primary energy input in planetary atmospheres, in Solar and Stellar Variability: Impact on Earth and Planets, vol. 264 (2010), pp. 3–18. doi: 10.1017/S1743921309992298 Google Scholar
  75. I. Ribas, E.F. Guinan, M. Güdel, M. Audard, Evolution of the solar activity over time and effects on planetary atmospheres. I. High-energy irradiances (1–1700 Å). Astrophys. J. 622(1), 680–694 (2005). doi: 10.1086/427977 CrossRefADSGoogle Scholar
  76. S.W. Squyres et al., In situ evidence for an ancient aqueous environment at meridiani planum, Mars. Science 306(5), 1709–1714 (2004). doi: 10.1126/science.1104559 CrossRefADSGoogle Scholar
  77. R.A. Urata, O.B. Toon, Simulations of the martian hydrologic cycle with a general circulation model: implications for the ancient martian climate. Icarus 226(1), 229–250 (2013). doi: 10.1016/j.icarus.2013.05.014 CrossRefADSGoogle Scholar
  78. C.R. Webster, P.R. Mahaffy, G.J. Flesch, P.B. Niles, J.H. Jones, L.A. Leshin, S.K. Atreya, J.C. Stern, L.E. Christensen, T. Owen, H. Franz, R.O. Pepin, A. Steele (the MSL Science Team), Isotope ratios of H, C, and O in CO2 and H2O of the martian atmosphere. Science 341(6143), 260–263 (2013). doi: 10.1126/science.1237961 CrossRefADSGoogle Scholar
  79. P. Withers, A review of observed variability in the dayside ionosphere of Mars. Adv. Space Res. 44(3), 277–307 (2009). doi: 10.1016/j.asr.2009.04.027 CrossRefADSGoogle Scholar
  80. Y.L. Yung, J.S. Wen, J.P. Pinto, M. Allen, K.K. Pierce, S. Paulson, HDO in the Martian atmosphere—implications for the abundance of crustal water. Icarus 76(1), 146–159 (1988). doi: 10.1016/0019-1035(88)90147-9 CrossRefADSGoogle Scholar
  81. K.J. Zahnle, J.C.G. Walker, The evolution of solar ultraviolet luminosity. Rev. Geophys. Space Phys. 20, 280–292 (1982). doi: 10.1029/RG020i002p00280 CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • B. M. Jakosky
    • 1
  • R. P. Lin
    • 2
  • J. M. Grebowsky
    • 3
  • J. G. Luhmann
    • 2
  • D. F. Mitchell
    • 3
  • G. Beutelschies
    • 4
  • T. Priser
    • 4
  • M. Acuna
    • 3
  • L. Andersson
    • 1
  • D. Baird
    • 5
  • D. Baker
    • 1
  • R. Bartlett
    • 3
  • M. Benna
    • 3
  • S. Bougher
    • 6
  • D. Brain
    • 1
  • D. Carson
    • 3
  • S. Cauffman
    • 3
  • P. Chamberlin
    • 3
  • J.-Y. Chaufray
    • 7
  • O. Cheatom
    • 3
  • J. Clarke
    • 8
  • J. Connerney
    • 3
  • T. Cravens
    • 9
  • D. Curtis
    • 2
  • G. Delory
    • 2
  • S. Demcak
    • 10
  • A. DeWolfe
    • 1
  • F. Eparvier
    • 1
  • R. Ergun
    • 1
  • A. Eriksson
    • 11
  • J. Espley
    • 3
  • X. Fang
    • 1
  • D. Folta
    • 3
  • J. Fox
    • 12
  • C. Gomez-Rosa
    • 3
  • S. Habenicht
    • 4
  • J. Halekas
    • 13
    • 2
  • G. Holsclaw
    • 1
  • M. Houghton
    • 3
  • R. Howard
    • 3
  • M. Jarosz
    • 3
  • N. Jedrich
    • 3
  • M. Johnson
    • 4
  • W. Kasprzak
    • 3
  • M. Kelley
    • 1
  • T. King
    • 3
  • M. Lankton
    • 1
  • D. Larson
    • 2
  • F. Leblanc
    • 14
  • F. Lefevre
    • 14
  • R. Lillis
    • 2
  • P. Mahaffy
    • 3
  • C. Mazelle
    • 15
  • W. McClintock
    • 1
  • J. McFadden
    • 2
  • D. L. Mitchell
    • 2
  • F. Montmessin
    • 14
  • J. Morrissey
    • 3
  • W. Peterson
    • 1
  • W. Possel
    • 1
  • J.-A. Sauvaud
    • 15
  • N. Schneider
    • 1
  • W. Sidney
    • 4
  • S. Sparacino
    • 3
  • A. I. F. Stewart
    • 1
  • R. Tolson
    • 16
  • D. Toublanc
    • 15
  • C. Waters
    • 4
  • T. Woods
    • 1
  • R. Yelle
    • 17
  • R. Zurek
    • 10
  1. 1.Laboratory for Atmospheric and Space PhysicsUniv. of ColoradoBoulderUSA
  2. 2.Space Sciences LaboratoryU.C. BerkeleyBerkeleyUSA
  3. 3.NASA/GSFCGreenbeltUSA
  4. 4.Lockheed Martin Corp.LittletonUSA
  5. 5.NASA/JSCHoustonUSA
  6. 6.U. MichiganAnn ArborUSA
  7. 7.LMD/CNRSParisFrance
  8. 8.Boston Univ.BostonUSA
  9. 9.U. KansasLawrenceUSA
  10. 10.NASA/JPLPasadenaUSA
  11. 11.Swedish Inst. Space Phys.UppsalaSweden
  12. 12.Wright State Univ.DaytonUSA
  13. 13.Univ. of IowaIowa CityUSA
  14. 14.LATMOS/CNRSParisFrance
  15. 15.IRAPToulouseFrance
  16. 16.National Institute of AerospaceHamptonUSA
  17. 17.Univ. of ArizonaTucsonUSA

Personalised recommendations