Space Science Reviews

, Volume 185, Issue 1–4, pp 93–113 | Cite as

The Lunar Dust Experiment (LDEX) Onboard the Lunar Atmosphere and Dust Environment Explorer (LADEE) Mission

  • M. Horányi
  • Z. Sternovsky
  • M. Lankton
  • C. Dumont
  • S. Gagnard
  • D. Gathright
  • E. Grün
  • D. Hansen
  • D. James
  • S. Kempf
  • B. Lamprecht
  • R. Srama
  • J. R. Szalay
  • G. Wright
Article

Abstract

The Lunar Dust Experiment (LDEX) is an in situ dust detector onboard the Lunar Atmosphere and Dust Environment Explorer (LADEE) mission. It is designed to characterize the variability of the dust in the lunar exosphere by mapping the size and spatial distributions of dust grains in the lunar environment as a function of local time and the position of the Moon with respect to the magnetosphere of the Earth. LDEX gauged the relative contributions of the two competing dust sources: (a) ejecta production due to the continual bombardment of the Moon by interplanetary micrometeoroids, and (b) lofting of small grains from the lunar surface due to plasma-induced near-surface electric fields.

Keywords

Lunar Dust Exosphere LADEE mission Instrumentation 

References

  1. S. Auer, in Instrumentation, ed. by E. Grün, B.A.S. Gustafson, S. Dermott, H. Fechtig (Springer, Berlin, 2001), pp. 387–438 Google Scholar
  2. O.E. Berg, F.F. Richardson, H. Burton, Lunar ejecta and meteorites experiment, in Apollo 17: Preliminary Science Report. NASA Special Publication, vol. 330 (1973), p. 16 Google Scholar
  3. A. Colaprete et al., The ladee ultraviolet/visible spectrometer. Space Sci. Rev. (2014, this issue) Google Scholar
  4. J.E. Colwell, S. Batiste, M. Horányi, S. Robertson, S. Sture, Lunar surface: Dust dynamics and regolith mechanics. Rev. Geophys. 45, 1–26 (2007) CrossRefGoogle Scholar
  5. D.R. Criswell, Horizon-glow and the motion of lunar dust, in Photon and Particle Interactions with Surfaces in Space, ed. by R.J.L. Grard Astrophysics and Space Science Library, vol. 37 (1973), p. 545 CrossRefGoogle Scholar
  6. B.R. De, D.R. Criswell, Intense localized photoelectric charging in the lunar sunset terminator region, 1. Development of potentials and fields. J. Geophys. Res. 82, 999 (1977) ADSCrossRefGoogle Scholar
  7. G.T. Delory, R. Elphic, T. Morgan, T. Colaprete, M. Horányi, P. Mahaffy, B. Hine, D. Boroson, The Lunar Atmosphere and Dust Environment Explorer (ladee), in Lunar and Planetary Institute Science Conference Abstracts. Lunar and Planetary Institute Science Conference Abstracts, vol. 40 (2009), p. 2025 Google Scholar
  8. H. Dietzel, G. Eichhorn, H. Fechtig, E. Grun, H.-J. Hoffmann, J. Kissel, The HEOS 2 and HELIOS micrometeoroid experiments. J. Phys. E, Sci. Instrum. 6, 209–217 (1973) ADSCrossRefGoogle Scholar
  9. R.C. Elphic, G.T. Delory, E.J. Grayzeck, A. Colaprete, M. Horányi, P. Mahaffy, B. Hine, J. Salute, D. Boroson, The Lunar Atmosphere and Dust Environment Explorer (LADEE): T-minus one year and counting. LPI Contrib. 1685, 3033 (2012) ADSGoogle Scholar
  10. R.C. Elphic, B. Hine, G.T. Delory, J.S. Salut, S. Noble, A. Colaprete, M. Horányi, P.R. Mahaffy, D. Boroson, The Lunar Atmosphere and Dust Environment Explorer (LADEE): T-minus 6 months and counting, in Lunar and Planetary Institute Science Conference Abstracts. Lunar and Planetary Institute Science Conference Abstracts, vol. 44 (2013), p. 3112 Google Scholar
  11. R.C. Elphic, G.T. Delory, B.P. Hine, P. Mahaffy, M. Horanyi, A. Colaprete, M. Benna, S. Noble, The lunar atmosphere and dust environment explorer mission. Space Sci. Rev. (2014) Google Scholar
  12. P.D. Feldman, D.A. Glenar, T.J. Stubbs, K.D. Retherford, G. Randall Gladstone, P.F. Miles, T.K. Greathouse, D.E. Kaufmann, J.W. Parker, S. Alan Stern, Upper limits for a lunar dust exosphere from far-ultraviolet spectroscopy by LRO/LAMP. Icarus 233, 106–113 (2014) ADSCrossRefGoogle Scholar
  13. D.A. Glenar, T.J. Stubbs, J.E. McCoy, R.R. Vondrak, A reanalysis of the Apollo light scattering observations, and implications for lunar exospheric dust. Planet. Space Sci. 59, 1695–1707 (2011) ADSCrossRefGoogle Scholar
  14. D.A. Glenar, T.J. Stubbs, M. Hahn, Y. Wang, Search for a high altitude lunar dust exosphere using clementine navigational star tracker measurements. J. Geophys. Res., Planets (2014) Google Scholar
  15. J.R. Göller, E. Grün, Calibration of the Galileo/Ulysses dust detectors with different projectile materials and at varying impact angles. Planet. Space Sci. 37, 1197–1206 (1989) CrossRefGoogle Scholar
  16. E. Grün, H.A. Zook, H. Fechtig, R.H. Giese, Collisional balance of the meteoritic complex. Icarus 62, 244–272 (1985). doi:10.1016/0019-1035(85)90121-6 ADSCrossRefGoogle Scholar
  17. E. Grün, H. Fechtig, M.S. Hanner, J. Kissel, B.-A. Lindblad, D. Linkert, D. Maas, G.E. Morfill, H.A. Zook, The Galileo dust detector. Space Sci. Rev. 60, 317–340 (1992a) ADSCrossRefGoogle Scholar
  18. E. Grün, H. Fechtig, J. Kissel, D. Linkert, D. Maas, J.A.M. McDonnell, G.E. Morfill, G. Schwehm, H.A. Zook, R.H. Giese, The Ulyssses dust experiment. Astron. Astrophys. Suppl. Ser. 92, 411–423 (1992b) ADSGoogle Scholar
  19. E. Grün, M. Horányi, Z. Sternovsky, The lunar dust environment. Planet. Space Sci. 59, 1672–1680 (2011). doi:10.1016/j.pss.2011.04.005 ADSCrossRefGoogle Scholar
  20. J.S. Halekas, A.R. Poppe, G.T. Delory, R.C. Elphic, V. Angelopoulos, M. Horányi, J. Szalay, Artemis observations and data-based modeling in support of ladee, in 45th Lunar and Planetary Science Conference (2014) Google Scholar
  21. M. Horányi, Z. Sternovsky, E. Gruen, R. Srama, M. Lankton, D. Gathright, The Lunar Dust Experiment (LDEX) on the Lunar Atmosphere and Dust Environment Explorer (LADEE) mission, in Lunar and Planetary Institute Science Conference Abstracts. Lunar and Planetary Institute Science Conference Abstracts, vol. 40 (2009), p. 1741 Google Scholar
  22. M. Horányi, Z. Sternovsky, M. Lankton, D. James, J. Szalay, K. Drake, A. Shu, A. Colette, E. Gruen, S. Kempf, R. Srama, A. Mocker, The dust environment of the Moon: Expectations for the lunar dust experiment (LDEX), in Lunar and Planetary Institute Science Conference Abstracts. Lunar and Planetary Institute Science Conference Abstracts, vol. 43 (2012), p. 2635 Google Scholar
  23. M. Horányi, S. Gagnard, D. Gathright, E. Grün, D. James, S. Kempf, M. Lankton, R. Srama, Z. Sternovsky, J. Szalay, The dust environment of the Moon as seen by the lunar dust experiment (LDEX), in 45th Lunar and Planetary Science Conference (2014) Google Scholar
  24. H. Iglseder, K. Uesugi, H. Svedhem, Cosmic dust measurements in lunar orbit. Adv. Space Res. 17, 177–182 (1996). doi:10.1016/0273-1177(95)00777-C ADSCrossRefGoogle Scholar
  25. S. Kempf, U. Beckmann, J. Schmidt, How the Enceladus dust plume feeds Saturn’s E ring. Icarus 206, 446–457 (2010). doi:10.1016/j.icarus.2009.09.016 ADSCrossRefGoogle Scholar
  26. S. Kempf, E. Grün, M. Horányi, D. James, M. Lankton, R. Srama, J. Szalay, Z. Sternovsky, Observations of the lunar dust exosphere with LDEX, in 45th Lunar and Planetary Science Conference (2014) Google Scholar
  27. A.V. Krivov, M. Sremčević, F. Spahn, V.V. Dikarev, K.V. Kholshevnikov, Impact-generated dust clouds around planetary satellites: Spherically symmetric case. Planet. Space Sci. 51, 251–269 (2003) ADSCrossRefGoogle Scholar
  28. H. Krüger, A.A. Krivov, D.P. Hamilton, E. Grün, Detection of an impact-generated dust cloud around Ganymede. Nature 399, 558–560 (1999) ADSCrossRefGoogle Scholar
  29. H. Krüger, A.V. Krivov, E. Grün, A dust cloud of Ganymede maintained by hypervelocity impacts of interplanetary micrometeoroids. Planet. Space Sci. 48, 1457–1471 (2000) ADSCrossRefGoogle Scholar
  30. S.G. Love, D.E. Brownlee, A direct measurement of the terrestrial mass accretion rate of cosmic dust. Science 262, 550 (1993) ADSCrossRefGoogle Scholar
  31. P.R. Mahaffy, R. Richard Hodges, M. Benna, T. King, R. Arvey, M. Barciniak, M. Bendt, D. Carigan, T. Errigo, D.N. Harpold, V. Holmes, C.S. Johnson, J. Kellogg, P. Kimvilakani, M. Lefavor, J. Hengemihle, F. Jaeger, E. Lyness, J. Maurer, D. Nguyen, T.J. Nolan, F. Noreiga, M. Noriega, K. Patel, B. Prats, O. Quinones, E. Raaen, F. Tan, E. Weidner, M. Woronowicz, C. Gundersen, S. Battel, B.P. Block, K. Arnett, R. Miller, C. Cooper, C. Edmonson, The neutral mass spectrometer on the lunar atmosphere and dust environment explorer mission. Space Sci. Rev. (2014). doi:10.1007/s11214-014-0043-9 Google Scholar
  32. C.B. Markwardt, Non-linear least-squares fitting in Idl with Mpfit, in Astronomical Data Analysis Software and Systems XVIII, ed. by D.A. Bohlender, D. Durand, P. Dowler. Astronomical Society of the Pacific Conference Series, vol. 411 (2009), p. 251 Google Scholar
  33. J.E. McCoy, Photometric studies of light scattering above the lunar terminator from Apollo solar corona photography, in Lunar and Planetary Science Conference Proceedings, ed. by R.B. Merrill. Lunar and Planetary Science Conference Proceedings, vol. 7 (1976), pp. 1087–1112 Google Scholar
  34. J.E. McCoy, D.R. Criswell, Evidence for a high altitude distribution of lunar dust, in Lunar and Planetary Science Conference Proceedings. Lunar and Planetary Science Conference Proceedings, vol. 5 (1974), pp. 2991–3005 Google Scholar
  35. A. Mocker, S. Bugiel, S. Auer, G. Baust, A. Colette, K. Drake, K. Fiege, E. Grün, F. Heckmann, S. Helfert, J. Hillier, S. Kempf, G. Matt, T. Mellert, T. Munsat, K. Otto, F. Postberg, H.-P. Röser, A. Shu, Z. Sternovsky, R. Srama, A 2 MV Van de Graaff accelerator as a tool for planetary and impact physics research. Rev. Sci. Instrum. 82(9), 095111 (2011) ADSCrossRefGoogle Scholar
  36. D.L. Murphy, R.R. Vondrak, Effects of levitated dust on astronomical observations from the lunar surface, in Lunar and Planetary Institute Science Conference Abstracts. Lunar and Planetary Institute Science Conference Abstracts, vol. 24 (1993), pp. 1033–1034 Google Scholar
  37. M.A. Pelizzari, D.R. Criswell, Differential photoelectric charging of nonconducting surfaces in space. J. Geophys. Res. 83, 5233–5244 (1978). doi:10.1029/JA083iA11p05233 ADSCrossRefGoogle Scholar
  38. A.R. Poppe, J.S. Halekas, J.R. Szalay, M. Horányi, G.T. Delory, Model-data comparisons of ladee/ldex observations of low-energy lunar dayside ions, in 45th Lunar and Planetary Science Conference, vol. 1393 (2014) Google Scholar
  39. J.J. Rennilson, D.R. Criswell, Surveyor observations of lunar horizon-glow. Moon Planets 10, 121–142 (1974). doi:10.1007/BF00655715 CrossRefGoogle Scholar
  40. A. Shu, A. Collette, K. Drake, E. Grün, M. Horányi, S. Kempf, A. Mocker, T. Munsat, P. Northway, R. Srama, Z. Sternovsky, E. Thomas, 3 MV hypervelocity dust accelerator at the Colorado center for lunar dust and atmospheric studies. Rev. Sci. Instrum. 83(7), 075108 (2012). doi:10.1063/1.4732820 ADSCrossRefGoogle Scholar
  41. F. Spahn, J. Schmidt, N. Albers, M. Hörning, M. Makuch, M. Seiß, S. Kempf, R. Srama, V. Dikarev, S. Helfert, G. Moragas-Klostermeyer, A.V. Krivov, M. Sremčević, A.J. Tuzzolino, T. Economou, E. Grün, Cassini dust measurements at Enceladus and implications for the origin of the E ring. Science 311, 1416–1418 (2006). doi:10.1126/science.1121375 ADSCrossRefGoogle Scholar
  42. R. Srama, T.J. Ahrens, N. Altobelli, S. Auer, J.G. Bradley, M. Burton, V.V. Dikarev, T. Economou, H. Fechtig, M. Görlich, M. Grande, A. Graps, E. Grün, O. Havnes, S. Helfert, M. Horányi, E. Igenbergs, E.K. Jessberger, T.V. Johnson, S. Kempf, A.V. Krivov, H. Krüger, A. Mocker-Ahlreep, G. Moragas-Klostermeyer, P. Lamy, M. Landgraf, D. Linkert, G. Linkert, F. Lura, J.A.M. McDonnell, D. Möhlmann, G.E. Morfill, M. Müller, M. Roy, G. Schäfer, G. Schlotzhauer, G.H. Schwehm, F. Spahn, M. Stübig, J. Svestka, V. Tschernjawski, A.J. Tuzzolino, R. Wäsch, H.A. Zook, The Cassini cosmic dust analyzer. Space Sci. Rev. 114, 465–518 (2004). doi:10.1007/s11214-004-1435-z ADSCrossRefGoogle Scholar
  43. M. Sremčević, A.V. Krivov, F. Spahn, Impact-generated dust clouds around planetary satellites: Asymmetry effects. Planet. Space Sci. 51, 455–471 (2003) ADSCrossRefGoogle Scholar
  44. S.A. Stern, The lunar atmosphere: History, status, current problems, and context. Rev. Geophys. 37, 453–492 (1999). doi:10.1029/1999RG900005 ADSCrossRefGoogle Scholar
  45. Z. Sternovsky, P. Chamberlin, M. Horanyi, S. Robertson, X. Wang, Variability of the lunar photoelectron sheath and dust mobility due to solar activity. J. Geophys. Res. 113(12), 10104 (2008). doi:10.1029/2008JA013487 CrossRefGoogle Scholar
  46. Z. Sternovsky, S. Gagnard, D. Gathright, E. Grün, D. James, S. Kempf, M. Lankton, M. Horányi, R. Srama, J. Szalay, Modeling the uv signal scattered into the lunar dust experiment (ldex) from the surface, in 45th Lunar and Planetary Science Conference (2014) Google Scholar
  47. J.R. Szalay, M. Horányi, A.R. Poppe, J.S. Halekas, Ldex observations and correlations with artemis measurements, in 45th Lunar and Planetary Science Conference (2014) Google Scholar
  48. A.D. Taylor, Earth encounter velocities for interplanetary meteoroids. Adv. Space Res. 17, 205–209 (1996). doi:10.1016/0273-1177(95)00782-A ADSCrossRefGoogle Scholar
  49. H.A. Zook, J.E. McCoy, Large scale lunar horizon glow and a high altitude lunar dust exosphere. Geophys. Res. Lett. 18, 2117–2120 (1991). doi:10.1029/91GL02235 ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • M. Horányi
    • 1
    • 2
  • Z. Sternovsky
    • 1
    • 2
  • M. Lankton
    • 1
    • 2
  • C. Dumont
    • 1
  • S. Gagnard
    • 1
  • D. Gathright
    • 1
  • E. Grün
    • 1
    • 2
    • 3
  • D. Hansen
    • 1
  • D. James
    • 1
    • 2
  • S. Kempf
    • 1
    • 2
  • B. Lamprecht
    • 1
  • R. Srama
    • 4
    • 5
  • J. R. Szalay
    • 1
    • 2
  • G. Wright
    • 1
  1. 1.Laboratory for Atmospheric and Space PhysicsUniversity of ColoradoBoulderUSA
  2. 2.Solar System Exploration Research Virtual Institute (SSERVI)—Institute for Modeling Plasmas, Atmospheres, and Cosmic Dust (IMPACT)University of ColoradoBoulderUSA
  3. 3.Max Planck Institut für KernphysikHeidelbergGermany
  4. 4.Institut für RaumfahrtsystemeUniversität StuttgartStuttgartGermany
  5. 5.Baylor UniversityWacoUSA

Personalised recommendations