Advertisement

Space Science Reviews

, Volume 204, Issue 1–4, pp 83–130 | Cite as

The Wide-Field Imager for Solar Probe Plus (WISPR)

  • Angelos Vourlidas
  • Russell A. Howard
  • Simon P. Plunkett
  • Clarence M. Korendyke
  • Arnaud F. R. Thernisien
  • Dennis Wang
  • Nathan Rich
  • Michael T. Carter
  • Damien H. Chua
  • Dennis G. Socker
  • Mark G. Linton
  • Jeff S. Morrill
  • Sean Lynch
  • Adam Thurn
  • Peter Van Duyne
  • Robert Hagood
  • Greg Clifford
  • Phares J. Grey
  • Marco Velli
  • Paulett C. Liewer
  • Jeffrey R. Hall
  • Eric M. DeJong
  • Zoran Mikic
  • Pierre Rochus
  • Emanuel Mazy
  • Volker Bothmer
  • Jens Rodmann
Article

Abstract

The Wide-field Imager for Solar PRobe Plus (WISPR) is the sole imager aboard the Solar Probe Plus (SPP) mission scheduled for launch in 2018. SPP will be a unique mission designed to orbit as close as 7 million km (9.86 solar radii) from Sun center. WISPR employs a 95 radial by 58 transverse field of view to image the fine-scale structure of the solar corona, derive the 3D structure of the large-scale corona, and determine whether a dust-free zone exists near the Sun. WISPR is the smallest heliospheric imager to date yet it comprises two nested wide-field telescopes with large-format (2 K × 2 K) APS CMOS detectors to optimize the performance for their respective fields of view and to minimize the risk of dust damage, which may be considerable close to the Sun. The WISPR electronics are very flexible allowing the collection of individual images at cadences up to 1 second at perihelion or the summing of multiple images to increase the signal-to-noise when the spacecraft is further from the Sun. The dependency of the Thomson scattering emission of the corona on the imaging geometry dictates that WISPR will be very sensitive to the emission from plasma close to the spacecraft in contrast to the situation for imaging from Earth orbit. WISPR will be the first ‘local’ imager providing a crucial link between the large-scale corona and the in-situ measurements.

Keywords

Solar probe plus Heliospheric imager Solar corona Solar wind Imaging Thomson scattering 

Notes

Acknowledgements

This work is sponsored by the NASA LWS program through interagency agreement NNG11EK11I to NRL. The German contribution to WISPR is sponsored by the Deutsches Zentrum für Luft- und Raumfahrt (Grant No: FKZ 50OL1201). The Belgian contribution is sponsored by the Belgian Science Policy Office (BELSPO). The French contribution is sponsored by the Centre National d’Etudes Spatiales (CNES).

References

  1. S.K. Antiochos et al., Structure and dynamics of the Sun’s open magnetic field. Astrophys. J. 671, 936 (2007) ADSCrossRefGoogle Scholar
  2. S. Bale et al., The FIELDS investigation. Space Sci. Rev. (2015, this issue) Google Scholar
  3. A. Bemborad et al., UVCS observation of sungrazer C/2001 C2: possible comet fragmentation and plasma-dust interactions. Astrophys. J. 620, 523 (2005) ADSCrossRefGoogle Scholar
  4. A. Bemborad et al., Low-frequency Lyα power spectra observed by UVCS in a polar coronal hole. Astrophys. J. 677, L137 (2008) ADSCrossRefGoogle Scholar
  5. J.W. Bieber et al., Spaceship Earth observations of the Easter 2001 solar particle event. Astrophys. J. 601, L103 (2004) ADSCrossRefGoogle Scholar
  6. J.E. Borovsky, Eddy viscosity and flow properties of the solar wind: Co-rotating interaction regions, coronal-mass-ejection sheaths, and solar-wind/magnetosphere coupling. Phys. Plasmas 13(5), 056505 (2006) ADSCrossRefGoogle Scholar
  7. J.E. Borovsky et al., Flux tube texture of the solar wind: Strands of the magnetic carpet at 1 AU? J. Geophys. Res. 113(A8), A08110 (2008) ADSGoogle Scholar
  8. G.E. Brueckner, The Large Angle Spectroscopic Coronagraph (LASCO). Sol. Phys. 162, 375 (1995) CrossRefGoogle Scholar
  9. R. Bruno, V. Carbone, The solar wind as a turbulence laboratory. Living Rev. Sol. Phys. 2 (2005) Google Scholar
  10. P.J. Cargill, Coronal magnetism: difficulties and prospects. Space Sci. Rev. 144, 413–421 (2009) ADSCrossRefGoogle Scholar
  11. W.A. Coles, J.K. Harmon, Propagation observations of the solar wind near the Sun. Astrophys. J. 337, 1023 (1989) ADSCrossRefGoogle Scholar
  12. N.U. Crooker et al., Large-scale magnetic field inversions at sector boundaries. J. Geophys. Res. 109(A3) A03108 (2004) ADSGoogle Scholar
  13. C.E. DeForest et al., Inbound waves in the solar corona: a direct indicator of Alfvén surface location. Astrophys. J. 787, 124 (2014) ADSCrossRefGoogle Scholar
  14. D. Durda et al., A new observational search for vulcanoids in SOHO/LASCO coronagraph images. Icarus 148, 312 (2000) ADSCrossRefGoogle Scholar
  15. G. Einaudi et al., Formation of the slow solar wind in a coronal streamer. J. Geophys. Res. 104, 521 (1999) ADSCrossRefGoogle Scholar
  16. G. Einaudi et al., Plasmoid formation and acceleration in the solar streamer belt. Astrophys. J. 633, 474 (2001) Google Scholar
  17. W.C. Feldman et al., Constraints on high-speed solar wind structure near its coronal base: a ULYSSES perspective. Astron. Astrophys. 316, 355 (1996) ADSGoogle Scholar
  18. N. Fox et al., The solar probe plus mission. Space Sci. Rev. (2015, this issue) Google Scholar
  19. N. Gopalswamy et al., Intensity variation of large solar energetic particle events associated with CMEs. J. Geophys. Res. 109, A12105 (2004) ADSCrossRefGoogle Scholar
  20. J.T. Gosling et al., Coronal streamers in the Solar Wind at 1 AU. J. Geophys. Res. 86, 5438–5448 (1981) ADSCrossRefGoogle Scholar
  21. J.T. Gosling et al., Observations of magnetic reconnection in the turbulent high-speed solar wind. Astrophys. J. 671, L73 (2007) ADSCrossRefGoogle Scholar
  22. S.R. Habbal et al., Origins of the slow and the ubiquitous fast solar wind. Astrophys. J. 489, 103 (1997) ADSCrossRefGoogle Scholar
  23. A. Hayes et al., Deriving the electron density of the solar corona from the inversion of total brightness measurements. Astrophys. J. 548, 1081 (2001) ADSCrossRefGoogle Scholar
  24. J.V. Hollweg, The solar wind: our current understanding and how we got here. J. Astrophys. Astron. 29, 217 (2008) ADSCrossRefGoogle Scholar
  25. A. Howard et al., The solar and heliospheric imager (Solohi) instrument for the solar orbiter mission. Proc. SPIE (2013, this issue) Google Scholar
  26. R.A. Howard et al., Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI). Space Sci. Rev. 136, 67–115 (2008) ADSCrossRefGoogle Scholar
  27. B.V. Jackson, C. Leinert, HELIOS images of Coronal Mass Ejections. JGR 90, 10 (1985) Google Scholar
  28. M. Jones et al., Imaging of a circumsolar dust ring near the orbit of venus. Science 342, 6161 (2013) CrossRefGoogle Scholar
  29. S.W. Kahler, The correlation between solar energetic particle peak intensities and speeds of coronal mass ejections: Effects of ambient particle intensities and energy spectra. J. Geophys. Res. 106, 20947 (2001) ADSCrossRefGoogle Scholar
  30. S.W. Kahler, A. Vourlidas, Fast coronal mass ejection environments and the production of solar energetic particle events. J. Geophys. Res. 110, A12S01 (2005) ADSCrossRefGoogle Scholar
  31. S.W. Kahler, A. Vourlidas, A comparison of the intensities and energies of gradual solar energetic particle events with the dynamical properties of associated coronal mass ejections. Astrophys. J. 769, 143 (2013) ADSCrossRefGoogle Scholar
  32. M.J. Kaiser et al., The STEREO mission: an introduction. Space Sci. Rev. 136, 5 (2008) ADSCrossRefGoogle Scholar
  33. J. Kasper et al., The SWEAP investigation. Space Sci. Rev. (2015, this issue) Google Scholar
  34. H. Kimura et al., Dust grains in the comae and tails of sungrazing comets: modeling of their mineralogical and morphological properties. Icarus 159, 529 (2002) ADSCrossRefGoogle Scholar
  35. M.M. Knight et al., Photometric study of the Kreutz comets observed by SOHO from 1996 to 2005. Astron. J. 193, 926–949 (2010) ADSCrossRefGoogle Scholar
  36. J.L. Kohl et al., The ultraviolet spectrometer for the solar and heliospheric observatory. Sol. Phys. 162, 317 (1995) ADSCrossRefGoogle Scholar
  37. C.M. Korendyke et al., Development of the solohi active pixel sensor. Proc. SPIE (2013, this issue) Google Scholar
  38. J.M. Laming, Non-Wkb models of the first ionization potential effect: implications for solar coronal heating and the coronal helium and neon abundances. Astrophys. J. 695(2), 954–969 (2009) ADSCrossRefGoogle Scholar
  39. M.A. Lee, Acceleration of energetic particles on the Sun, in The Heliosphere and in the Galaxy, ed. by R.A. Mewaldt et al. AIP Conf. Ser., vol. 528 (AIP, Melville, 2000), p. 3 Google Scholar
  40. C. Leinert, B. Moster, Evidence for dust accumulation just outside the orbit of venus. Astron. Astrophys. 472, 335 (2007) ADSCrossRefGoogle Scholar
  41. C. Leinert et al., The zodiacal light from 1.0 to 0.3 AU as observed by the HELIOS space probes. Astron. Astrophys. 103, 177 (1981) ADSGoogle Scholar
  42. C. Leinert et al., The 1997 reference of diffuse night sky brightness. Astron. Astrophys. Suppl. Ser. 127, 1 (1998) ADSCrossRefGoogle Scholar
  43. M.G. Linton et al., Patchy reconnection in a Y-type current sheet. Earth Planets Space 61, 573 (2009) ADSCrossRefGoogle Scholar
  44. I. Mann et al., Dust cloud near the Sun. Space Sci. Rev. 110, 269 (2004) ADSCrossRefGoogle Scholar
  45. E. Marsch, C.-Y. Tu, Spectral and spatial evolution of compressible turbulence in the inner solar wind. J. Geophys. Res. 95, 11945 (1990) ADSCrossRefGoogle Scholar
  46. G. Matthaeus, M.L. Goldstein, Low-frequency 1/f noise in the interplanetary magnetic field. Phys. Rev. Lett. 57, 495 (1986) ADSCrossRefGoogle Scholar
  47. D. McComas et al., The ISIS investigation. Space Sci. Rev. (2015, this issue) Google Scholar
  48. D.S. Mehoke et al., A review of the solar probe plus dust protection approach, in Aerospace Conf., IEEE (2012), pp. 1–13. doi: 10.1109/AERO.2012.6187076 Google Scholar
  49. W.J. Merline, A program to search for vulcanoids from MESSENGER. Bull. Am. Astron. Soc. 40, 491 (2008) ADSGoogle Scholar
  50. R.A. Mewaldt et al., How efficient are coronal mass ejections at accelerating solar energetic particles?, in Proc. of Solar Wind (2005), p. 11 Google Scholar
  51. D. Müller, R.G. Marsden, O.C. St. Cyr, H.R. Gilbert, Solar orbiter—exploring the Sun-heliosphere connection. Sol. Phys. 285, 25–70 (2013) ADSCrossRefGoogle Scholar
  52. E.N. Parker, Cosmic ray modulation by solar wind. Phys. Rev. 110(6), 1445–1449 (1958) ADSCrossRefGoogle Scholar
  53. B.R. Ragot, S.W. Kahler, Interactions of dust grains with coronal mass ejections and solar cycle variations of the F-coronal brightness. Astrophys. J. 594, 1049–1059 (2003) ADSCrossRefGoogle Scholar
  54. A.F. Rappazzo et al., Diamagnetic and expansion effects on the observable properties of slow solar wind in an coronal streamer. Astrophys. J. 633, 474–488 (2005) ADSCrossRefGoogle Scholar
  55. D.V. Reames, Particle acceleration at the Sun and in the heliosphere. Space Sci. Rev. 90, 413 (1999) ADSCrossRefGoogle Scholar
  56. A.P. Rouillard et al., First imaging of corotating interaction regions using the STEREO spacecraft. Geophys. Res. Lett. 35(10), L10110 (2008) ADSCrossRefGoogle Scholar
  57. A.P. Rouillard et al., A multispacecraft analysis of a small-scale transient entrained by solar wind streams. Sol. Phys. 256, 307 (2009) ADSCrossRefGoogle Scholar
  58. H.N. Russell, On meteoric matter near the stars. Astrophys. J. 69, 49 (1929) ADSCrossRefGoogle Scholar
  59. R. Schwenn, Direct observation of the latitudinal extent of a high-speed stream in the solar wind. J. Geophys. Res. 83, 1011 (1978) ADSCrossRefGoogle Scholar
  60. Z. Sekanina, Kreutz sungrazers: the ultimate case of cometary fragmentation and disintegration? Proc. Astron. Inst. Acad. Sci. Czech Repub. 89, 78 (2001) Google Scholar
  61. N.R. Sheeley Jr., Y.-M. Wang, Coronal inflows and sector magnetism. Astrophys. J. 562, L107 (2001) ADSCrossRefGoogle Scholar
  62. N.R. Sheeley Jr., Y.-M. Wang, Characteristics of coronal inflows. Astrophys. J. 579, 874 (2002) ADSCrossRefGoogle Scholar
  63. N.R. Sheeley Jr. et al., Measurements of flow speeds in the corona between 2 and 30 Rs. Astrophys. J. 484, 472 (1997) ADSCrossRefGoogle Scholar
  64. N.R. Sheeley Jr. et al., Heliospheric images of the solar wind at Earth. Astrophys. J. 675, 853 (2008) ADSCrossRefGoogle Scholar
  65. C.W. Snyder, M. Neugebauer, U.R. Rao, The solar wind velocity and its correlation with cosmic-ray variations and with solar and geomagnetic activitiy. J. Geophys. Res. 68, 6361 (1963) ADSCrossRefGoogle Scholar
  66. D.G. Socker et al., The NASA Solar Terrestrial Relations Observatory (STEREO) mission heliospheric imager. Proc. SPIE 4139, 284–293 (2000) ADSCrossRefGoogle Scholar
  67. A.J. Steffl et al., A search for vulcanoids with the STEREO heliospheric imager. Icarus 223, 48 (2013) ADSCrossRefGoogle Scholar
  68. A.F. Thernisien, R.A. Howard, Electron density modeling of a streamer using LASCO data of 2004 January and February. Astrophys. J. 642, 523 (2006) ADSCrossRefGoogle Scholar
  69. A.F. Thernisien et al., Photometric calibration of the Lasco-C3 coronagraph using stars. Sol. Phys. 233, 155 (2006) ADSCrossRefGoogle Scholar
  70. A.F. Thernisien et al., Forward modelling of coronal mass ejections using STEREO-SECCHI data. Sol. Phys. 256, 111 (2009) ADSCrossRefGoogle Scholar
  71. A. Tylka, Shock geometry, seed populations, and the origin of variable elemental composition at high energies in large gradual solar particle events. Astrophys. J. 625, 474 (2005) ADSCrossRefGoogle Scholar
  72. N.M. Viall et al., Are periodic solar wind number density structures formed in the solar corona? Geophys. Res. Lett. 36(23), L23102 (2009) ADSCrossRefGoogle Scholar
  73. N.M. Viall et al., Are periodic solar wind number density structures formed in the solar corona? Geophys. Res. Lett. 36(23), 23102 (2009) ADSCrossRefGoogle Scholar
  74. N.M. Viall et al., Examining periodic solar-wind density structures observed in the SECCHI heliospheric imagers. Sol. Phys. 267, 175 (2010) ADSCrossRefGoogle Scholar
  75. A. Vourlidas et al., On the interpretation of Thomson scattering brightness from vantage points within 1 AU: implications for heliospheric imaging from solar orbiter and solar probe plus. Astrophys. J. (2015, submitted) Google Scholar
  76. A. Vourlidas, R.A. Howard, The proper treatment of coronal mass ejection brightness: a new methodology and implications for observations. Astrophys. J. 642, 1216 (2006) ADSCrossRefGoogle Scholar
  77. A. Vourlidas, V. Ontiveros, A review of coronagraphic observations of shocks driven by coronal mass ejections, in shock waves in space and astrophysical environments, in 18th Annual Int. Astroph. Conf. AIP Conf. Proc., vol. 1183 (2009), p. 139 Google Scholar
  78. A. Vourlidas, P. Riley, Direct imaging of the heliospheric plasma sheet from the SECCHI telescopes on the STEREO mission. Eos Trans. AGU 88(52) (2007). Abstract SH21A-0283 Google Scholar
  79. Y.-M. Wang, N.R. Sheeley Jr., Solar wind speed and coronal flux-tube expansion. Astrophys. J. 355, 726 (1990) ADSCrossRefGoogle Scholar
  80. Y.-M. Wang, N.R. Sheeley Jr., Observations of flux rope formation in the outer corona. Astrophys. J. 644, 638 (2006) ADSCrossRefGoogle Scholar
  81. Y.-M. Wang et al., Coronagraph observations of inflows during high solar activity. Geophys. Res. Lett. 26, 1203 (1999a) ADSCrossRefGoogle Scholar
  82. Y.-M. Wang et al., Streamer disconnection events observed with the LASCO coronagraph. Geophys. Res. Lett. 26, 1349 (1999b) ADSCrossRefGoogle Scholar
  83. Y.-M. Wang, N.R. Sheeley, N.B. Rich, Coronal pseudostreamers. Astrophys. J. 658, 1340–1348 (2007) ADSCrossRefGoogle Scholar
  84. R. Woo, J.M. Martin, Source regions of the slow solar wind. Geophys. Res. Lett. 24, 2535 (1997) ADSCrossRefGoogle Scholar
  85. T.V. Zaqarshvili et al., Twisted magnetic flux tubes in the solar wind. Astrophys. J. Lett. 783, L19 (2014) ADSCrossRefGoogle Scholar
  86. T.H. Zurbuchen et al., The solar wind composition throughout the solar cycle: a continuum of dynamic states. Geophys. Res. Lett. 29(9), 1352 (2002). 66-1 ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht (outside the USA)  2014

Authors and Affiliations

  • Angelos Vourlidas
    • 1
  • Russell A. Howard
    • 2
  • Simon P. Plunkett
    • 2
  • Clarence M. Korendyke
    • 2
  • Arnaud F. R. Thernisien
    • 2
  • Dennis Wang
    • 2
  • Nathan Rich
    • 2
  • Michael T. Carter
    • 2
  • Damien H. Chua
    • 2
  • Dennis G. Socker
    • 2
  • Mark G. Linton
    • 2
  • Jeff S. Morrill
    • 2
  • Sean Lynch
    • 3
  • Adam Thurn
    • 3
  • Peter Van Duyne
    • 4
  • Robert Hagood
    • 5
  • Greg Clifford
    • 6
  • Phares J. Grey
    • 7
  • Marco Velli
    • 8
  • Paulett C. Liewer
    • 8
  • Jeffrey R. Hall
    • 8
  • Eric M. DeJong
    • 8
  • Zoran Mikic
    • 9
  • Pierre Rochus
    • 10
  • Emanuel Mazy
    • 10
  • Volker Bothmer
    • 11
  • Jens Rodmann
    • 11
  1. 1.The Johns Hopkins University Applied Physics LaboratoryLaurelUSA
  2. 2.Space Science DivisionNaval Research LaboratoryWashingtonUSA
  3. 3.Naval Center for Space Technology DivisionNaval Research LaboratoryWashingtonUSA
  4. 4.Space Systems Research CorporationAlexandriaUSA
  5. 5.ATK Space SystemsBeltsvilleUSA
  6. 6.Silver Engineering Inc.MelbourneUSA
  7. 7.Johns Hopkins University Applied Physics LaboratoryLaurelUSA
  8. 8.Jet Propulsion LaboratoryPasadenaUSA
  9. 9.Predictive Sciences Inc.San DiegoUSA
  10. 10.Centre Spatial de LiegeUniversité de LiègeLiegeBelgium
  11. 11.Institute of AstrophysicsUniversity of GöttingenGöttingenGermany

Personalised recommendations