Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

The Extended Cycle of Solar Activity and the Sun’s 22-Year Magnetic Cycle


The Sun has two characteristic migrations of surface features—the equatorward movement of sunspots and the poleward movement of high-latitude prominences. The first of these migrations is a defining aspect of the 11-yr Schwabe cycle and the second is a tracer of the process that culminates in solar polarity reversal, signaling the onset of the 22-yr magnetic cycle on the Sun. Zonal flows (torsional oscillations of the Sun’s differential rotation) have been identified for both of these migrations. Helioseismology observations of these zonal flows provide support for the extended (>11-yr cycle) of solar activity and offer promise of a long-term precursor for predicting the amplitude of the Schwabe cycle. We review the growth of observational evidence for the extended and 22-yr magnetic cycles and discuss: (1) the significance of latitude ∼50 on the Sun; (2) the “over-extended” cycle; and (3) the outlook for solar cycle 25.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19


  1. R.C. Altrock, An ‘extended solar cycle’ as observed in FeXIV. Sol. Phys. 170, 411–423 (1997)

  2. R.C. Altrock, Forecasting the maxima of solar cycle 24 with coronal Fe XIV emission. Sol. Phys. 289, 623–629 (2014)

  3. R. Altrock, R. Howe, R. Ulrich, Solar torsional oscillations and their relationship to coronal activity, in Subsurface and Atmospheric Influences on Solar Activity, ed. by R. Howe, R.W. Komm, K.S. Balasubramaniam, G.J.D. Petrie. ASP Conference Series, vol. 383 (2008), pp. 335–342

  4. R. Ananthakrishnan, Prominence activity (1905–1952). Proc. Indian Acad. Sci. 40, 72–90 (1954)

  5. R. Ananthakrishnan, P.M. Nayar, Discussions of the results of observations of solar prominences made at Kodaikanal from 1905–1950. Bulletin No. 137 of Kodaikanal Observatory (1954)

  6. H.M. Antia, S. Basu, Temporal variations of the rotation rate in the solar interior. Astrophys. J. 541, 442–448 (2000)

  7. H.M. Antia, S. Basu, Temporal variations of the solar rotation rate at high latitudes. Astrophys. J. Lett. 559, L67–L70 (2001)

  8. H.W. Babcock, The solar magnetograph. Astrophys. J. 118, 387–396 (1953)

  9. H.D. Babcock, The Sun’s polar magnetic field. Astrophys. J. 130, 364–365 (1959)

  10. H.W. Babcock, The topology of the Sun’s magnetic field and the 22-year cycle. Astrophys. J. 133, 572–587 (1961)

  11. H.W. Babcock, H.D. Babcock, The Sun’s magnetic field, 1952–1954. Astrophys. J. 121, 349–366 (1955)

  12. S. Basu, H.M. Antia, Changes in solar dynamics from 1995 to 2002. Astrophys. J. 585, 553–565 (2003)

  13. P. Beaudoin, P. Charbonneau, E. Racine, P.K. Smolarkiewicz, Torsional oscillations in a global solar dynamo. Sol. Phys. 282, 335–360 (2013)

  14. E.E. Benevolenskaya, A.G. Kosovichev, J.R. Lemen, P.H. Scherrer, G.L. Slater, Detection of high-latitude waves of solar coronal activity in extreme-ultraviolet data from the Solar and Heliospheric Observatory EUV Imaging Telescope. Astrophys. J. Lett. 554, L107–L110 (2001)

  15. P.N. Bernasconi, D.M. Rust, D. Hakim, Advanced automated solar filament detection and characterization code: description, performance, and results. Sol. Phys. 228, 97–117 (2005)

  16. G. Bocchino, Migrazione delle protuberanze durante il ciclo undecennale dell’attivatà solare. Oss. Mem. Oss. Astrofis. Arcetri 51, 5–47 (1933)

  17. M.C. Bretz, D.E. Billings, Analysis of emission corona 1942–1955 from Climax spectrograms. Astrophys. J. 129, 134–145 (1959)

  18. R.C. Carrington, On the distribution of the solar spots in latitudes since the beginning of the year 1854, with a map. Mon. Not. R. Astron. Soc. 19, 1–3 (1858)

  19. R.C. Carrington, Observations of the Spots on the Sun from November 9, 1853 to March 24, 1861 (Williams and Norgate, London, 1863), p. 17

  20. P. Charbonneau, Dynamo models of the solar cycle. Living Rev. Sol. Phys. 7, 3 (2010)

  21. A.M. Clerke, Problems in Astrophysics (Black, London, 1903), pp. 150–152

  22. L. d’Azambuja, M. d’Azambuja, A comprehensive study of solar prominences and their evolution from spectroheliograms obtained at the observatory and from synoptic maps of the chromosphere published at the observatory. Ann. Obs. Meudon 6(Fasc. VII), 1–278 (1948)

  23. J.-P. Delaboudinière, G.E. Artzner, J. Brunaud, A.H. Gabriel, J.F. Hochedez, F. Millier, X.Y. Song, B. Au et al., EIT: extreme-ultraviolet imaging telescope for the SOHO mission. Sol. Phys. 162, 291–312 (1995)

  24. V.N. Dermendjiev, K.Y. Stavrev, V. Rušin, M. Rybansky, Secondary polar zone of prominence activity revealed from Lomnicky Štìt observations. Astron. Astrophys. 281, 241–244 (1994)

  25. V. Domingo, B. Fleck, A.I. Poland, The SOHO mission: an overview. Sol. Phys. 162, 1–37 (1995)

  26. J. Evershed, M.A. Evershed, Results of prominence observations. Mem. Kodaikanal Obs. 1, 55–126 (1917)

  27. P.A. Gilman, What can we learn about solar cycle mechanisms from observed velocity fields? in The Solar Cycle, ed. by K.L. Harvey. ASP Conference Series, vol. 27 (ASP, San Francisco, 1992), pp. 241–255

  28. G.E. Hale, On the probable existence of a magnetic field in sun-spots. Astrophys. J. 28, 315–343 (1908)

  29. G.E. Hale, Preliminary results of an attempt to detect the general magnetic field of the Sun. Astrophys. J. 38, 27–98 (1913)

  30. G.E. Hale, S.B. Nicholson, The law of sun-spot polarity. Astrophys. J. 62, 270–300 (1925)

  31. G.E. Hale, F. Ellerman, S.B. Nicholson, A.H. Joy, The magnetic polarity of sun-spots. Astrophys. J. 49, 153–178 (1919)

  32. W. Hanle, Über magnetische Beeinflussung der Polarisation der Resonanzfluoreszenz. Z. Phys. 30, 93–105 (1924)

  33. R. Hansen, S. Hansen, Global distribution of filaments during solar cycle no. 20. Sol. Phys. 44, 225–230 (1975)

  34. K.L. Harvey, The cyclic behavior of solar activity, in The Solar Cycle, ed. by K.L. Harvey. ASP Conference Series, vol. 27 (ASP, San Francisco, 1992), pp. 335–367

  35. K.L. Harvey, The solar magnetic cycle, in Solar Surface Magnetism, ed. by R.J. Rutten, C.J. Schrijver (Kluwer, Dordrecht, 1994), pp. 347–363

  36. K.L. Harvey, S.F. Martin, Ephemeral active regions. Sol. Phys. 32, 389–402 (1973)

  37. K.L. Harvey, J.W. Harvey, S.F. Martin, Ephemeral active regions in 1970 and 1973. Sol. Phys. 40, 87–102 (1975)

  38. J.W. Harvey, F. Hill, R. Hubbard, J.R. Kennedy, J.W. Leibacher, J.A. Pintar, P.A. Gilman, R.W. Noyes et al., The global oscillation network group (GONG) project. Science 272, 1284–1286 (1996)

  39. D.H. Hathaway, The solar cycle. Living Rev. Sol. Phys. 7, 1 (2010)

  40. F. Hill, R. Howe, R. Komm, J. Christensen-Dalsgaard, T.P. Larson, J. Schou, M.J. Thompson, Large-scale zonal flows during the solar minimum – where is cycle 25? Bull. Am. Astron. Soc. 43, 16.10 (2011)

  41. R. Howard, Polar magnetic fields of the Sun: 1960–1971. Sol. Phys. 25, 5–13 (1972)

  42. R. Howard, B.J. LaBonte, The Sun is observed to be a torsional oscillator with a period of 11 years. Astrophys. J. Lett. 239, L33–L36 (1980)

  43. R. Howe, Solar interior rotation and its variation. Living Rev. Sol. Phys. 6, 1 (2009)

  44. R. Howe, J. Christensen-Dalsgaard, F. Hill, R.W. Komm, R.M. Larsen, J. Schou, M.J. Thompson, J. Toomre, Deeply penetrating banded zonal flows in the solar convection zone. Astrophys. J. Lett. 533, L163–L166 (2000a)

  45. R. Howe, R. Komm, F. Hill, Variations in solar sub-surface rotation from GONG data 1995–1998. Sol. Phys. 192, 427–435 (2000b)

  46. R. Howe, F. Hill, R. Komm, J. Christensen-Dalsgaard, T.P. Larson, J. Schou, M.J. Thompson, R. Ulrich, The torsional oscillation and the new solar cycle, in GONG–SoHO 24: A New Era of Seismology of the Sun and Solar-Like Stars. Journal of Physics: Conference Series, vol. 271 (IOP, Bristol, 2011), Issue 1, id. 012074

  47. R. Howe, J. Christensen-Dalsgaard, F. Hill, R. Komm, T.P. Larson, M. Rempel, J. Schou, M.J. Thompson, The high-latitude branch of the solar torsional oscillation in the rising phase of cycle 24. Astrophys. J. Lett. 767, L20 (2013), 4 pp.

  48. A.J. Kinder, Edward Walter Maunder FRAS (1851–1928): his life and times. J. Br. Astron. Assoc. 118, 21–42 (2008)

  49. R.W. Komm, R.F. Howard, J.W. Harvey, Torsional oscillation patterns in photospheric magnetic features. Sol. Phys. 143, 19–39 (1993)

  50. R. Komm, R. Howe, I. González Hernández, F. Hill, Solar-cycle variation of subsurface zonal flow. Sol. Phys. 289, 3435–3455 (2014)

  51. D.F. Kong, Z.N. Qu, Q.L. Guo, Revisiting the question: does high-latitude solar activity lead low-latitude solar activity in time phase? Astron. J. 147, 97 (2014), 7 pp.

  52. N.A. Krivova, S.K. Solanki, The 1.3-year and 156-day periodicities in sunspot data: wavelet analysis suggests a common origin. Astron. Astrophys. 394, 701–706 (2002)

  53. M. Küker, R. Arlt, R. Rüdiger, The Maunder minimum as due to magnetic Λ-quenching. Astron. Astrophys. 343, 977–982 (1999)

  54. B.J. LaBonte, R. Howard, Torsional waves on the sun and the activity cycle. Sol. Phys. 75, 161–178 (1982)

  55. N. Labrosse, S. Dalla, S. Marshall, Automatic detection of limb prominences in 304 Å EUV images. Sol. Phys. 262, 449–460 (2010)

  56. J.L. Leroy, On the orientation of magnetic fields in quiescent prominences. Astron. Astrophys. 64, 247–252 (1978)

  57. J.-L. Leroy, J.-C. Noens, Does the solar activity cycle extend over more than an 11-year period? Astron. Astrophys. 120, L1–L2 (1983)

  58. K.J. Li, Latitude migration of solar filaments. Mon. Not. R. Astron. Soc. 405, 1040–1046 (2010)

  59. K.J. Li, Q.X. Li, P.X. Gao, X.J. Shi, Cyclic behavior of solar full-disk activity. J. Geophys. Res. 113, A11108 (2008)

  60. W. Livingston, T.L. Duvall Jr., Solar rotation, 1966–1978. Sol. Phys. 61, 219–231 (1979)

  61. W.J.S. Lockyer, On the relationship between solar prominences and the forms of the corona. Mon. Not. R. Astron. Soc. 91, 797–809 (1931)

  62. N. Lockyer, W.J.S. Lockyer, Solar prominence and spot circulation, 1872–1901. Proc. R. Soc. Lond. 71, 446–452 (1902)

  63. D.H. Mackay, C.R. DeVore, S.K. Antiochos, Global-scale consequences of magnetic-helicity injection and condensation on the Sun. Astrophys. J. 784, 164 (2014), 15 pp.

  64. V.I. Makarov, K.R. Sivaraman, Evolution of latitude zonal structure of the large-scale magnetic field in solar cycles. Sol. Phys. 119, 35–44 (1989a)

  65. V.I. Makarov, K.R. Sivaraman, New results concerning the global solar cycle. Sol. Phys. 123, 367–380 (1989b)

  66. S.F. Martin, Conditions for the formation and maintenance of filaments (Invited review). Sol. Phys. 182, 107–137 (1998)

  67. S.F. Martin, K.H. Harvey, Ephemeral active regions during solar minimum. Sol. Phys. 64, 93–108 (1979)

  68. E.W. Maunder, Note on the distribution of sun-spots in heliographic latitude, 1874–1902. Mon. Not. R. Astron. Soc. 64, 747–761 (1904)

  69. A.R. Maunder, Letter to Stephan Ionides 21 May 1940 (1940)

  70. P.S. McIntosh, Solar interior processes suggested by large-scale surface patterns, in The Solar Cycle, ed. by K.L. Harvey. ASP Conference Series, vol. 27 (ASP, San Francisco, 1992), pp. 14–34

  71. H.W. Newton, The Face of the Sun (Penguin, Baltimore, 1958), p. 116

  72. W.D. Pesnell, Solar cycle predictions. Sol. Phys. 281, 507–532 (2012)

  73. G.J.D. Petrie, K. Petrovay, K. Schatten, Solar polar fields and the 22-year activity cycle: observations and models. Space Sci. Rev. (2014). doi:10.1007/s11214-014-0064-4

  74. V.V. Pipin, The Gleissberg cycle by a nonlinear αΛ dynamo. Astron. Astrophys. 346, 295–302 (1999)

  75. M. Rempel, Flux-transport dynamos with Lorentz force feedback on differential rotation and meridional flow: saturation mechanism and torsional oscillations. Astrophys. J. 647, 662–675 (2006)

  76. M. Rempel, High-latitude solar torsional oscillations during phases of changing magnetic cycle amplitude. Astrophys. J. Lett. 750, L8 (2012), 4 pp.

  77. A. Riccò, Risultati delle osservazioni dell protuberanze solari nel periodo undecennale dell’attività solare dal 1880 al 1890. Mem. Soc. degli Spettro. Ital. 20, 135–139 (1892)

  78. E. Robbrecht, Y.-M. Wang, N.R. Sheeley Jr., N.B. Rich, On the “extended” solar cycle in coronal emission. Astrophys. J. 716, 693–700 (2010)

  79. D.M. Rust, Magnetic fields in quiescent solar prominences. I. Observations. Astrophys. J. 150, 313–326 (1967)

  80. M. Rybanský, V. Rušin, M. Minarovjech, L. Klocok, E.W. Cliver, Reexamination of the coronal index of solar activity. J. Geophys. Res. 110, A08106 (2005), 9 pp.

  81. K.H. Schatten, P.H. Scherrer, L. Svalgaard, J.M. Wilcox, Using dynamo theory to predict the sunspot number during solar cycle 21. Geophys. Res. Lett. 5, 411–414 (1978)

  82. P.H. Scherrer, R.S. Bogart, R.I. Bush, J.T. Hoeksema, A.G. Kosovichev, J. Schou, W. Rosenberg, L. Springer et al., The solar oscillations investigation – Michelson Doppler Imager. Sol. Phys. 162, 129–188 (1995)

  83. J. Schou, Migration of zonal flows detected using Michelson Doppler Imager f-mode frequency splittings. Astrophys. J. Lett. 523, L181–L184 (1999)

  84. J. Schou, H.M. Antia, S. Basu, R.S. Bogart, R.I. Bush, S.M. Chitre, J. Christensen-Dalsgaard, M.P. Di Mauro et al., Helioseismic studies of differential rotation in the solar envelope by the solar oscillations investigation using the Michelson Doppler Imager. Astrophys. J. 505, 390–417 (1998)

  85. J. Schou, P.H. Scherrer, R.I. Bush, R. Wachter, S. Couvidat, M.C. Rabello-Soares, R.S. Bogart, J.T. Hoeksema et al., Design and ground calibration of the Helioseismic and Magnetic Imager (HMI) instrument on the Solar Dynamics Observatory (SDO). Sol. Phys. 275, 229–259 (2012)

  86. M.A. Schuh, J.M. Banda, P.N. Bernasconi, R.A. Angryk, P.C.H. Martens, A comparative evaluation of automated solar filament detection. Sol. Phys. 289, 2503–2524 (2014)

  87. M. Schüssler, The solar torsional oscillation and dynamo models of the solar cycle. Astron. Astrophys. 94, L17–L18 (1981)

  88. S.H. Schwabe, Sonnen-Beobachtungen in Jahre 1843. Astron. Nachr. 21, 233–236 (1844)

  89. H.J. Smith, E.v.P. Smith, Solar Flares (Macmillan, New York, 1963), p. 30

  90. H.B. Snodgrass, Solar torsional oscillations—a net pattern with wavenumber 2 as artifact. Astrophys. J. 291, 339–343 (1985)

  91. H.B. Snodgrass, Synoptic observations of large scale velocity patterns on the Sun, in The Solar Cycle, ed. by K.L. Harvey. ASP Conference Series, vol. 27 (ASP, San Francisco, 1992), pp. 205–240

  92. G. Spörer, Beobachtungen der Sonnenflecken vom Januar 1874 bis December 1879. Publ. Astrophys. Obs. Potsdam 2(5), 1–81 (1880)

  93. H.C. Spruit, Origin of the torsional oscillation pattern of solar rotation. Sol. Phys. 213, 1–21 (2003)

  94. L. Svalgaard, Y. Kamide, Asymmetric solar polar field reversals. Astrophys. J. 763, 23 (2013), 6 pp.

  95. L. Svalgaard, E.W. Cliver, Y. Kamide, Sunspot cycle 24: smallest cycle in 100 years? Geophys. Res. Lett. 32, L01104 (2005)

  96. S.J. Tappin, R.C. Altrock, The extended solar cycle tracked high into the corona. Sol. Phys. 282, 249–261 (2013)

  97. M.J. Thompson, J. Toomre, E. Anderson, H.M. Antia, G. Berthomieu, D. Burtonclay, S.M. Chitre, J. Christensen-Dalsgaard et al., Differential rotation and dynamics of the solar interior. Science 272, 1300–1305 (1996)

  98. J. Toomre, J. Christensen-Dalsgaard, R. Howe, R.M. Larsen, J. Schou, M.J. Thompson, Time variability of rotation in solar convection zone from SOI-MDI. Sol. Phys. 192, 437–448 (2000)

  99. K. Topka, R. Moore, B.J. Labonte, R. Howard, Evidence for a poleward meridional flow on the Sun. Sol. Phys. 79, 231–245 (1982)

  100. R.K. Ulrich, Very long lived wave patterns detected in the solar surface velocity signal. Astrophys. J. 560, 466–475 (2001)

  101. R.K. Ulrich, T. Tran, The global solar magnetic field—identification of traveling, long-lived ripples. Astrophys. J. 768, 189 (2013), 12 pp.

  102. S.V. Vorontsov, J. Christensen-Dalsgaard, J. Schou, V.N. Strakhov, M.J. Thompson, Helioseismic measurement of solar torsional oscillations. Science 296, 101–103 (2002)

  103. M. Waldmeier, Zirkulation und Magnetfeld der solaren Polarzone. Z. Astrophys. 49, 176–185 (1960)

  104. M. Waldmeier, A secondary polar zone of solar prominences. Sol. Phys. 28, 389–398 (1973)

  105. Y.-M. Wang, N.R. Sheeley Jr., S.H. Hawley, J.R. Kraemer, G.E. Brueckner, R.A. Howard, C.M. Korendyke, D.J. Michels et al., The green line corona and its relation to the photospheric magnetic field. Astrophys. J. 485, 419–429 (1997)

  106. D.F. Webb, CMEs and prominences and their evolution over the solar cycle, in New Perspectives on Solar Prominences, IAU Colloquium 167, ed. by D. Webb, D. Rust, B. Schmieder. ASP Conference Series, vol. 150 (ASP, San Francisco, 1997), pp. 463–474

  107. P.R. Wilson, R.C. Altrock, K.L. Harvey, S.F. Martin, H.B. Snodgrass, The extended solar activity cycle. Nature 333, 748–750 (1988)

  108. H. Yoshimura, Solar cycle Lorentz force waves and the torsional oscillations of the Sun. Astrophys. J. 247, 1102–1112 (1981)

  109. C.A. Young, in The Sun, 4th edn. (Appleton, New York, 1897), pp. 157

  110. P. Zeeman, On the influence of magnetism on the nature of the light emitted by a substance. Astrophys. J. 5, 332–347 (1897)

Download references


I thank André Balogh, Hugh Hudson, Kristóf Petrovay, and Rudolf von Steiger for organizing a timely and stimulating workshop. I am grateful to: Dick Altrock, Rainer Arlt, Sara Martin, Alexei Pevtsov, and Leif Svalgaard for helpful comments/discussions, Tom Bogdan for providing the text of A. Maunder’s letter, and Rachel Howe for providing updated/modified versions of Figs. 16, 17, and 18.

Author information

Correspondence to E. W. Cliver.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cliver, E.W. The Extended Cycle of Solar Activity and the Sun’s 22-Year Magnetic Cycle. Space Sci Rev 186, 169–189 (2014).

Download citation


  • Extended solar cycle
  • 22-Yr magnetic cycle
  • Schwabe cycle
  • Sunspots
  • Polar crown filaments