Advertisement

Space Science Reviews

, Volume 186, Issue 1–4, pp 105–135 | Cite as

Solar Cycle Indices from the Photosphere to the Corona: Measurements and Underlying Physics

  • Ilaria ErmolliEmail author
  • Kiyoto Shibasaki
  • Andrey Tlatov
  • Lidia van Driel-Gesztelyi
Article

Abstract

A variety of indices have been proposed in order to represent the many different observables modulated by the solar cycle. Most of these indices are highly correlated with each other owing to their intrinsic link with the solar magnetism and the dominant eleven year cycle, but their variations may differ in fine details, as well as on short- and long-term trends. In this paper we present an overview of the indices that are often employed to describe the many features of the solar cycle, moving from the ones referring to direct observations of the inner solar atmosphere, the photosphere and chromosphere, to those deriving from measurements of the transition region and solar corona. For each index, we summarize existing measurements and typical use, and for those that quantify physical observables, we describe the underlying physics.

Keywords

Solar cycle Solar atmosphere Solar magnetism 

Notes

Acknowledgements

The authors are grateful to the International Space Science Institute, Bern, for the organization of the workshop “The Solar Activity Cycle: Physical Causes and Consequences”, the invitation to contribute to it, and the kind support received to the purpose. The authors thank Fabrizio Giorgi for preparing Figs. 1 to 8. This study received funding from the European Union’s Seventh Programme for Research, Technological Development and Demonstration, under the Grant Agreements of the eHEROES (No. 284461, www.eheroes.eu), SOLARNET (No. 312495, www.solarnet-east.eu), and SOLID (No. 313188, projects.pmodwrc.ch/solid/) projects. It was also supported by COST Action ES1005 “TOSCA” (www.tosca-cost.eu). LvDG’s work was supported by the Hungarian Research grants OTKA K-081421 and K-109276, and by the STFC Consolidated Grant ST/H00260/1.

Final acknowledgements go to the many observers and astronomers, both amateur and professional, for performing the regular observations of the solar atmosphere and creating the databases of solar indices described in this paper.

References

  1. J.G. Anet, E.V. Rozanov, S. Muthers, T. Peter, S. BröNnimann, F. Arfeuille, J. Beer, A.I. Shapiro, C.C. Raible, F. Steinhilber, W.K. Schmutz, Impact of a potential 21st century “grand solar minimum” on surface temperatures and stratospheric ozone. Geophys. Res. Lett. 40, 4420–4425 (2013). doi: 10.1002/grl.50806 ADSGoogle Scholar
  2. R. Arlt, R. Leussu, N. Giese, K. Mursula, I.G. Usoskin, Sunspot positions and sizes for 1825–1867 from the observations by Samuel Heinrich Schwabe. Mon. Not. R. Astron. Soc. 433, 3165–3172 (2013). doi: 10.1093/mnras/stt961 ADSGoogle Scholar
  3. R. Arlt, N. Weiss, Solar activity in the past and the chaotic behaviour of the dynamo. Space Sci. Rev., 1–9 (2014). doi: 10.1007/s11214-014-0063-5
  4. E.H. Avrett, J.M. Fontenla, R. Loeser, Formation of the solar 10830 A line 1994, pp. 35–47 Google Scholar
  5. H.D. Babcock, The Sun’s polar magnetic field. Astrophys. J. 130, 364 (1959). doi: 10.1086/146726 ADSGoogle Scholar
  6. H.D. Babcock, H.W. Babcock, Some new features of the solar spectrum. Publ. Astron. Soc. Pac. 46, 132 (1934). doi: 10.1086/124428 ADSGoogle Scholar
  7. L.A. Balmaceda, S.K. Solanki, N.A. Krivova, S. Foster, A homogeneous database of sunspot areas covering more than 130 years. J. Geophys. Res. 114, 7104 (2009). doi: 10.1029/2009JA014299 Google Scholar
  8. T. Baranyi, S. Király, H.E. Coffey, Indirect comparison of Debrecen and Greenwich daily sums of sunspot areas. Mon. Not. R. Astron. Soc. 434, 1713–1720 (2013). doi: 10.1093/mnras/stt1134 ADSGoogle Scholar
  9. T. Baranyi, L. Gyori, A. Ludmány, H.E. Coffey, Comparison of sunspot area data bases. Mon. Not. R. Astron. Soc. 323, 223–230 (2001). doi: 10.1046/j.1365-8711.2001.04195.x ADSGoogle Scholar
  10. J. Beer, A. Blinov, G. Bonani, H.J. Hofmann, R.C. Finkel, Use of Be-10 in polar ice to trace the 11-year cycle of solar activity. Nature 347, 164–166 (1990). doi: 10.1038/347164a0 ADSGoogle Scholar
  11. A.O. Benz, Flare observations. Living Rev. Sol. Phys. 5, 1 (2008). doi: 10.12942/lrsp-2008-1 ADSGoogle Scholar
  12. L. Bertello, R.K. Ulrich, J.E. Boyden, The Mount Wilson Ca ii K plage index time series. Sol. Phys. 264, 31–44 (2010). doi: 10.1007/s11207-010-9570-z ADSGoogle Scholar
  13. R. Brajša, S. Pohjolainen, V. Ruždjak, T. Sakurai, S. Urpo, B. Vršnak, H. Wöhl, Helium 10830 Å measurements of the Sun. Sol. Phys. 163, 79–91 (1996). doi: 10.1007/BF00165457 ADSGoogle Scholar
  14. D.C. Braun, C. Lindsey, Y. Fan, S.M. Jefferies, Local acoustic diagnostics of the solar interior. Astrophys. J. 392, 739–745 (1992). doi: 10.1086/171477 ADSGoogle Scholar
  15. B. Caccin, I. Ermolli, M. Fofi, A.M. Sambuco, Variations of the chromospheric network with the solar cycle. Sol. Phys. 177, 295–303 (1998). doi: 10.1023/A:1004938412420 ADSGoogle Scholar
  16. W.J. Chaplin, S. Basu, Sounding stellar cycles. Space Sci. Rev. (2014) Google Scholar
  17. G.A. Chapman, J.J. Dobias, T. Arias, Facular and sunspot areas during solar cycles 22 and 23. Astrophys. J. 728, 150 (2011). doi: 10.1088/0004-637X/728/2/150 ADSGoogle Scholar
  18. P. Charbonneau, Dynamo models of the solar cycle. Living Rev. Sol. Phys. 7, 3 (2010). doi: 10.12942/lrsp-2010-3 ADSGoogle Scholar
  19. P. Charbonneau, A. Choudhury, J. Jang, B. Karak, M. Miesch, Challenges for the solar dynamo. Space Sci. Rev. (2014) Google Scholar
  20. F. Clette, E. Cliver, L. Svalgaard, The sunspot number in time. Space Sci. Rev. (2014) Google Scholar
  21. F. Clette, D. Berghmans, P. Vanlommel, R.A.M. Van der Linden, A. Koeckelenbergh, L. Wauters, From the Wolf number to the international sunspot index: 25 years of SIDC. Adv. Space Res. 40, 919–928 (2007). doi: 10.1016/j.asr.2006.12.045 ADSGoogle Scholar
  22. A.E. Covington, Solar radio emission at 10.7 cm, 1947–1968. J. R. Astron. Soc. Can. 63, 125 (1969) ADSGoogle Scholar
  23. S.R. Cranmer, Coronal holes. Living Rev. Sol. Phys. 6(3) (2009). doi: 10.12942/lrsp-2009-3
  24. S. Criscuoli, P. Romano, F. Giorgi, F. Zuccarello, Magnetic evolution of superactive regions. Complexity and potentially unstable magnetic discontinuities. Astron. Astrophys. 506, 1429–1436 (2009). doi: 10.1051/0004-6361/200912044 ADSGoogle Scholar
  25. L. Deng, Z. Qi, G. Dun, C. Xu, Phase relationship between polar faculae and sunspot numbers revisited: wavelet transform analyses. Publ. Astron. Soc. Jpn. 65, 11 (2013). doi: 10.1093/pasj/65.1.11 ADSGoogle Scholar
  26. J.F. Denisse, Microwave solar noise and sunspot. Astron. J. 54, 183 (1949). doi: 10.1086/106280 ADSGoogle Scholar
  27. V. Domingo, I. Ermolli, P. Fox, C. Fröhlich, M. Haberreiter, N. Krivova, G. Kopp, W. Schmutz, S.K. Solanki, H.C. Spruit, Y. Unruh, A. Vögler, Solar surface magnetism and irradiance on time scales from days to the 11-year cycle. Space Sci. Rev. 145, 337–380 (2009). doi: 10.1007/s11214-009-9562-1 ADSGoogle Scholar
  28. I. Dorotovič, M. Minarovjech, M. Lorenc, M. Rybanský, Modified homogeneous data set of coronal intensities. Sol. Phys. 289, 2697–2703 (2014). doi: 10.1007/s11207-014-0501-2 ADSGoogle Scholar
  29. T. Dudok de Wit, S. Bruinsma, K. Shibasaki, Synoptic radio observations as proxies for upper atmosphere modelling. J. Space Weather Space Clim. 4(26), 260000 (2014). doi: 10.1051/swsc/2014003 Google Scholar
  30. T. Dudok de Wit, M. Kretzschmar, J. Lilensten, T. Woods, Finding the best proxies for the solar UV irradiance. Geophys. Res. Lett. 36, 10107 (2009). doi: 10.1029/2009GL037825 ADSGoogle Scholar
  31. I. Ermolli, S.K. Solanki, A.G. Tlatov, N.A. Krivova, R.K. Ulrich, J. Singh, Comparison among Ca II K spectroheliogram time series with an application to solar activity studies. Astrophys. J. 698, 1000–1009 (2009a). doi: 10.1088/0004-637X/698/2/1000 ADSGoogle Scholar
  32. I. Ermolli, E. Marchei, M. Centrone, S. Criscuoli, F. Giorgi, C. Perna, The digitized archive of the Arcetri spectroheliograms. Preliminary results from the analysis of Ca II K images. Astron. Astrophys. 499, 627–632 (2009b). doi: 10.1051/0004-6361/200811406 ADSGoogle Scholar
  33. I. Ermolli, S. Criscuoli, H. Uitenbroek, F. Giorgi, M.P. Rast, S.K. Solanki, Radiative emission of solar features in the Ca II K line: comparison of measurements and models. Astron. Astrophys. 523, 55 (2010). doi: 10.1051/0004-6361/201014762 ADSGoogle Scholar
  34. I. Ermolli, K. Matthes, T. Dudok de Wit, N.A. Krivova, K. Tourpali, M. Weber, Y.C. Unruh, L. Gray, U. Langematz, P. Pilewskie, E. Rozanov, W. Schmutz, A. Shapiro, S.K. Solanki, T.N. Woods, Recent variability of the solar spectral irradiance and its impact on climate modelling. Atmos. Chem. Phys. 13, 3945–3977 (2013). doi: 10.5194/acp-13-3945-2013 ADSGoogle Scholar
  35. I. Ermolli, F. Giorgi, P. Romano, F. Zuccarello, S. Criscuoli, M. Stangalini, Fractal and multifractal properties of active regions as flare precursors: a case study based on SOHO/MDI and SDO/HMI observations. Sol. Phys. 289, 2525–2545 (2014). doi: 10.1007/s11207-014-0500-3 ADSGoogle Scholar
  36. Y.P. Fedorenko, O.F. Tyrnov, V.N. Fedorenko, V.L. Dorohov, Model of traveling ionospheric disturbances. J. Space Weather Space Clim. 3(26), 30 (2013). doi: 10.1051/swsc/2013052 ADSGoogle Scholar
  37. P. Foukal, L. Bertello, W.C. Livingston, A.A. Pevtsov, J. Singh, A.G. Tlatov, R.K. Ulrich, A century of solar Ca ii measurements and their implication for solar UV driving of climate. Sol. Phys. 255, 229–238 (2009). doi: 10.1007/s11207-009-9330-0 ADSGoogle Scholar
  38. C. Fröhlich, Total solar irradiance: what have we learned from the last three cycles and the recent minimum? Space Sci. Rev. 176, 237–252 (2013). doi: 10.1007/s11214-011-9780-1 ADSGoogle Scholar
  39. G. Galilei, Istoria e Dimostrazioni Intorno Alle Macchie Solari (Accad. Naz. Lincei, Rome, 1613) Google Scholar
  40. M.K. Georgoulis, Toward an efficient prediction of solar flares: which parameters, and how? Entropy 15, 5022–5052 (2013). doi: 10.3390/e15115022 ADSGoogle Scholar
  41. I. González Hernández, F. Hill, C. Lindsey, Calibration of seismic signatures of active regions on the far side of the Sun. Astrophys. J. 669, 1382–1389 (2007). doi: 10.1086/521592 ADSGoogle Scholar
  42. I. González Hernández, M. Díaz Alfaro, K. Jain, W.K. Tobiska, D.C. Braun, F. Hill, F. Pérez Hernández, A full-Sun magnetic index from helioseismology inferences. Sol. Phys. 289, 503–514 (2014) ADSGoogle Scholar
  43. G.E. Hale, On the probable existence of a magnetic field in Sun-spots. Astrophys. J. 28, 315 (1908). doi: 10.1086/141602 ADSGoogle Scholar
  44. G.E. Hale, Sun-spots as magnets and the periodic reversal of their polarity. Nature 113, 105–112 (1924). doi: 10.1038/113105a0 ADSGoogle Scholar
  45. G.E. Hale, S.B. Nicholson, The law of Sun-spot polarity. Astrophys. J. 62, 270 (1925). doi: 10.1086/142933 ADSGoogle Scholar
  46. G.E. Hale, F. Ellerman, S.B. Nicholson, A.H. Joy, The magnetic polarity of Sun-spots. Astrophys. J. 49, 153 (1919). doi: 10.1086/142452 ADSGoogle Scholar
  47. J.C. Hall, Stellar chromospheric activity. Living Rev. Sol. Phys. 5, 2 (2008). doi: 10.12942/lrsp-2008-2 ADSGoogle Scholar
  48. J.W. Harvey, N.R. Sheeley Jr., A comparison of He II 304 A and He I 10,830 A spectroheliograms. Sol. Phys. 54, 343–351 (1977). doi: 10.1007/BF00159924 ADSGoogle Scholar
  49. K.L. Harvey, The relationship between coronal bright points as seen in He I Lambda 10830 and the evolution of the photospheric network magnetic fields. Aust. J. Phys. 38, 875–883 (1985) ADSGoogle Scholar
  50. K.L. Harvey, The cyclic behavior of solar activity, in The Solar Cycle, ed. by K.L. Harvey Astronomical Society of the Pacific Conference Series, vol. 27, 1992, p. 335 Google Scholar
  51. K.L. Harvey, F. Recely, Polar coronal holes during cycles 22 and 23. Sol. Phys. 211, 31–52 (2002). doi: 10.1023/A:1022469023581 ADSGoogle Scholar
  52. D.H. Hathaway, The solar cycle. Living Rev. Sol. Phys. 7, 1 (2010). doi: 10.12942/lrsp-2010-1 ADSGoogle Scholar
  53. D.H. Hathaway, R.M. Wilson, What the sunspot record tells us about space climate. Sol. Phys. 224, 5–19 (2004). doi: 10.1007/s11207-005-3996-8 ADSGoogle Scholar
  54. D.F. Heath, B.M. Schlesinger, The Mg 280-nm doublet as a monitor of changes in solar ultraviolet irradiance. J. Geophys. Res. 91, 8672–8682 (1986). doi: 10.1029/JD091iD08p08672 ADSGoogle Scholar
  55. C.J. Henney, W.A. Toussaint, S.M. White, C.N. Arge, Forecasting F10.7 with solar magnetic flux transport modeling. Space Weather 10, 2011 (2012). doi: 10.1029/2011SW000748 ADSGoogle Scholar
  56. D.V. Hoyt, K.H. Schatten, How well was the Sun observed during the maunder minimum? Sol. Phys. 165, 181–192 (1996). doi: 10.1007/BF00149097 ADSGoogle Scholar
  57. D.V. Hoyt, K.H. Schatten, Group sunspot numbers: a new solar activity reconstruction. Sol. Phys. 179, 189–219 (1998a). doi: 10.1023/A:1005007527816 ADSGoogle Scholar
  58. D.V. Hoyt, K.H. Schatten, Group sunspot numbers: a new solar activity reconstruction. Sol. Phys. 181, 491–512 (1998b). doi: 10.1023/A:1005056326158 ADSGoogle Scholar
  59. H. Hudson, L. Fletcher, J. McTiernan, Cycle 23 variation in solar flare productivity. Sol. Phys. 289, 1341–1347 (2014a). doi: 10.1007/s11207-013-0384-7 ADSGoogle Scholar
  60. H. Hudson, L. Svalgaard, E. Cliver, Solar sector structure. Space Sci. Rev. (2014b) Google Scholar
  61. H.S. Hudson, S. Silva, M. Woodard, R.C. Willson, The effects of sunspots on solar irradiance. Sol. Phys. 76, 211–219 (1982). doi: 10.1007/BF00170984 ADSGoogle Scholar
  62. K. Jain, S.S. Hasan, Modulation in the solar irradiance due to surface magnetism during cycles 21, 22 and 23. Astron. Astrophys. 425, 301–307 (2004). doi: 10.1051/0004-6361:20047102 ADSGoogle Scholar
  63. J. Jiang, R.H. Cameron, D. Schmitt, M. Schüssler, The solar magnetic field since 1700. II. Physical reconstruction of total, polar and open flux. Astron. Astrophys. 528, 83 (2011). doi: 10.1051/0004-6361/201016168 ADSGoogle Scholar
  64. A. Kerdraon, J.-M. Delouis, The Nançay radioheliograph, in Coronal Physics from Radio and Space Observations, ed. by G. Trottet Lecture Notes in Physics, Berlin Springer Verlag, vol. 483, 1997, p. 192. doi: 10.1007/BFb0106458 Google Scholar
  65. C. Kiess, R. Rezaei, W. Schmidt, Properties of sunspot umbrae observed in Cycle 24. ArXiv e-prints (2014) Google Scholar
  66. J. Kleczek, Ionospheric disturbances and flares in the 11-years cycle. Bull. Astron. Inst. Czechoslov. 3, 52 (1952) ADSGoogle Scholar
  67. N.A. Krivova, L.E.A. Vieira, S.K. Solanki, Reconstruction of solar spectral irradiance since the Maunder minimum. J. Geophys. Res. 115, 12112 (2010). doi: 10.1029/2010JA015431 Google Scholar
  68. M.R. Kundu, Solar active regions at millimeter wavelengths. Sol. Phys. 13, 348–356 (1970). doi: 10.1007/BF00153556 ADSGoogle Scholar
  69. I. Kutiev, I. Tsagouri, L. Perrone, D. Pancheva, P. Mukhtarov, A. Mikhailov, J. Lastovicka, N. Jakowski, D. Buresova, E. Blanch, B. Andonov, D. Altadill, S. Magdaleno, M. Parisi, J. Miquel Torta, Solar activity impact on the Earth’s upper atmosphere. J. Space Weather Space Clim. 3(26), 6 (2013). doi: 10.1051/swsc/2013028 Google Scholar
  70. A. Lagg, Recent advances in measuring chromospheric magnetic fields in the He I 10830 Å line. Adv. Space Res. 39, 1734–1740 (2007). doi: 10.1016/j.asr.2007.03.091 ADSGoogle Scholar
  71. J.L. Lean, T.N. Woods, F.G. Eparvier, R.R. Meier, D.J. Strickland, J.T. Correira, J.S. Evans, Solar extreme ultraviolet irradiance: present, past, and future. J. Geophys. Res. 116, 1102 (2011). doi: 10.1029/2010JA015901 Google Scholar
  72. J. Leenaarts, M. Carlsson, L. Rouppe van der Voort, The formation of the Hα line in the Solar chromosphere. Astrophys. J. 749, 136 (2012). doi: 10.1088/0004-637X/749/2/136 ADSGoogle Scholar
  73. J. Leenaarts, T.M.D. Pereira, M. Carlsson, H. Uitenbroek, B. De Pontieu, The formation of IRIS diagnostics. II. The formation of the Mg II h&k lines in the solar atmosphere. Astrophys. J. 772, 90 (2013). doi: 10.1088/0004-637X/772/2/90 ADSGoogle Scholar
  74. L. Lefevre, F. Clette, Survey and merging of sunspot catalogs. Sol. Phys. 289, 545–561 (2014). doi: 10.1007/s11207-012-0184-5 ADSGoogle Scholar
  75. D.K. Lepshokov, A.G. Tlatov, V.V. Vasil’eva, Reconstruction of sunspot characteristics for 1853–1879. Geomagn. Aeron. 52, 843–848 (2012). doi: 10.1134/S0016793212070109 ADSGoogle Scholar
  76. R. Leussu, I.G. Usoskin, R. Arlt, K. Mursula, Inconsistency of the Wolf sunspot number series around 1848. Astron. Astrophys. 559, 28 (2013). doi: 10.1051/0004-6361/201322373 ADSGoogle Scholar
  77. K.J. Li, P.X. Gao, L.S. Zhan, Synchronization of sunspot numbers and sunspot areas. Sol. Phys. 255, 289–300 (2009). doi: 10.1007/s11207-009-9328-7 ADSGoogle Scholar
  78. C. Lindsey, D.C. Braun, Helioseismic holography. Astrophys. J. 485, 895 (1997). doi: 10.1086/304445 ADSGoogle Scholar
  79. Y. Liu, J.T. Hoeksema, P.H. Scherrer, J. Schou, S. Couvidat, R.I. Bush, T.L. Duvall, K. Hayashi, X. Sun, X. Zhao, Comparison of line-of-sight magnetograms taken by the solar dynamics observatory/helioseismic and magnetic imager and solar and heliospheric observatory/Michelson Doppler imager. Sol. Phys. 279, 295–316 (2012). doi: 10.1007/s11207-012-9976-x ADSGoogle Scholar
  80. M. Lockwood, Reconstruction and prediction of variations in the open solar magnetic flux and interplanetary conditions. Living Rev. Sol. Phys. 10(4) (2013). doi: 10.12942/lrsp-2013-4. http://www.livingreviews.org/lrsp-2013-4
  81. J.N. Lockyer, Supplementary note on a spectrum of a solar prominence. Proc. R. Soc. Lond., Ser. A 17, 128 (1868) Google Scholar
  82. V.I. Makarov, A.G. Tlatov, The large-scale solar magnetic field and 11-year activity cycles. Astron. Rep. 44, 759–764 (2000). doi: 10.1134/1.1320502 ADSGoogle Scholar
  83. V.I. Makarov, A.G. Tlatov, D.K. Callebaut, V.N. Obridko, B.D. Shelting, Large-scale magnetic field and sunspot cycles. Sol. Phys. 198, 409–421 (2001). doi: 10.1023/A:1005249531228 ADSGoogle Scholar
  84. T. Maruyama, Solar proxies pertaining to empirical ionospheric total electron content models. J. Geophys. Res. 115, 4306 (2010). doi: 10.1029/2009JA014890 Google Scholar
  85. K. Matthes, K. Kodera, R.R. Garcia, Y. Kuroda, D.R. Marsh, K. Labitzke, The importance of time-varying forcing for QBO modulation of the atmospheric 11 year solar cycle signal. J. Geophys. Res. 118, 4435–4447 (2013). doi: 10.1002/jgrd.50424 Google Scholar
  86. E.W. Maunder, Note on the distribution of Sun-spots in heliographic latitude, 1874–1902. Mon. Not. R. Astron. Soc. 64, 747–761 (1904) ADSGoogle Scholar
  87. B. Mendoza, V.M. Mendoza, R. Garduño, J. Adem, Modelling the northern hemisphere temperature for solar cycles 24 and 25. J. Atmos. Sol.-Terr. Phys. 72, 1122–1128 (2010). doi: 10.1016/j.jastp.2010.05.018 ADSGoogle Scholar
  88. M. Minarovjech, V. Rušin, M. Saniga, The green corona database and the coronal index of solar activity. Contrib. Astron. Obs. Skaln. Pleso 41, 137–141 (2011) ADSGoogle Scholar
  89. Z. Mouradian, Synoptic data findings, in Synoptic Solar Physics, ed. by K.S. Balasubramaniam, J. Harvey, D. Rabin Astronomical Society of the Pacific Conference Series, vol. 140, 1998, p. 181 Google Scholar
  90. A. Muñoz-Jaramillo, N.R. Sheeley, J. Zhang, E.E. DeLuca, Calibrating 100 years of polar faculae measurements: implications for the evolution of the heliospheric magnetic field. Astrophys. J. 753, 146 (2012). doi: 10.1088/0004-637X/753/2/146 ADSGoogle Scholar
  91. A. Norton, P. Charbonneau, Observed solar N–S asymmetry in relation to dynamo modeling. Space Sci. Rev. (2014) Google Scholar
  92. S. Oberländer, U. Langematz, K. Matthes, M. Kunze, A. Kubin, J. Harder, N.A. Krivova, S.K. Solanki, J. Pagaran, M. Weber, The influence of spectral solar irradiance data on stratospheric heating rates during the 11 year solar cycle. Geophys. Res. Lett. 39, 1801 (2012). doi: 10.1029/2011GL049539 ADSGoogle Scholar
  93. K. Oláh, Z. Kolláth, T. Granzer, K.G. Strassmeier, A.F. Lanza, S. Järvinen, H. Korhonen, S.L. Baliunas, W. Soon, S. Messina, G. Cutispoto, Multiple and changing cycles of active stars. II. Results. Astron. Astrophys. 501, 703–713 (2009). doi: 10.1051/0004-6361/200811304 ADSGoogle Scholar
  94. M.J. Owens, R.J. Forsyth, The heliospheric magnetic field. Living Rev. Sol. Phys. 10(5) (2013). doi: 10.12942/lrsp-2013-5. http://www.livingreviews.org/lrsp-2013-5
  95. A. Özgüç, T. Ataç, J. Rybák, Temporal variability of the flare index (1966–2001). Sol. Phys. 214, 375–396 (2003). doi: 10.1023/A:1024225802080 ADSGoogle Scholar
  96. J. Pagaran, M. Weber, J. Burrows, Solar variability from 240 to 1750 nm in terms of faculae brightening and sunspot darkening from SCIAMACHY. Astrophys. J. 700, 1884–1895 (2009a). doi: 10.1088/0004-637X/700/2/1884 ADSGoogle Scholar
  97. W.D. Pesnell, Solar cycle predictions (Invited review). Sol. Phys. 281, 507–532 (2012). doi: 10.1007/s11207-012-9997-5 ADSGoogle Scholar
  98. C. Petrick, K. Matthes, H. Dobslaw, M. Thomas, Impact of the solar cycle and the QBO on the atmosphere and the ocean. J. Geophys. Res. 117, 17111 (2012). doi: 10.1029/2011JD017390 Google Scholar
  99. G.J.D. Petrie, Solar magnetic activity cycles, coronal potential field models and eruption rates. Astrophys. J. 768, 162 (2013). doi: 10.1088/0004-637X/768/2/162 ADSGoogle Scholar
  100. G.J.D. Petrie, K. Petrovay, K. Schatten, Solar polar fields and the 22-year activity cycle: Observations and models. Space Sci. Rev., 1–33 (2014). doi: 10.1007/s11214-014-0064-4
  101. A.A. Pevtsov, L. Bertello, H. Uitenbroek, On possible variations of basal Ca II K chromospheric line profiles with the solar cycle. Astrophys. J. 767, 56 (2013). doi: 10.1088/0004-637X/767/1/56 ADSGoogle Scholar
  102. M.S. Potgieter, Solar modulation of cosmic rays. Living Rev. Sol. Phys. 10(3) (2013). doi: 10.12942/lrsp-2013-3
  103. D.G. Preminger, S.R. Walton, Modeling solar spectral irradiance and total magnetic flux using sunspot areas. Sol. Phys. 235, 387–405 (2006). doi: 10.1007/s11207-006-0044-2 ADSGoogle Scholar
  104. D.G. Preminger, S.R. Walton, From sunspot area to solar variability: a linear transformation. Sol. Phys. 240, 17–23 (2007). doi: 10.1007/s11207-007-0335-2 ADSGoogle Scholar
  105. M. Priyal, J. Singh, B. Ravindra, T.G. Priya, K. Amareswari, Long term variations in chromospheric features from Ca-K images at Kodaikanal. Sol. Phys. 289, 137–152 (2014). doi: 10.1007/s11207-013-0315-7 ADSGoogle Scholar
  106. T. Pulkkinen, Space weather: terrestrial perspective. Living Rev. Sol. Phys. 4, 1 (2007). doi: 10.12942/lrsp-2007-1 ADSGoogle Scholar
  107. T.I. Pulkkinen, M. Palmroth, E.I. Tanskanen, N.Y. Ganushkina, M.A. Shukhtina, N.P. Dmitrieva, Solar wind—magnetosphere coupling: a review of recent results. J. Atmos. Sol.-Terr. Phys. 69, 256–264 (2007). doi: 10.1016/j.jastp.2006.05.029 ADSGoogle Scholar
  108. A. Reiners, Observations of cool-star magnetic fields. Living Rev. Sol. Phys. 9, 1 (2012). doi: 10.12942/lrsp-2012-1 ADSGoogle Scholar
  109. P. Riley, R. Lionello, J.A. Linker, Z. Mikic, J. Luhmann, J. Wijaya, Global MHD modeling of the solar corona and inner heliosphere for the whole heliosphere interval. Sol. Phys. 274, 361–377 (2011). doi: 10.1007/s11207-010-9698-x ADSGoogle Scholar
  110. P. Riley, M. Ben-Nun, J.A. Linker, Z. Mikic, L. Svalgaard, J. Harvey, L. Bertello, T. Hoeksema, Y. Liu, R. Ulrich, A multi-observatory inter-comparison of line-of-sight synoptic solar magnetograms. Sol. Phys. 289, 769–792 (2014). doi: 10.1007/s11207-013-0353-1 ADSGoogle Scholar
  111. R.J. Rutten, Observing the solar chromosphere, in The Physics of Chromospheric Plasmas, ed. by P. Heinzel, I. Dorotovič, R.J. Rutten Astronomical Society of the Pacific Conference Series, vol. 368, 2007, p. 27 Google Scholar
  112. V. Rušin, M. Rybansky, The green corona and magnetic fields. Sol. Phys. 207, 47–61 (2002). doi: 10.1023/A:1015587719072 ADSGoogle Scholar
  113. M. Rybanský, V. Rušin, M. Minarovjech, Coronal index of solar activity—solar-terrestrial research. Space Sci. Rev. 95, 227–234 (2001) ADSGoogle Scholar
  114. M. Rybanský, V. Rušin, M. Minarovjech, L. Klocok, E.W. Cliver, Reexamination of the coronal index of solar activity. J. Geophys. Res. 110, 8106 (2005). doi: 10.1029/2005JA011146 Google Scholar
  115. J.D. Scargle, S.L. Keil, S.P. Worden, Solar cycle variability and surface differential rotation from Ca II K-line time series data. Astrophys. J. 771, 33 (2013). doi: 10.1088/0004-637X/771/1/33 ADSGoogle Scholar
  116. C. Scheiner, Rosa Ursina Sive Sol 1626–1630 Google Scholar
  117. B. Schmieder, V. Archontis, M. Schuessler, E. Pariat, Magnetic flux emergence. Space Sci. Rev. (2014) Google Scholar
  118. C.J. Schrijver, J. Cote, C. Zwaan, S.H. Saar, Relations between the photospheric magnetic field and the emission from the outer atmospheres of cool stars. I—The solar CA II K line core emission. Astrophys. J. 337, 964–976 (1989). doi: 10.1086/167168 ADSGoogle Scholar
  119. M. Schwabe, Die Sonne. Von Herrn Hofrath Schwabe. Astron. Nachr. 20, 283 (1843). doi: 10.1002/asna.18430201706 ADSGoogle Scholar
  120. C.J. Scott, R.G. Harrison, M.J. Owens, M. Lockwood, L. Barnard, Evidence for solar wind modulation of lightning. Environ. Res. Lett. 9(5), 055004 (2014). doi: 10.1088/1748-9326/9/5/055004 ADSGoogle Scholar
  121. N.R. Sheeley Jr., A century of polar faculae variations. Astrophys. J. 680, 1553–1559 (2008). doi: 10.1086/588251 ADSGoogle Scholar
  122. N.R. Sheeley Jr., T.J. Cooper, J.R.L. Anderson, Carrington maps of Ca II K-line emission for the years 1915–1985. Astrophys. J. 730, 51 (2011). doi: 10.1088/0004-637X/730/1/51 ADSGoogle Scholar
  123. K. Shibasaki, C.E. Alissandrakis, S. Pohjolainen, Radio emission of the quiet Sun and active regions (Invited review). Sol. Phys. 273, 309–337 (2011). doi: 10.1007/s11207-011-9788-4 ADSGoogle Scholar
  124. K. Shibata, T. Magara, Solar flares: magnetohydrodynamic processes. Living Rev. Sol. Phys. 8, 6 (2011). doi: 10.12942/lrsp-2011-6 ADSGoogle Scholar
  125. S. Solanki, N. Krivova, Faculae and Plague. Landolt Börnstein, 4124 (2009). doi: 10.1007/978-3-540-88055-4_9
  126. S.K. Solanki, B. Inhester, M. Schüssler, The solar magnetic field. Rep. Prog. Phys. 69, 563–668 (2006). doi: 10.1088/0034-4885/69/3/R02 ADSGoogle Scholar
  127. S.K. Solanki, N.A. Krivova, J.D. Haigh, Solar irradiance variability and climate. Annu. Rev. Astron. Astrophys. 51, 311–351 (2013). doi: 10.1146/annurev-astro-082812-141007 ADSGoogle Scholar
  128. J.O. Stenflo, Solar magnetic fields. J. Astrophys. Astron. 29, 19–28 (2008). doi: 10.1007/s12036-008-0003-4 ADSGoogle Scholar
  129. J.O. Stenflo, Solar magnetic fields as revealed by Stokes polarimetry. Astron. Astrophys. Rev. 21, 66 (2013). doi: 10.1007/s00159-013-0066-3 ADSGoogle Scholar
  130. M. Stuiver, P.D. Quay, Changes in atmospheric carbon-14 attributed to a variable Sun. Science 207, 11–19 (1980). doi: 10.1126/science.207.4426.11 ADSGoogle Scholar
  131. W.T. Sullivan, The Early Years of Radio Astronomy—Reflections Fifty Years After Jansky’s Discovery 1984 Google Scholar
  132. L. Svalgaard, What geomagnetism can tell us about the solar cycle? Space Sci. Rev. (2014) Google Scholar
  133. L. Svalgaard, H.S. Hudson, The solar microwave flux and the sunspot number, in SOHO-23: Understanding a Peculiar Solar Minimum, ed. by S.R. Cranmer, J.T. Hoeksema, J.L. Kohl Astronomical Society of the Pacific Conference Series, vol. 428, 2010, p. 325 Google Scholar
  134. H. Tanaka, J.P. Castelli, A.E. Covington, A. Krüger, T.L. Landecker, A. Tlamicha, Absolute calibration of solar radio flux density in the microwave region. Sol. Phys. 29, 243–262 (1973). doi: 10.1007/BF00153452 ADSGoogle Scholar
  135. K.F. Tapping, The 10.7 cm solar radio flux (F10.7). Space Weather 11, 394–406 (2013). doi: 10.1002/swe.20064 ADSGoogle Scholar
  136. K.F. Tapping, J.J. Valdés, Did the Sun change its behaviour during the decline of cycle 23 and into cycle 24? Sol. Phys. 272, 337–350 (2011). doi: 10.1007/s11207-011-9827-1 ADSGoogle Scholar
  137. M. Temmer, A. Veronig, A. Hanslmeier, Hemispheric sunspot numbers Rn and Rs: catalogue and N–S asymmetry analysis. Astron. Astrophys. 390, 707–715 (2002). doi: 10.1051/0004-6361:20020758 ADSGoogle Scholar
  138. M. Temmer, J. Rybák, P. Bendík, A. Veronig, F. Vogler, W. Otruba, W. Pötzi, A. Hanslmeier, Hemispheric sunspot numbers {Rn} and {Rs} from 1945–2004: catalogue and N–S asymmetry analysis for solar cycles 18–23. Astron. Astrophys. 447, 735–743 (2006). doi: 10.1051/0004-6361:20054060 ADSGoogle Scholar
  139. G. Thuillier, S.M.L. Melo, J. Lean, N.A. Krivova, C. Bolduc, V.I. Fomichev, P. Charbonneau, A.I. Shapiro, W. Schmutz, D. Bolsée, Analysis of different solar spectral irradiance reconstructions and their impact on solar heating rates. Sol. Phys. 289, 1115–1142 (2014). doi: 10.1007/s11207-013-0381-x ADSGoogle Scholar
  140. H. Uitenbroek, Operator perturbation method for multi-level line transfer with partial redistribution. Astron. Astrophys. 213, 360–370 (1989) ADSGoogle Scholar
  141. I.G. Usoskin, A history of solar activity over millennia. Living Rev. Sol. Phys. 10, 1 (2013). doi: 10.12942/lrsp-2013-1 ADSGoogle Scholar
  142. I. Usoskin, G. Bazilevskaya, E. Cliver, G. Kovaltsov, Solar cycle in the heliosphere and cosmic rays. Space Sci. Rev. (2014) Google Scholar
  143. H. van Loon, J. Brown, R.F. Milliff, Trends in sunspots and North Atlantic sea level pressure. J. Geophys. Res. 117, 7106 (2012). doi: 10.1029/2012JD017502 Google Scholar
  144. J.M. Vaquero, R.M. Trigo, Revised group sunspot number values for 1640, 1652, and 1741. Sol. Phys. 289, 803–808 (2014). doi: 10.1007/s11207-013-0360-2 ADSGoogle Scholar
  145. J.M. Vaquero, R.M. Trigo, M.C. Gallego, A simple method to check the reliability of annual sunspot number in the historical period 1610–1847. Sol. Phys. 277, 389–395 (2012). doi: 10.1007/s11207-011-9901-8 ADSGoogle Scholar
  146. V.V. Vasil’Eva, V.I. Makarov, A.G. Tlatov, Rotation cycles of the sector structure of the solar magnetic field and its activity. Astron. Lett. 28, 199–205 (2002). doi: 10.1134/1.1458351 ADSGoogle Scholar
  147. I.I. Virtanen, K. Mursula, North-South asymmetric solar cycle evolution: signatures in the photosphere and consequences in the corona. Astrophys. J. 781, 99 (2014). doi: 10.1088/0004-637X/781/2/99 ADSGoogle Scholar
  148. Y.-M. Wang, Solar cycle variation of the Sun’s low-order magnetic multipoles: Heliospheric consequences. Space Sci. Rev., 1–21 (2014). doi: 10.1007/s11214-014-0051-9
  149. D.M. Willis, R. Henwood, M.N. Wild, H.E. Coffey, W.F. Denig, E.H. Erwin, D.V. Hoyt, The Greenwich photo-heliographic results (1874–1976): procedures for checking and correcting the sunspot digital datasets. Sol. Phys. 288, 141–156 (2013a). doi: 10.1007/s11207-013-0312-x ADSGoogle Scholar
  150. D.M. Willis, H.E. Coffey, R. Henwood, E.H. Erwin, D.V. Hoyt, M.N. Wild, W.F. Denig, The Greenwich photo-heliographic results (1874–1976): summary of the observations, applications, datasets, definitions and errors. Sol. Phys. 288, 117–139 (2013b). doi: 10.1007/s11207-013-0311-y ADSGoogle Scholar
  151. R.C. Willson, S. Gulkis, M. Janssen, H.S. Hudson, G.A. Chapman, Observations of solar irradiance variability. Science 211, 700–702 (1981). doi: 10.1126/science.211.4483.700 ADSGoogle Scholar
  152. K.L. Yeo, N.A. Krivova, S.K. Solanki, Solar cycle variation in solar irradiance. Space Sci. Rev., 1–31 (2014). doi: 10.1007/s11214-014-0061-7

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Ilaria Ermolli
    • 1
    Email author
  • Kiyoto Shibasaki
    • 2
  • Andrey Tlatov
    • 3
  • Lidia van Driel-Gesztelyi
    • 4
    • 5
    • 6
  1. 1.INAF Osservatorio Astronomico di RomaMonte Porzio CatoneItaly
  2. 2.Nobeyama Solar Radio Observatory NAOJNaganoJapan
  3. 3.Kislovodsk Mountain Astronomical Station of the Pulkovo ObservatoryKislovodskRussia
  4. 4.Mullard Space Science LaboratoryUniversity College LondonSurreyUK
  5. 5.LESIA, Observatoire de Paris, CNRS, UPMCUniversité Paris DiderotParisFrance
  6. 6.Konkoly Observatory of the Hungarian Academy of SciencesBudapestHungary

Personalised recommendations