Space Science Reviews

, Volume 186, Issue 1–4, pp 227–250

Magnetic Flux Emergence Along the Solar Cycle

Article

Abstract

Flux emergence plays an important role along the solar cycle. Magnetic flux emergence builds sunspot groups and solar activity. The sunspot groups contribute to the large scale behaviour of the magnetic field over the 11 year cycle and the reversal of the North and South magnetic polarity every 22 years. The leading polarity of sunspot groups is opposite in the North and South hemispheres and reverses for each new solar cycle. However the hemispheric rule shows the conservation of sign of the magnetic helicity with positive and negative magnetic helicity in the South and North hemispheres, respectively. MHD models of emerging flux have been developed over the past twenty years but have not yet succeeded to reproduce solar observations. The emergence of flux occurs through plasma layers of very high gradients of pressure and changing of modes from a large β to a low β plasma (<1). With the new armada of high spatial and temporal resolution instruments on the ground and in space, emergence of magnetic flux is observed in tremendous detail and followed during their transit through the upper atmosphere. Signatures of flux emergence in the corona depend on the pre-existing magnetic configuration and on the strength of the emerging flux. We review in this paper new and established models as well as the recent observations.

Keywords

Sun: sunspot Sun: magnetic field 

References

  1. D.J. Acheson, Instability by magnetic buoyancy. Sol. Phys. 62, 23 (1979). doi:10.1007/BF00150129. 1979SoPh...62...23A ADSGoogle Scholar
  2. V. Archontis, Magnetic flux emergence in the Sun. J. Geophys. Res. 113, 3 (2008). doi:10.1029/2007JA012422. 2008JGRA..11303S04A Google Scholar
  3. V. Archontis, Magnetic flux emergence and associated dynamic phenomena in the Sun. Philos. Trans. R. Soc. Lond. A 370, 3088 (2012). doi:10.1098/rsta.2012.0001. 2012RSPTA.370.3088A ADSGoogle Scholar
  4. V. Archontis, A.W. Hood, Formation of Ellerman bombs due to 3D flux emergence. Astron. Astrophys. 508, 1469 (2009). doi:10.1051/0004-6361/200912455. 2009A%26A...508.1469A ADSGoogle Scholar
  5. V. Archontis, A.W. Hood, Flux emergence and coronal eruption. Astron. Astrophys. 514, A56+ (2010). doi:10.1051/0004-6361/200913502. 2010A%26A...514A..56A ADSGoogle Scholar
  6. V. Archontis, A.W. Hood, Magnetic flux emergence: a precursor of solar plasma expulsion. Astron. Astrophys. 537, A62 (2012). doi:10.1051/0004-6361/201116956. 2012A%26A...537A..62A ADSGoogle Scholar
  7. V. Archontis, A.W. Hood, A numerical model of standard to blowout jets. Astrophys. J. Lett. 769, L21 (2013). doi:10.1088/2041-8205/769/2/L21. 2013ApJ...769L..21A ADSGoogle Scholar
  8. V. Archontis, T. Török, Eruption of magnetic flux ropes during flux emergence. Astron. Astrophys. 492, L35 (2008). doi:10.1051/0004-6361:200811131. 2008A%26A...492L..35A ADSGoogle Scholar
  9. V. Archontis, F. Moreno-Insertis, K. Galsgaard, A. Hood, E. O’Shea, Emergence of magnetic flux from the convection zone into the corona. Astron. Astrophys. 426, 1047 (2004). doi:10.1051/0004-6361:20035934. 2004A%26A...426.1047A ADSGoogle Scholar
  10. V. Archontis, K. Tsinganos, C. Gontikakis, Recurrent solar jets in active regions. Astron. Astrophys. 512, L2+ (2010). doi:10.1051/0004-6361/200913752. 2010A%26A...512L...2A ADSGoogle Scholar
  11. V. Archontis, A.W. Hood, K. Tsinganos, Recurrent explosive eruptions and the ”Sigmoid-to-arcade” transformation in the Sun driven by dynamical magnetic flux emergence. Astrophys. J. Lett. 786, L21 (2014). doi:10.1088/2041-8205/786/2/L21. 2014ApJ...786L..21A ADSGoogle Scholar
  12. G. Aulanier, The physical mechanisms that initiate and drive solar eruptions, in IAU Symposium, vol. 300 (2014), p. 184. doi:10.1017/S1743921313010958. 2014IAUS..300..184A Google Scholar
  13. G. Barnes, A.C. Birch, K.D. Leka, D.C. Braun, Helioseismology of pre-emerging active regions. III. Statistical analysis. Astrophys. J. 786, 19 (2014). doi:10.1088/0004-637X/786/1/19. 2014ApJ...786...19B ADSGoogle Scholar
  14. A. Berlicki, P. Heinzel, Observations and NLTE modeling of Ellerman bombs. ArXiv e-prints (2014). 2014arXiv1406.5702B
  15. P.N. Bernasconi, D.M. Rust, M.K. Georgoulis, B.J. Labonte, Moving dipolar features in an emerging flux region. Sol. Phys. 209, 119 (2002). doi:10.1023/A:1020943816174. 2002SoPh..209..119B ADSGoogle Scholar
  16. S.J. Bradshaw, G. Aulanier, G. Del Zanna, A reconnection-driven rarefaction wave model for coronal outflows. Astrophys. J. 743, 66 (2011). doi:10.1088/0004-637X/743/1/66. 2011ApJ...743...66B ADSGoogle Scholar
  17. P.J. Bushby, V. Archontis, Modelling magnetic flux emergence in the solar convection zone. Astron. Astrophys. 545, A107 (2012). doi:10.1051/0004-6361/201015747. 2012A%26A...545A.107B ADSGoogle Scholar
  18. R.C. Canfield, K.P. Reardon, K.D. Leka, K. Shibata, T. Yokoyama, M. Shimojo, H alpha surges and X-ray jets in AR 7260. Astrophys. J. 464, 1016 (1996). doi:10.1086/177389. 1996ApJ...464.1016C ADSGoogle Scholar
  19. A. Canou, T. Amari, V. Bommier, B. Schmieder, G. Aulanier, H. Li, Evidence for a pre-eruptive twisted flux rope using the themis vector magnetograph. Astrophys. J. Lett. 693, L27 (2009). doi:10.1088/0004-637X/693/1/L27. 2009ApJ...693L..27C ADSGoogle Scholar
  20. R. Chandra, B. Schmieder, G. Aulanier, J.M. Malherbe, Evidence of magnetic helicity in emerging flux and associated flare. Sol. Phys. 258, 53 (2009). doi:10.1007/s11207-009-9392-z. 2009SoPh..258...53C ADSGoogle Scholar
  21. P. Chatterjee, Y. Fan, Simulation of homologous and cannibalistic coronal mass ejections produced by the emergence of a twisted flux rope into the solar corona. Astrophys. J. Lett. 778, L8 (2013). doi:10.1088/2041-8205/778/1/L8. 2013ApJ...778L...8C ADSGoogle Scholar
  22. M.C.M. Cheung, M. Schüssler, F. Moreno-Insertis, Magnetic flux emergence in granular convection: radiative MHD simulations and observational signatures. Astron. Astrophys. 467, 703 (2007). doi:10.1051/0004-6361:20077048. 2007A%26A...467..703C ADSGoogle Scholar
  23. M.C.M. Cheung, M. Schüssler, T.D. Tarbell, A.M. Title, Solar surface emerging flux regions: a comparative study of radiative MHD modeling and hinode SOT observations. Astrophys. J. 687, 1373 (2008). doi:10.1086/591245. 2008ApJ...687.1373C ADSGoogle Scholar
  24. M.C.M. Cheung, M. Rempel, A.M. Title, M. Schüssler, Simulation of the formation of a solar active region. Astrophys. J. 720, 233 (2010). doi:10.1088/0004-637X/720/1/233. 2010ApJ...720..233C ADSGoogle Scholar
  25. J.W. Cirtain, L. Golub, L. Lundquist, A. van Ballegooijen, A. Savcheva, M. Shimojo, E. DeLuca, S. Tsuneta, T. Sakao, K. Reeves, M. Weber, R. Kano, N. Narukage, K. Shibasaki, Evidence for Alfvén waves in solar X-ray jets. Science 318, 1580 (2007). doi:10.1126/science.1147050. 2007Sci...318.1580C ADSGoogle Scholar
  26. B. De Pontieu, A.M. Title, J.R. Lemen, G.D. Kushner, D.J. Akin, B. Allard, T. Berger, P. Boerner, M. Cheung, C. Chou, J.F. Drake, D.W. Duncan, S. Freeland, G.F. Heyman, C. Hoffman, N.E. Hurlburt, R.W. Lindgren, D. Mathur, R. Rehse, D. Sabolish, R. Seguin, C.J. Schrijver, T.D. Tarbell, J.-P. Wülser, C.J. Wolfson, C. Yanari, J. Mudge, N. Nguyen-Phuc, R. Timmons, R. van Bezooijen, I. Weingrod, R. Brookner, G. Butcher, B. Dougherty, J. Eder, V. Knagenhjelm, S. Larsen, D. Mansir, L. Phan, P. Boyle, P.N. Cheimets, E.E. DeLuca, L. Golub, R. Gates, E. Hertz, S. McKillop, S. Park, T. Perry, W.A. Podgorski, K. Reeves, S. Saar, P. Testa, H. Tian, M. Weber, C. Dunn, S. Eccles, S.A. Jaeggli, C.C. Kankelborg, K. Mashburn, N. Pust, L. Springer, R. Carvalho, L. Kleint, J. Marmie, E. Mazmanian, T.M.D. Pereira, S. Sawyer, J. Strong, S.P. Worden, M. Carlsson, V.H. Hansteen, J. Leenaarts, M. Wiesmann, J. Aloise, K.-C. Chu, R.I. Bush, P.H. Scherrer, P. Brekke, J. Martinez-Sykora, B.W. Lites, S.W. McIntosh, H. Uitenbroek, T.J. Okamoto, M.A. Gummin, G. Auker, P. Jerram, P. Pool, N. Waltham, The Interface Region Imaging Spectrograph (IRIS). Sol. Phys. 289, 2733 (2014). doi:10.1007/s11207-014-0485-y. 2014SoPh..289.2733D ADSGoogle Scholar
  27. P. Démoulin, D. Baker, C.H. Mandrini, L. van Driel-Gesztelyi, The 3D geometry of active region upflows deduced from their limb-to-limb evolution. Sol. Phys. 283, 341 (2013). doi:10.1007/s11207-013-0234-7. 2013SoPh..283..341D ADSGoogle Scholar
  28. J. Dudík, G. Aulanier, B. Schmieder, M. Zapiór, P. Heinzel, Magnetic topology of bubbles in quiescent prominences. Astrophys. J. 761, 9 (2012). doi:10.1088/0004-637X/761/1/9. 2012ApJ...761....9D ADSGoogle Scholar
  29. J.K. Edmondson, B.J. Lynch, S.K. Antiochos, C.R. De Vore, T.H. Zurbuchen, Reconnection-driven dynamics of coronal-hole boundaries. Astrophys. J. 707, 1427 (2009). doi:10.1088/0004-637X/707/2/1427. 2009ApJ...707.1427E ADSGoogle Scholar
  30. F. Ellerman, Solar hydrogen ”bombs”. Astrophys. J. 46, 298 (1917). doi:10.1086/142366. 1917ApJ....46..298E ADSGoogle Scholar
  31. Y. Fan, The emergence of a twisted Ω-tube into the solar atmosphere. Astrophys. J. Lett. 554, L111 (2001). doi:10.1086/320935. 2001ApJ...554L.111F ADSGoogle Scholar
  32. Y. Fan, Magnetic fields in the solar convection zone. Living Rev. Sol. Phys. 6, 4 (2009a). doi:10.12942/lrsp-2009-4. 2009LRSP....6....4F ADSGoogle Scholar
  33. Y. Fan, The emergence of a twisted flux tube into the solar atmosphere: sunspot rotations and the formation of a coronal flux rope. Astrophys. J. 697, 1529 (2009b). doi:10.1088/0004-637X/697/2/1529. 2009ApJ...697.1529F ADSGoogle Scholar
  34. C. Fang, Y.H. Tang, Z. Xu, M.D. Ding, P.F. Chen, Spectral analysis of Ellerman bombs. Astrophys. J. 643, 1325 (2006). doi:10.1086/501342. 2006ApJ...643.1325F ADSGoogle Scholar
  35. K. Galsgaard, F. Moreno-Insertis, V. Archontis, A. Hood, A three-dimensional study of reconnection, current sheets, and jets resulting from magnetic flux emergence in the Sun. Astrophys. J. Lett. 618, L153 (2005). doi:10.1086/427872. 2005ApJ...618L.153G ADSGoogle Scholar
  36. M.K. Georgoulis, D.M. Rust, P.N. Bernasconi, B. Schmieder, Statistics, morphology, and energetics of Ellerman bombs. Astrophys. J. 575, 506 (2002). doi:10.1086/341195. 2002ApJ...575..506G ADSGoogle Scholar
  37. P.A. Gilman, Instability of magnetohydrostatic stellar interiors from magnetic buoyancy. I. Astrophys. J. 162, 1019 (1970). doi:10.1086/150733. 1970ApJ...162.1019G ADSGoogle Scholar
  38. C. Gontikakis, V. Archontis, K. Tsinganos, Observations and 3D MHD simulations of a solar active region jet. Astron. Astrophys. 506, L45 (2009). doi:10.1051/0004-6361/200913026. 2009A%26A...506L..45G ADSGoogle Scholar
  39. S.L. Guglielmino, L.R. Bellot Rubio, F. Zuccarello, G. Aulanier, S. Vargas Domínguez, S. Kamio, Multiwavelength observations of small-scale reconnection events triggered by magnetic flux emergence in the solar atmosphere. Astrophys. J. 724, 1083 (2010). doi:10.1088/0004-637X/724/2/1083. 2010ApJ...724.1083G ADSGoogle Scholar
  40. S.L. Guglielmino, V. Martínez Pillet, J.A. Bonet, J.C. del Toro Iniesta, L.R. Bellot Rubio, S.K. Solanki, W. Schmidt, A. Gandorfer, P. Barthol, M. Knölker, The frontier between small-scale bipoles and ephemeral regions in the solar photosphere: emergence and decay of an intermediate-scale bipole observed with SUNRISE/IMaX. Astrophys. J. 745, 160 (2012). doi:10.1088/0004-637X/745/2/160. 2012ApJ...745..160G ADSGoogle Scholar
  41. Y. Guo, M.D. Ding, B. Schmieder, H. Li, T. Török, T. Wiegelmann, Driving mechanism and onset condition of a confined eruption. Astrophys. J. Lett. 725, L38 (2010). doi:10.1088/2041-8205/725/1/L38. 2010ApJ...725L..38G ADSGoogle Scholar
  42. Y. Guo, P. Démoulin, B. Schmieder, M.D. Ding, S. Vargas Domínguez, Y. Liu, Recurrent coronal jets induced by repetitively accumulated electric currents. Astron. Astrophys. 555, A19 (2013). doi:10.1051/0004-6361/201321229. 2013A%26A...555A..19G ADSGoogle Scholar
  43. L.K. Harra, V. Archontis, E. Pedram, A.W. Hood, D.L. Shelton, L. van Driel-Gesztelyi, The creation of outflowing plasma in the corona at emerging flux regions: comparing observations and simulations. Sol. Phys. 278, 47 (2012). doi:10.1007/s11207-011-9855-x. 2012SoPh..278...47H ADSGoogle Scholar
  44. T. Hartlep, A.G. Kosovichev, J. Zhao, N.N. Mansour, Signatures of emerging subsurface structures in acoustic power maps of the Sun. Sol. Phys. 268, 321 (2011). doi:10.1007/s11207-010-9544-1. 2011SoPh..268..321H ADSGoogle Scholar
  45. K. Harvey, J. Harvey, Observations of moving magnetic features near sunspots. Sol. Phys. 28, 61 (1973). doi:10.1007/BF00152912. 1973SoPh...28...61H ADSGoogle Scholar
  46. M. Herlender, A. Berlicki, Multi-wavelength analysis of Ellerman bomb light curves. Cent. Eur. Astrophys. Bull. 35, 181 (2011). 2011CEAB...35..181H ADSGoogle Scholar
  47. J. Heyvaerts, E.R. Priest, D.M. Rust, An emerging flux model for the solar flare phenomenon. Astrophys. J. 216, 123 (1977). doi:10.1086/155453. 1977ApJ...216..123H ADSGoogle Scholar
  48. A.W. Hood, V. Archontis, K. Galsgaard, F. Moreno-Insertis, The emergence of toroidal flux tubes from beneath the solar photosphere. Astron. Astrophys. 503, 999 (2009). doi:10.1051/0004-6361/200912189. 2009A%26A...503..999H ADSGoogle Scholar
  49. H. Isobe, T. Miyagoshi, K. Shibata, T. Yokoyama, Filamentary structure on the Sun from the magnetic Rayleigh–Taylor instability. Nature 434, 478 (2005). doi:10.1038/nature03399. 2005Natur.434..478I ADSGoogle Scholar
  50. H. Isobe, D. Tripathi, V. Archontis, Ellerman bombs and jets associated with resistive flux emergence. Astrophys. J. Lett. 657, L53 (2007). doi:10.1086/512969. 2007ApJ...657L..53I ADSGoogle Scholar
  51. H. Isobe, M.R.E. Proctor, N.O. Weiss, Convection-driven emergence of small-scale magnetic fields and their role in coronal heating and solar wind acceleration. Astrophys. J. Lett. 679, L57 (2008). doi:10.1086/589150. 2008ApJ...679L..57I ADSGoogle Scholar
  52. L. Jouve, A.S. Brun, Three-dimensional nonlinear evolution of a magnetic flux tube in a spherical shell: influence of turbulent convection and associated mean flows. Astrophys. J. 701, 1300 (2009). doi:10.1088/0004-637X/701/2/1300. 2009ApJ...701.1300J ADSGoogle Scholar
  53. R. Kitai, On the mass motions and the atmospheric states of moustaches. Sol. Phys. 87, 135 (1983). doi:10.1007/BF00151165. 1983SoPh...87..135K ADSGoogle Scholar
  54. J.E. Leake, M.G. Linton, T. Török, Simulations of emerging magnetic flux. I. The formation of stable coronal flux ropes. Astrophys. J. 778, 99 (2013). doi:10.1088/0004-637X/778/2/99. 2013ApJ...778...99L ADSGoogle Scholar
  55. C. Liu, N. Deng, R. Liu, I. Ugarte-Urra, S. Wang, H. Wang, A standard-to-blowout jet. Astrophys. J. Lett. 735, L18 (2011). doi:10.1088/2041-8205/735/1/L18. 2011ApJ...735L..18L ADSGoogle Scholar
  56. M.C. López Fuentes, P. Demoulin, C.H. Mandrini, L. van Driel-Gesztelyi, The counterkink rotation of a non-hale active region. Astrophys. J. 544, 540 (2000). doi:10.1086/317180. 2000ApJ...544..540L ADSGoogle Scholar
  57. D. MacTaggart, A.W. Hood, Multiple eruptions from magnetic flux emergence. Astron. Astrophys. 508, 445 (2009a). doi:10.1051/0004-6361/200913197. 2009A%26A...508..445M ADSGoogle Scholar
  58. D. MacTaggart, A.W. Hood, Multiple eruptions from magnetic flux emergence. Astron. Astrophys. 508, 445 (2009b). doi:10.1051/0004-6361/200913197. 2009A%26A...508..445M ADSGoogle Scholar
  59. T. Magara, Dynamic and topological features of photospheric and coronal activities produced by flux emergence in the Sun. Astrophys. J. 653, 1499 (2006). doi:10.1086/508926. 2006ApJ...653.1499M ADSGoogle Scholar
  60. T. Magara, D.W. Longcope, Sigmoid structure of an emerging flux tube. Astrophys. J. Lett. 559, L55 (2001a). doi:10.1086/323635. 2001ApJ...559L..55M ADSGoogle Scholar
  61. T. Magara, D.W. Longcope, Sigmoid structure of an emerging flux tube. Astrophys. J. Lett. 559, L55 (2001b). doi:10.1086/323635. 2001ApJ...559L..55M ADSGoogle Scholar
  62. J.M. Malherbe, B. Schmieder, P. Mein, N. Mein, L. van Driel-Gesztelyi, M. von Uexkull, Arch filament systems associated with X-ray loops. Sol. Phys. 180, 265 (1998). doi:10.1023/A:1005092802593. 1998SoPh..180..265M ADSGoogle Scholar
  63. W. Manchester IV, T. Gombosi, D. DeZeeuw, Y. Fan, Eruption of a buoyantly emerging magnetic flux rope. Astrophys. J. 610, 588 (2004). doi:10.1086/421516. 2004ApJ...610..588M ADSGoogle Scholar
  64. C.H. Mandrini, P. Démoulin, B. Schmieder, Y.Y. Deng, P. Rudawy, The role of magnetic bald patches in surges and arch filament systems. Astron. Astrophys. 391, 317 (2002). doi:10.1051/0004-6361:20020745. 2002A%26A...391..317M ADSGoogle Scholar
  65. C.H. Mandrini, B. Schmieder, P. Démoulin, Y. Guo, G.D. Cristiani, Topological analysis of emerging bipole clusters producing violent solar events. Sol. Phys. 289, 2041 (2014). doi:10.1007/s11207-013-0458-6. 2014SoPh..289.2041M ADSGoogle Scholar
  66. J. Martínez-Sykora, V. Hansteen, M. Carlsson, Twisted flux tube emergence from the convection zone to the corona. Astrophys. J. 679, 871 (2008). doi:10.1086/587028. 2008ApJ...679..871M ADSGoogle Scholar
  67. J. Martínez-Sykora, V. Hansteen, M. Carlsson, Twisted flux tube emergence from the convection zone to the corona. II. Later states. Astrophys. J. 702, 129 (2009). doi:10.1088/0004-637X/702/1/129. 2009ApJ...702..129M ADSGoogle Scholar
  68. R.L. Moore, J.W. Cirtain, A.C. Sterling, D.A. Falconer, Dichotomy of solar coronal jets: standard jets and blowout jets. Astrophys. J. 720, 757 (2010). doi:10.1088/0004-637X/720/1/757. 2010ApJ...720..757M ADSGoogle Scholar
  69. F. Moreno-Insertis, Three-dimensional numerical experiments of flux emergence into the corona, in New Solar Physics with Solar-B Mission, ed. by K. Shibata, S. Nagata, T. Sakurai. Astronomical Society of the Pacific Conference Series, vol. 369 (2007) p. 335. 2007ASPC..369..335M Google Scholar
  70. F. Moreno-Insertis, K. Galsgaard, Plasma jets and eruptions in solar coronal holes: a three-dimensional flux emergence experiment. Astrophys. J. 771, 20 (2013). doi:10.1088/0004-637X/771/1/20. 2013ApJ...771...20M ADSGoogle Scholar
  71. F. Moreno-Insertis, K. Galsgaard, I. Ugarte-Urra, Jets in coronal holes: hinode observations and three-dimensional computer modeling. Astrophys. J. Lett. 673, L211 (2008). doi:10.1086/527560. 2008ApJ...673L.211M ADSGoogle Scholar
  72. M.J. Murray, D. Baker, L. van Driel-Gesztelyi, J. Sun, Outflows at the edges of an active region in a coronal hole: a signature of active region expansion? Sol. Phys. 261, 253 (2010). doi:10.1007/s11207-009-9484-9. 2010SoPh..261..253M ADSGoogle Scholar
  73. C.J. Nelson, J.G. Doyle, R. Erdélyi, Z. Huang, M.S. Madjarska, M. Mathioudakis, S.J. Mumford, K. Reardon, Statistical analysis of small Ellerman bomb events. Sol. Phys. 283, 307 (2013). doi:10.1007/s11207-012-0222-3. 2013SoPh..283..307N ADSGoogle Scholar
  74. N. Nishizuka, M. Shimizu, T. Nakamura, K. Otsuji, T.J. Okamoto, Y. Katsukawa, K. Shibata, Giant chromospheric anemone jet observed with hinode and comparison with magnetohydrodynamic simulations: evidence of propagating Alfvén waves and magnetic reconnection. Astrophys. J. Lett. 683, L83 (2008). doi:10.1086/591445. 2008ApJ...683L..83N ADSGoogle Scholar
  75. T.J. Okamoto, S. Tsuneta, B.W. Lites, M. Kubo, T. Yokoyama, T.E. Berger, K. Ichimoto, Y. Katsukawa, S. Nagata, K. Shibata, T. Shimizu, R.A. Shine, Y. Suematsu, T.D. Tarbell, A.M. Title, Emergence of a helical flux rope under an active region prominence. Astrophys. J. Lett. 673, L215 (2008). doi:10.1086/528792. 2008ApJ...673L.215O ADSGoogle Scholar
  76. A. Ortiz, L.R. Bellot Rubio, V.H. Hansteen, J. de la Cruz Rodríguez, L. Rouppe van der Voort, Emergence of granular-sized magnetic bubbles through the solar atmosphere. I. Spectropolarimetric observations and simulations. Astrophys. J. 781, 126 (2014). doi:10.1088/0004-637X/781/2/126. 2014ApJ...781..126O ADSGoogle Scholar
  77. K. Otsuji, K. Shibata, R. Kitai, S. Ueno, S. Nagata, T. Matsumoto, T. Nakamura, H. Watanabe, S. Tsuneta, Y. Suematsu, K. Ichimoto, T. Shimizu, Y. Katsukawa, T.D. Tarbell, B. Lites, R.A. Shine, A.M. Title, Small-scale magnetic-flux emergence observed with hinode solar optical telescope. Publ. Astron. Soc. Jpn. 59, 649 (2007). doi:10.1093/pasj/59.sp3.S649. 2007PASJ...59S.649O ADSGoogle Scholar
  78. J. Palacios, J. Blanco Rodríguez, S. Vargas Domínguez, V. Domingo, V. Martínez Pillet, J.A. Bonet, L.R. Bellot Rubio, J.C. Del Toro Iniesta, S.K. Solanki, P. Barthol, A. Gandorfer, T. Berkefeld, W. Schmidt, M. Knölker, Magnetic field emergence in mesogranular-sized exploding granules observed with sunrise/IMaX data. Astron. Astrophys. 537, A21 (2012). doi:10.1051/0004-6361/201117936. 2012A%26A...537A..21P ADSGoogle Scholar
  79. E. Pariat, G. Aulanier, B. Schmieder, M.K. Georgoulis, D.M. Rust, P.N. Bernasconi, Resistive emergence of undulatory flux tubes. Astrophys. J. 614, 1099 (2004). doi:10.1086/423891. 2004ApJ...614.1099P ADSGoogle Scholar
  80. E. Pariat, B. Schmieder, A. Berlicki, Y. Deng, N. Mein, A. López Ariste, S. Wang, Spectrophotometric analysis of Ellerman bombs in the Ca II, Hα, and UV range. Astron. Astrophys. 473, 279 (2007). doi:10.1051/0004-6361:20067011. 2007A%26A...473..279P ADSGoogle Scholar
  81. E. Pariat, S.K. Antiochos, C.R. DeVore, A model for solar polar jets. Astrophys. J. 691, 61 (2009). doi:10.1088/0004-637X/691/1/61. 2009ApJ...691...61P ADSGoogle Scholar
  82. E. Pariat, S. Masson, G. Aulanier, Current buildup in emerging serpentine flux tubes. Astrophys. J. 701, 1911 (2009). doi:10.1088/0004-637X/701/2/1911. 2009ApJ...701.1911P ADSGoogle Scholar
  83. E. Pariat, S.K. Antiochos, C.R. DeVore, Three-dimensional modeling of quasi-homologous solar jets. Astrophys. J. 714, 1762 (2010). doi:10.1088/0004-637X/714/2/1762. 2010ApJ...714.1762P ADSGoogle Scholar
  84. E.N. Parker, The formation of sunspots from the solar toroidal field. Astrophys. J. 121, 491 (1955). doi:10.1086/146010. 1955ApJ...121..491P ADSGoogle Scholar
  85. E.N. Parker, Nanoflares and the solar X-ray corona. Astrophys. J. 330, 474 (1988). doi:10.1086/166485. 1988ApJ...330..474P ADSGoogle Scholar
  86. R.F. Pinto, A.S. Brun, L. Jouve, R. Grappin, Coupling the solar dynamo and the corona: wind properties, mass, and momentum losses during an activity cycle. Astrophys. J. 737, 72 (2011). doi:10.1088/0004-637X/737/2/72. 2011ApJ...737...72P ADSGoogle Scholar
  87. M. Rempel, M.C.M. Cheung, Numerical simulations of active region scale flux emergence: from spot formation to decay. Astrophys. J. 785, 90 (2014). doi:10.1088/0004-637X/785/2/90. 2014ApJ...785...90R ADSGoogle Scholar
  88. R.J. Rutten, G.J.M. Vissers, L.H.M. Rouppe van der Voort, P. Sütterlin, N. Vitas, Ellerman bombs: fallacies, fads, usage. J. Phys. Conf. Ser. 440(1), 012007 (2013). doi:10.1088/1742-6596/440/1/012007. 2013JPhCS.440a2007R ADSGoogle Scholar
  89. B. Schmieder, E. Pariat, Magnetic flux emergence in scholarpedia. Scholarpedia 2(12), 4335 (2007) ADSGoogle Scholar
  90. B. Schmieder, E. Pariat, Vector magnetic field in emerging flux regions, in Magnetic Coupling Between the Interior and Atmosphere of the Sun, ed. by S.S. Hasan, R.J. Rutten (2010) p. 505. doi:10.1007/978-3-642-02859-5_70. 2010mcia.conf..505S Google Scholar
  91. B. Schmieder, D.M. Rust, M.K. Georgoulis, P. Démoulin, P.N. Bernasconi, Emerging flux and the heating of coronal loops. Astrophys. J. 601, 530 (2004). doi:10.1086/380199. 2004ApJ...601..530S ADSGoogle Scholar
  92. B. Schmieder, P. Démoulin, G. Aulanier, Solar filament eruptions and their physical role in triggering coronal mass ejections. Adv. Space Res. 51, 1967 (2013). doi:10.1016/j.asr.2012.12.026. 2013AdSpR..51.1967S ADSGoogle Scholar
  93. B. Schmieder, Y. Guo, F. Moreno-Insertis, G. Aulanier, L. Yelles Chaouche, N. Nishizuka, L.K. Harra, J.K. Thalmann, S. Vargas Dominguez, Y. Liu, Twisting solar coronal jet launched at the boundary of an active region. Astron. Astrophys. 559, A1 (2013). doi:10.1051/0004-6361/201322181. 2013A%26A...559A...1S ADSGoogle Scholar
  94. Y. Shen, Y. Liu, J. Su, Y. Deng, On a coronal blowout jet: the first observation of a simultaneously produced bubble-like CME and a jet-like CME in a solar event. Astrophys. J. 745, 164 (2012). doi:10.1088/0004-637X/745/2/164. 2012ApJ...745..164S ADSGoogle Scholar
  95. K. Shibata, Y. Ishido, L.W. Acton, K.T. Strong, T. Hirayama, Y. Uchida, A.H. McAllister, R. Matsumoto, S. Tsuneta, T. Shimizu, H. Hara, T. Sakurai, K. Ichimoto, Y. Nishino, Y. Ogawara, Observations of X-ray jets with the YOHKOH soft X-ray telescope. Publ. Astron. Soc. Jpn. 44, L173 (1992). 1992PASJ...44L.173S ADSGoogle Scholar
  96. K. Shibata, T. Nakamura, T. Matsumoto, K. Otsuji, T.J. Okamoto, N. Nishizuka, T. Kawate, H. Watanabe, S. Nagata, S. UeNo, R. Kitai, S. Nozawa, S. Tsuneta, Y. Suematsu, K. Ichimoto, T. Shimizu, Y. Katsukawa, T.D. Tarbell, T.E. Berger, B.W. Lites, R.A. Shine, A.M. Title, Chromospheric anemone jets as evidence of ubiquitous reconnection. Science 318, 1591 (2007). doi:10.1126/science.1146708. 2007Sci...318.1591S ADSGoogle Scholar
  97. H. Socas-Navarro, V. Martínez Pillet, D. Elmore, A. Pietarila, B.W. Lites, R. Manso Sainz, Spectro-polarimetric observations and non-lte modeling of Ellerman bombs. Sol. Phys. 235, 75 (2006). doi:10.1007/s11207-006-0049-x. 2006SoPh..235...75S ADSGoogle Scholar
  98. S.K. Solanki, P. Barthol, S. Danilovic, A. Feller, A. Gandorfer, J. Hirzberger, T.L. Riethmüller, M. Schüssler, J.A. Bonet, V. Martínez Pillet, J.C. del Toro Iniesta, V. Domingo, J. Palacios, M. Knölker, N. Bello González, T. Berkefeld, M. Franz, W. Schmidt, A.M. Title, SUNRISE: instrument, mission, data, and first results. Astrophys. J. Lett. 723, L127 (2010). doi:10.1088/2041-8205/723/2/L127. 2010ApJ...723L.127S ADSGoogle Scholar
  99. H.C. Spruit, Pressure equilibrium and energy balance of small photospheric fluxtubes. Sol. Phys. 50, 269 (1976). doi:10.1007/BF00155292. 1976SoPh...50..269S ADSGoogle Scholar
  100. H.C. Spruit, A.A. van Ballegooijen, Stability of toroidal flux tubes in stars. Astron. Astrophys. 106, 58 (1982). 1982A%26A...106...58S ADSMATHGoogle Scholar
  101. R.F. Stein, Å. Nordlund, On the formation of active regions. Astrophys. J. Lett. 753, L13 (2010). doi:10.1088/2041-8205/753/1/L13. 2012ApJ...753L..13S ADSGoogle Scholar
  102. A.C. Sterling, L.K. Harra, R.L. Moore, Fibrillar chromospheric spicule-like counterparts to an extreme-ultraviolet and soft X-ray blowout coronal jet. Astrophys. J. 722, 1644 (2010). doi:10.1088/0004-637X/722/2/1644. 2010ApJ...722.1644S ADSGoogle Scholar
  103. L.H. Strous, C. Zwaan, Phenomena in an emerging active region. II. Properties of the dynamic small-scale structure. Astrophys. J. 527, 435 (1999). doi:10.1086/308071. 1999ApJ...527..435S ADSGoogle Scholar
  104. L.H. Strous, G. Scharmer, T.D. Tarbell, A.M. Title, C. Zwaan, Phenomena in an emerging active region. I. Horizontal dynamics. Astron. Astrophys. 306, 947 (1996). 1996A%26A...306..947S ADSGoogle Scholar
  105. S. Toriumi, T. Yokoyama, Large-scale 3D MHD simulation on the solar flux emergence and the small-scale dynamic features in an active region. Astron. Astrophys. 539, A22 (2012). doi:10.1051/0004-6361/201118009. 2012A%26A...539A..22T ADSGoogle Scholar
  106. S. Toriumi, S. Ilonidis, T. Sekii, T. Yokoyama, Probing the shallow convection zone: rising motion of subsurface magnetic fields in the solar active region. Astrophys. J. Lett. 770, L11 (2013). doi:10.1088/2041-8205/770/1/L11. 2013ApJ...770L..11T ADSGoogle Scholar
  107. T. Török, G. Aulanier, B. Schmieder, K.K. Reeves, L. Golub, Fan-spine topology formation through two-step reconnection driven by twisted flux emergence. Astrophys. J. 704, 485 (2009). doi:10.1088/0004-637X/704/1/485. 2009ApJ...704..485T ADSGoogle Scholar
  108. G. Valori, L.M. Green, P. Démoulin, S. Vargas Domínguez, L. van Driel-Gesztelyi, A. Wallace, D. Baker, M. Fuhrmann, Nonlinear force-free extrapolation of emerging flux with a global twist and serpentine fine structures. Sol. Phys. 278, 73 (2012). doi:10.1007/s11207-011-9865-8. 2012SoPh..278...73V ADSGoogle Scholar
  109. L. van Driel-Gesztelyi, J.L. Culhane, Magnetic flux emergence, activity, eruptions and magnetic clouds: following magnetic field from the Sun to the heliosphere. Space Sci. Rev. 144, 351 (2009). doi:10.1007/s11214-008-9461-x. 2009SSRv..144..351V ADSGoogle Scholar
  110. G.J.M. Vissers, L.H.M. Rouppe van der Voort, R.J. Rutten, Ellerman bombs at high resolution. II. Triggering, visibility, and effect on upper atmosphere. Astrophys. J. 774, 32 (2013). doi:10.1088/0004-637X/774/1/32. 2013ApJ...774...32V ADSGoogle Scholar
  111. H. Watanabe, R. Kitai, K. Okamoto, K. Nishida, J. Kiyohara, S. Ueno, M. Hagino, T.T. Ishii, K. Shibata, Spectropolarimetric observation of an emerging flux region: triggering mechanisms of Ellerman bombs. Astrophys. J. 684, 736 (2008). doi:10.1086/590234. 2008ApJ...684..736W ADSGoogle Scholar
  112. Z. Xu, A. Lagg, S.K. Solanki, Magnetic structures of an emerging flux region in the solar photosphere and chromosphere. Astron. Astrophys. 520, A77 (2010). doi:10.1051/0004-6361/200913227. 2010A%26A...520A..77X ADSGoogle Scholar
  113. X.-Y. Xu, C. Fang, M.-D. Ding, D.-H. Gao, Numerical simulations of magnetic reconnection in the lower solar atmosphere. Res. Astron. Astrophys. 11, 225 (2011). doi:10.1088/1674-4527/11/2/010. 2011RAA....11..225X ADSGoogle Scholar
  114. T. Yokoyama, K. Shibata, Magnetic reconnection as the origin of X-ray jets and Hα surges on the Sun. Nature 375, 42 (1995). doi:10.1038/375042a0. 1995Natur.375...42Y ADSGoogle Scholar
  115. C. Zwaan, Elements and patterns in the solar magnetic field. Annu. Rev. Astron. Astrophys. 25, 83 (1987). doi:10.1146/annurev.aa.25.090187.000503. 1987ARA%26A..25...83Z ADSGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Observatoire de ParisLESIAMeudonFrance
  2. 2.School of Mathematics and StatisticsUniversity of St. AndrewsNorth Haugh, St. AndrewsUK

Personalised recommendations