Space Science Reviews

, Volume 186, Issue 1–4, pp 409–435 | Cite as

Solar Cycle in the Heliosphere and Cosmic Rays

  • Galina A. Bazilevskaya
  • Edward W. Cliver
  • Gennady A. Kovaltsov
  • Alan G. Ling
  • M. A. Shea
  • D. F. Smart
  • Ilya G. UsoskinEmail author


Manifestations of the 11-year solar cycle and longer time-scale variability in the heliosphere and cosmic rays are considered. We briefly review the cyclic variability of such heliospheric parameters as solar wind speed and density and heliospheric magnetic field, open magnetic flux and latitude variations of the heliospheric current sheet. It is discussed whether the local in-situ observation near Earth can represent the global 3D heliospheric pattern. Variability of cosmic rays near Earth provides an indirect useful tool to study the heliosphere. We discuss details of the heliospheric modulation of galactic cosmic rays, as recorded at and near Earth, and their relation to the heliospheric conditions in the outer heliosphere. On the other hand, solar energetic particles can serve as probes for explosive phenomena on the Sun and conditions in the corona and inner heliosphere. The occurrence of major solar proton events depicts an overall tendency to follow the solar cycle but individual events may appear at different phases of the solar cycle, as defined by various factors. The solar cycle in the heliosphere and cosmic rays depicts a complex pattern which includes different processes and cannot be described by a simple correlation with sunspot number.


Heliosphere Cosmic rays Solar energetic particles Solar activity 

List of Abbreviations


Astronomical unit (the mean Sun-Earth distance, ≈1.5×1011 m)


Coronal mass ejection


Cosmic rays


Ground-level enhancement of cosmic rays


Galactic cosmic rays


Heliospheric current sheet


Heliospheric magnetic field


Ionization chamber




Neutron monitor


Open magnetic flux


Solar energetic particles


Solar proton events


Sunspot number



This work is a result of the ISSI workshop “The Solar Activity Cycle: Physical Causes And Consequences”. G.B. acknowledges support of the RFBR grants 14-02-00905a, 14-02-10006k, 13-02-00585, 13-02-00931, 12-02-00215a and of the “Fundamental Properties of Matter and Astrophysics” Program of the Presidium of the RAS. E.W.C. acknowledges support from AFOSR Task 2301RDZ4. A.G.L. acknowledges support from AFRL contract FA8718-05-C-0036. G.K. was partly supported by the Academy of Finland. I.U.’s contribution is in the framework of the ReSoLVE Centre of Excellence (Academy of Finland, project no. 272157). Dr. Clifford Lopate is acknowledged for Huancayo/Haleakala NM data. Oulu NM data is available at


  1. N. Adams, A temporary increase in the neutron component of cosmic rays. Philos. Mag. 41, 503–505 (1950) Google Scholar
  2. O. Adriani, G.C. Barbarino, G.A. Bazilevskaya, R. Bellotti, M. Boezio, E.A. Bogomolov, M. Bongi, V. Bonvicini, S. Borisov, S. Bottai, A. Bruno, F. Cafagna, D. Campana, R. Carbone, P. Carlson, M. Casolino, G. Castellini, M.P. De Pascale, C. De Santis, N. De Simone, V. Di Felice, V. Formato, A.M. Galper, L. Grishantseva, A.V. Karelin, S.V. Koldashov, S. Koldobskiy, S.Y. Krutkov, A.N. Kvashnin, A. Leonov, V. Malakhov, L. Marcelli, A.G. Mayorov, W. Menn, V.V. Mikhailov, E. Mocchiutti, A. Monaco, N. Mori, N. Nikonov, G. Osteria, F. Palma, P. Papini, M. Pearce, P. Picozza, C. Pizzolotto, M. Ricci, S.B. Ricciarini, L. Rossetto, R. Sarkar, M. Simon, R. Sparvoli, P. Spillantini, Y.I. Stozhkov, A. Vacchi, E. Vannuccini, G. Vasilyev, S.A. Voronov, Y.T. Yurkin, J. Wu, G. Zampa, N. Zampa, V.G. Zverev, M.S. Potgieter, E.E. Vos, Time dependence of the proton flux measured by PAMELA during the 2006 July–2009 December solar minimum. Astrophys. J. 765, 91 (2013). doi: 10.1088/0004-637X/765/2/91 ADSGoogle Scholar
  3. H.S. Ahluwalia, M.M. Fikani, R.C. Ygbuhay, Rigidity dependence of 11 year cosmic ray modulation: implication for theories. J. Geophys. Res. 115, 07101 (2010). doi: 10.1029/2009JA014798 Google Scholar
  4. K. Alanko, I.G. Usoskin, K. Mursula, G.A. Kovaltsov, Heliospheric modulation strength: effective neutron monitor energy. Adv. Space Res. 32, 615–620 (2003) ADSGoogle Scholar
  5. K. Alanko-Huotari, K. Mursula, I.G. Usoskin, G.A. Kovaltsov, Global heliospheric parameters and cosmic-ray modulation: an empirical relation for the last decades. Sol. Phys. 238, 391–404 (2006). doi: 10.1007/s11207-006-0233-z ADSGoogle Scholar
  6. K. Alanko-Huotari, I.G. Usoskin, K. Mursula, G.A. Kovaltsov, Cyclic variations of the heliospheric tilt angle and cosmic ray modulation. Adv. Space Res. 40, 1064–1069 (2007a). doi: 10.1016/j.asr.2007.02.007 ADSGoogle Scholar
  7. K. Alanko-Huotari, I.G. Usoskin, K. Mursula, G.A. Kovaltsov, Stochastic simulation of cosmic ray modulation including a wavy heliospheric current sheet. J. Geophys. Res. 112, 08101 (2007b). doi: 10.1029/2007JA012280 Google Scholar
  8. A. Balogh, G. Erdös, The heliospheric magnetic field. Space Sci. Rev. 176, 177–215 (2013). doi: 10.1007/s11214-011-9835-3 ADSGoogle Scholar
  9. A. Balogh, L.J. Lanzerotti, S.T. Suess, The Heliosphere Through the Solar Activity Cycle (Springer, Chichester, 2008). doi: 10.1007/978-3-540-74302-6 Google Scholar
  10. G.A. Bazilevskaya, M.B. Krainev, V.S. Makhmutov, Y.I. Stozhkov, A.K. Svirzhevskaya, N.S. Svirzhevsky, Change in the rigidity dependence of the galactic cosmic ray modulation in 2008–2009. Adv. Space Res. 49, 784–790 (2012). doi: 10.1016/j.asr.2011.12.002 ADSGoogle Scholar
  11. G.A. Bazilevskaya, M.B. Krainev, A.K. Svirzhevskaya, N.S. Svirzhevsky, Galactic cosmic rays and parameters of the interplanetary medium near solar activity minima. Cosm. Res. 51, 29–36 (2013). doi: 10.1134/S0010952513010012 ADSGoogle Scholar
  12. J. Beer, S. Tobias, N. Weiss, An active Sun throughout the Maunder minimum. Sol. Phys. 181, 237–249 (1998) ADSGoogle Scholar
  13. J. Beer, K. McCracken, R. von Steiger, Cosmogenic Radionuclides: Theory and Applications in the Terrestrial and Space Environments (Springer, Berlin, 2012) Google Scholar
  14. A.-M. Berggren, J. Beer, G. Possnert, A. Aldahan, P. Kubik, M. Christl, S.J. Johnsen, J. Abreu, B.M. Vinther, A 600-year annual 10Be record from the NGRIP ice core, Greenland. Geophys. Res. Lett. 36, 11801 (2009) ADSGoogle Scholar
  15. G.E. Brueckner, R.A. Howard, M.J. Koomen, C.M. Korendyke, D.J. Michels, J.D. Moses, D.G. Socker, K.P. Dere, P.L. Lamy, A. Llebaria, M.V. Bout, R. Schwenn, G.M. Simnett, D.K. Bedford, C.J. Eyles, The Large Angle Spectroscopic Coronagraph (LASCO). Sol. Phys. 162, 357–402 (1995). doi: 10.1007/BF00733434 ADSGoogle Scholar
  16. L.F. Burlaga, M.L. Goldstein, F.B. McDonald, A.J. Lazarus, Cosmic ray modulation and turbulent interaction regions near 11 AU. J. Geophys. Res. 90, 12027–12039 (1985). doi: 10.1029/JA090iA12p12027 ADSGoogle Scholar
  17. R.A. Caballero-Lopez, H. Moraal, Limitations of the force field equation to describe cosmic ray modulation. J. Geophys. Res. 109, 01101 (2004). doi: 10.1029/2003JA010098 Google Scholar
  18. R.A. Caballero-Lopez, H. Moraal, Cosmic-ray yield and response functions in the atmosphere. J. Geophys. Res. 117 (2012). doi: 10.1029/2012JA017794
  19. H.V. Cane, D.V. Reames, T.T. von Rosenvinge, The role of interplanetary shocks in the longitude distribution of solar energetic particles. J. Geophys. Res. 93, 9555–9567 (1988). doi: 10.1029/JA093iA09p09555 ADSGoogle Scholar
  20. H.V. Cane, G. Wibberenz, I.G. Richardson, T.T. von Rosenvinge, Cosmic ray modulation and the solar magnetic field. Geophys. Res. Lett. 26, 565–568 (1999). doi: 10.1029/1999GL900032 ADSGoogle Scholar
  21. A.N. Charakhchyan, Reviews of topical problems: investigation of stratosphere cosmic ray intensity fluctuations induced by processes on the Sun. Sov. Phys. Usp. 7, 358–374 (1964) ADSGoogle Scholar
  22. F. Clette, L. Svalgaard, J.M. Vaquero, E.W. Cliver, Revisiting the sunspot number: a 400-year perspective on the solar cycle. Space Sci. Rev. (2014, this issue). doi: 10.1007/s11214-014-0074-2 Google Scholar
  23. E.W. Cliver, The unusual relativistic solar proton events of 1979 August 21 and 1981 May 10. Astrophys. J. 639, 1206–1217 (2006). doi: 10.1086/499765 ADSGoogle Scholar
  24. E.W. Cliver, A revised classification scheme for solar energetic particle events. Cent. Eur. Astrophys. Bull. 33, 253–270 (2009a) ADSGoogle Scholar
  25. E.W. Cliver, History of research on solar energetic particle (SEP) events: the evolving paradigm, in IAU Symposium, ed. by N. Gopalswamy, D.F. Webb, vol. 257 (2009b), pp. 401–412. doi: 10.1017/S1743921309029639 Google Scholar
  26. E.W. Cliver, The extended cycle of solar activity and the Sun’s 22-yr magnetic cycle. Space Sci. Rev. (2014, this issue). doi: 10.1007/s11214-014-0093-2 Google Scholar
  27. E.W. Cliver, A.G. Ling, 22 year patterns in the relationship of sunspot number and tilt angle to cosmic-ray intensity. Astrophys. J. Lett. 551, 189–192 (2001a). doi: 10.1086/320022 ADSGoogle Scholar
  28. E.W. Cliver, A.G. Ling, Coronal mass ejections, open magnetic flux, and cosmic-ray modulation. Astrophys. J. 556, 432–437 (2001b). doi: 10.1086/321570 ADSGoogle Scholar
  29. E.W. Cliver, A.G. Ling, The floor in the solar wind magnetic field revisited. Sol. Phys. 274, 285–301 (2011). doi: 10.1007/s11207-010-9657-6 ADSGoogle Scholar
  30. E.W. Cliver, S.W. Kahler, M.A. Shea, D.F. Smart, Injection onsets of 2 GeV protons, 1 MeV electrons, and 100 keV electrons in solar cosmic ray flares. Astrophys. J. 260, 362–370 (1982). doi: 10.1086/160261 ADSGoogle Scholar
  31. E.W. Cliver, V. Boriakoff, K.H. Bounar, Geomagnetic activity and the solar wind during the Maunder minimum. Geophys. Res. Lett. 25, 897–900 (1998). doi: 10.1029/98GL00500 ADSGoogle Scholar
  32. E.W. Cliver, I.G. Richardson, A.G. Ling, Solar drivers of 11-yr and long-term cosmic ray modulation. Space Sci. Rev. 176, 3–19 (2013). doi: 10.1007/s11214-011-9746-3 ADSGoogle Scholar
  33. E.W. Cliver, A.J. Tylka, W.F. Dietrich, A.G. Ling, On a solar origin for the cosmogenic nuclide event of 775 AD Astrophys. J. 781, 32 (2014). doi: 10.1088/0004-637X/781/1/32 ADSGoogle Scholar
  34. A.Z. Dolginov, I. Toptygin, Multiple scattering of particles in a magnetic field with random inhomogeneities. Sov. Phys. JETP 24, 1195 (1967) ADSGoogle Scholar
  35. L.I. Dorman, Cosmic Ray Interactions, Propagation, and Acceleration in Space Plasmas (Kluwer Academic, Dordrecht, 2006) Google Scholar
  36. S.P. Duggal, Relativistic solar cosmic rays. Rev. Geophys. Space Phys. 17, 1021–1058 (1979). doi: 10.1029/RG017i005p01021 ADSGoogle Scholar
  37. J.A. Eddy, The Maunder minimum. Science 192, 1189–1202 (1976) ADSGoogle Scholar
  38. A.G. Emslie, B.R. Dennis, A.Y. Shih, P.C. Chamberlin, R.A. Mewaldt, C.S. Moore, G.H. Share, A. Vourlidas, B.T. Welsch, Global energetics of thirty-eight large solar eruptive events. Astrophys. J. 759, 71 (2012). doi: 10.1088/0004-637X/759/1/71 ADSGoogle Scholar
  39. S.E.S. Ferreira, M.S. Potgieter, Long-term cosmic-ray modulation in the heliosphere. Astrophys. J. 603, 744–752 (2004). doi: 10.1086/381649 ADSGoogle Scholar
  40. L.A. Fisk, Motion of the footpoints of heliospheric magnetic field lines at the Sun: implications for recurrent energetic particle events at high heliographic latitudes. J. Geophys. Res. 101, 15547–15554 (1996). doi: 10.1029/96JA01005 ADSGoogle Scholar
  41. S.E. Forbush, Three unusual cosmic-ray increases possibly due to charged particles from the Sun. Phys. Rev. 70, 771–772 (1946). doi: 10.1103/PhysRev.70.771 ADSGoogle Scholar
  42. S.E. Forbush, World-wide cosmic-ray variations, 1937–1952. J. Geophys. Res. 59, 525–542 (1954) ADSGoogle Scholar
  43. S.E. Forbush, T.B. Stinchcomb, M. Schein, The extraordinary increase of cosmic-ray intensity on November 19, 1949. Phys. Rev. 79, 501–504 (1950). doi: 10.1103/PhysRev.79.501 ADSGoogle Scholar
  44. J. Giacalone, Cosmic-ray transport and interaction with shocks. Space Sci. Rev. 176, 73–88 (2013). doi: 10.1007/s11214-011-9763-2 ADSGoogle Scholar
  45. S.E. Gibson, G. de Toma, B. Emery, P. Riley, L. Zhao, Y. Elsworth, R.J. Leamon, J. Lei, S. McIntosh, R.A. Mewaldt, B.J. Thompson, D. Webb, The whole heliosphere interval in the context of a long and structured solar minimum: an overview from Sun to Earth. Sol. Phys. 274, 5–27 (2011). doi: 10.1007/s11207-011-9921-4 ADSGoogle Scholar
  46. L.J. Gleeson, W.I. Axford, Cosmic rays in the interplanetary medium. Astrophys. J. Lett. 149, 115 (1967). doi: 10.1086/180070 ADSGoogle Scholar
  47. L.J. Gleeson, W.I. Axford, Solar modulation of galactic cosmic rays. Astrophys. J. 154, 1011–1026 (1968) ADSGoogle Scholar
  48. M.N. Gnevyshev, On the 11-years cycle of solar activity. Sol. Phys. 1, 107–120 (1967). doi: 10.1007/BF00150306 ADSGoogle Scholar
  49. M.N. Gnevyshev, Essential features of the 11-year solar cycle. Sol. Phys. 51, 175–183 (1977). doi: 10.1007/BF00240455 ADSGoogle Scholar
  50. N. Gopalswamy, S. Yashiro, G. Michałek, M.L. Kaiser, R.A. Howard, D.V. Reames, R. Leske, T. von Rosenvinge, Interacting coronal mass ejections and solar energetic particles. Astrophys. J. Lett. 572, 103–107 (2002). doi: 10.1086/341601 ADSGoogle Scholar
  51. N. Gopalswamy, S. Yashiro, S. Krucker, G. Stenborg, R.A. Howard, Intensity variation of large solar energetic particle events associated with coronal mass ejections. J. Geophys. Res. 109, 12105 (2004). doi: 10.1029/2004JA010602 Google Scholar
  52. N. Gopalswamy, S. Yashiro, G. Michalek, G. Stenborg, A. Vourlidas, S. Freeland, R. Howard, The SOHO/LASCO CME catalog. Earth Moon Planets 104, 295–313 (2009). doi: 10.1007/s11038-008-9282-7 ADSGoogle Scholar
  53. N. Gopalswamy, H. Xie, S. Yashiro, S. Akiyama, P. Mäkelä, I.G. Usoskin, Properties of ground level enhancement events and the associated solar eruptions during solar cycle 23. Space Sci. Rev. 171, 23–60 (2012). doi: 10.1007/s11214-012-9890-4 ADSGoogle Scholar
  54. N. Gopalswamy, H. Xie, S. Akiyama, S. Yashiro, I.G. Usoskin, J.M. Davila, The first ground level enhancement event of solar cycle 24: direct observation of shock formation and particle release heights. Astrophys. J. Lett. 765, 30 (2013). doi: 10.1088/2041-8205/765/2/L30 ADSGoogle Scholar
  55. N. Gopalswamy, S. Akiyama, S. Yashiro, G. Michalek, H. Xie, P. Mäkelä, Geophys. Res. Lett. (2014, submitted) Google Scholar
  56. P.K.F. Grieder, Cosmic Rays at Earth (Elsevier Science, Amsterdam, 2001) Google Scholar
  57. D.H. Hathaway, The solar cycle. Living Rev. Sol. Phys. 7(1) (2010).
  58. B. Heber, Cosmic rays through the solar hale cycle. Insights from Ulysses. Space Sci. Rev. 176, 265–278 (2013). doi: 10.1007/s11214-011-9784-x ADSGoogle Scholar
  59. B. Heber, M.S. Potgieter, Cosmic rays at high heliolatitudes. Space Sci. Rev. 127, 117–194 (2006). doi: 10.1007/s11214-006-9085-y ADSGoogle Scholar
  60. B. Heber, A. Kopp, J. Gieseler, R. Müller-Mellin, H. Fichtner, K. Scherer, M.S. Potgieter, S.E.S. Ferreira, Modulation of galactic cosmic ray protons and electrons during an unusual solar minimum. Astrophys. J. 699, 1956–1963 (2009). doi: 10.1088/0004-637X/699/2/1956 ADSGoogle Scholar
  61. H.S. Hudson, Global properties of solar flares. Space Sci. Rev. 158, 5–41 (2011). doi: 10.1007/s11214-010-9721-4 ADSGoogle Scholar
  62. T. Jämsén, I.G. Usoskin, T. Räihä, J. Sarkamo, G.A. Kovaltsov, Case study of Forbush decreases: energy dependence of the recovery. Adv. Space Res. 40, 342–347 (2007). doi: 10.1016/j.asr.2007.02.025 ADSGoogle Scholar
  63. J.R. Jokipii, Cosmic-ray propagation. I. Charged particles in a random magnetic field. Astrophys. J. 146, 480 (1966). doi: 10.1086/148912 ADSGoogle Scholar
  64. J.R. Jokipii, E.H. Levy, Effects of particle drifts on the solar modulation of galactic cosmic rays. Astrophys. J. Lett. 213, 85–88 (1977). doi: 10.1086/182415 ADSGoogle Scholar
  65. S.W. Kahler, The correlation between solar energetic particle peak intensities and speeds of coronal mass ejections: effects of ambient particle intensities and energy spectra. J. Geophys. Res. 106, 20947–20956 (2001). doi: 10.1029/2000JA002231 ADSGoogle Scholar
  66. S.W. Kahler, Prospects for future enhanced solar energetic particle events and the effects of weaker heliospheric magnetic fields. J. Geophys. Res. 113, 11102 (2008). doi: 10.1029/2008JA013168 Google Scholar
  67. S.W. Kahler, A. Vourlidas, Fast coronal mass ejection environments and the production of solar energetic particle events. J. Geophys. Res. 110, 12-01 (2005). doi: 10.1029/2005JA011073 Google Scholar
  68. G.A. Kovaltsov, I.G. Usoskin, E.W. Cliver, W.F. Dietrich, A.J. Tylka, Relation between >200 MeV solar energetic protons and atmospheric production of cosmogenic radionuclides. Sol. Phys. (2014). doi: 10.1007/s11207-014-0093-0 Google Scholar
  69. M.B. Krainev, M.S. Kalinin, On the description of the 11- and 22-year cycles in the GCR intensity. J. Phys. Conf. Ser. 409(1), 012155 (2013). doi: 10.1088/1742-6596/409/1/012155 ADSGoogle Scholar
  70. M.B. Krainev, G.A. Bazilevskaya, S.K. Gerasimova, P.A. Krivoshapkin, G.F. Krymsky, S.A. Starodubtsev, Y.I. Stozhkov, N.S. Svirzhevsky, On the status of the sunspot and magnetic cycles in the galactic cosmic ray intensity. J. Phys. Conf. Ser. 409(1), 012016 (2013). doi: 10.1088/1742-6596/409/1/012016 ADSGoogle Scholar
  71. G.F. Krymskij, Modulation of Cosmic Rays in Interplanetary Space (1969) Google Scholar
  72. I. Lange, S.E. Forbush, Further note on the effect on cosmic-ray intensity of the magnetic storm of March 1, 1942. Terr. Magn. Atmos. Electr. 47, 331 (1942). doi: 10.1029/TE047i004p00331 Google Scholar
  73. M. Lockwood, Reconstruction and prediction of variations in the open solar magnetic flux and interplanetary conditions. Living Rev. Sol. Phys. 10, 4 (2013). doi: 10.12942/lrsp-2013-4 ADSGoogle Scholar
  74. M. Lockwood, M.J. Owens, Centennial changes in the heliospheric magnetic field and open solar flux: the consensus view from geomagnetic data and cosmogenic isotopes and its implications. J. Geophys. Res. 116, 04109 (2011). doi: 10.1029/2010JA016220 Google Scholar
  75. M. Lockwood, M.J. Owens, Implications of the recent low solar minimum for the solar wind during the Maunder minimum. Astrophys. J. Lett. 781, 7 (2014). doi: 10.1088/2041-8205/781/1/L7 ADSGoogle Scholar
  76. M. Lockwood, R. Stamper, M.N. Wild, A doubling of the Sun’s coronal magnetic field during the past 100 years. Nature 399, 437–439 (1999). doi: 10.1038/20867 ADSGoogle Scholar
  77. M. Lockwood, A.P. Rouillard, I.D. Finch, The rise and fall of open solar flux during the current Grand Solar Maximum. Astrophys. J. 700, 937–944 (2009). doi: 10.1088/0004-637X/700/2/937 ADSGoogle Scholar
  78. H. Mavromichalaki, A. Papaioannou, C. Plainaki, C. Sarlanis, G. Souvatzoglou, M. Gerontidou, M. Papailiou, E. Eroshenko, A. Belov, V. Yanke, E.O. Flückiger, R. Bütikofer, M. Parisi, M. Storini, K.-L. Klein, N. Fuller, C.T. Steigies, O.M. Rother, B. Heber, R.F. Wimmer-Schweingruber, K. Kudela, I. Strharsky, R. Langer, I. Usoskin, A. Ibragimov, A. Chilingaryan, G. Hovsepyan, A. Reymers, A. Yeghikyan, O. Kryakunova, E. Dryn, N. Nikolayevskiy, L. Dorman, L. Pustil’Nik, Applications and usage of the real-time Neutron Monitor database. Adv. Space Res. 47, 2210–2222 (2011). doi: 10.1016/j.asr.2010.02.019 ADSGoogle Scholar
  79. D.J. McComas, R.W. Ebert, H.A. Elliott, B.E. Goldstein, J.T. Gosling, N.A. Schwadron, R.M. Skoug, Weaker solar wind from the polar coronal holes and the whole Sun. Geophys. Res. Lett. 35, 18103 (2008). doi: 10.1029/2008GL034896 ADSGoogle Scholar
  80. D.J. McComas, D. Alexashov, M. Bzowski, H. Fahr, J. Heerikhuisen, V. Izmodenov, M.A. Lee, E. Möbius, N. Pogorelov, N.A. Schwadron, G.P. Zank, The heliosphere’s interstellar interaction: no bow shock. Science 336, 1291 (2012). doi: 10.1126/science.1221054 ADSGoogle Scholar
  81. D.J. McComas, N. Angold, H.A. Elliott, G. Livadiotis, N.A. Schwadron, R.M. Skoug, C.W. Smith, Weakest solar wind of the space age and the current “mini” solar maximum. Astrophys. J. 779, 2 (2013). doi: 10.1088/0004-637X/779/1/2 ADSGoogle Scholar
  82. K.G. McCracken, Heliomagnetic field near Earth, 1428–2005. J. Geophys. Res. 112, 09106 (2007a). doi: 10.1029/2006JA012119 Google Scholar
  83. K.G. McCracken, High frequency of occurrence of large solar energetic particle events prior to 1958 and a possible repetition in the near future. Space Weather 5, 7004 (2007b). doi: 10.1029/2006SW000295 ADSGoogle Scholar
  84. K.G. McCracken, G.A.M. Dreschhoff, D.F. Smart, M.A. Shea, A study of the frequency of occurrence of large-fluence solar proton events and the strength of the interplanetary magnetic field. Sol. Phys. 224, 359–372 (2004). doi: 10.1007/s11207-005-5257-2 ADSGoogle Scholar
  85. K.G. McCracken, G.A.M. Dreschhoff, E.J. Zeller, D.F. Smart, M.A. Shea, Solar cosmic ray events for the period 1561–1994: 1. Identification in polar ice, 1561–1950. J. Geophys. Res. 106, 21585–21598 (2001) ADSGoogle Scholar
  86. K.G. McCracken, H. Moraal, M.A. Shea, The high-energy impulsive ground-level enhancement. Astrophys. J. 761, 101 (2012). doi: 10.1088/0004-637X/761/2/101 ADSGoogle Scholar
  87. F.B. McDonald, Cosmic-ray modulation in the heliosphere a phenomenological study. Space Sci. Rev. 83, 33–50 (1998) ADSGoogle Scholar
  88. F.B. McDonald, W.R. Webber, D.V. Reames, Unusual time histories of galactic and anomalous cosmic rays at 1 AU over the deep solar minimum of cycle 23/24. Geophys. Res. Lett. 371, 18101 (2010). doi: 10.1029/2010GL044218 ADSGoogle Scholar
  89. R.A. Mewaldt, Cosmic rays in the heliosphere: requirements for future observations. Space Sci. Rev. 176, 365–390 (2013). doi: 10.1007/s11214-012-9922-0 ADSGoogle Scholar
  90. R.A. Mewaldt, C.M.S. Cohen, J. Giacalone, G.M. Mason, E.E. Chollet, M.I. Desai, D.K. Haggerty, M.D. Looper, R.S. Selesnick, A. Vourlidas, How efficient are coronal mass ejections at accelerating solar energetic particles?, in AIP Conf. Ser., ed. by G. Li, Q. Hu, O. Verkhoglyadova, G.P. Zank, R.P. Lin, J. Luhmann, vol. 1039 (2008), pp. 111–117. doi: 10.1063/1.2982431 Google Scholar
  91. R.A. Mewaldt, A.J. Davis, K.A. Lave, R.A. Leske, E.C. Stone, M.E. Wiedenbeck, W.R. Binns, E.R. Christian, A.C. Cummings, G.A. de Nolfo, M.H. Israel, A.W. Labrador, T.T. von Rosenvinge, Record-setting cosmic-ray intensities in 2009 and 2010. Astrophys. J. Lett. 723, 1–6 (2010). doi: 10.1088/2041-8205/723/1/L1 ADSGoogle Scholar
  92. A.L. Mishev, L.G. Kocharov, I.G. Usoskin, Analysis of the ground level enhancement on 17 May 2012 using data from the global neutron monitor network. J. Geophys. Res. 119, 670–679 (2014). doi: 10.1002/2013JA019253 Google Scholar
  93. H. Miyahara, K. Masuda, Y. Muraki, H. Furuzawa, H. Menjo, T. Nakamura, Cyclicity of solar activity during the Maunder minimum deduced from radiocarbon content. Sol. Phys. 224, 317–322 (2004). doi: 10.1007/s11207-005-6501-5 ADSGoogle Scholar
  94. F. Miyake, K. Nagaya, K. Masuda, T. Nakamura, A signature of cosmic-ray increase in ad 774–775 from tree rings in Japan. Nature 486, 240–242 (2012). doi: 10.1038/nature11123 ADSGoogle Scholar
  95. F. Miyake, K. Masuda, T. Nakamura, Lengths of Schwabe cycles in the seventh and eighth centuries indicated by precise measurement of carbon-14 content in tree rings. J. Geophys. Res. 118, 1–5 (2013). doi: 10.1002/2012JA018320 Google Scholar
  96. H. Moraal, P.H. Stoker, Long-term neutron monitor observations and the 2009 cosmic ray maximum. J. Geophys. Res. 115, 12109 (2010). doi: 10.1029/2010JA015413 Google Scholar
  97. H. Moraal, A. Belov, J.M. Clem, Design and co-ordination of multi-station international neutron monitor networks. Space Sci. Rev. 93, 285–303 (2000). doi: 10.1023/A:1026504814360 ADSGoogle Scholar
  98. K. Mursula, T. Hiltula, Bashful ballerina: southward shifted heliospheric current sheet. Geophys. Res. Lett. 30, 2135 (2003). doi: 10.1029/2003GL018201 ADSGoogle Scholar
  99. H.V. Neher, Cosmic-ray particles that changed from 1954 to 1958 to 1965. J. Geophys. Res. 72, 1527 (1967). doi: 10.1029/JZ072i005p01527 ADSGoogle Scholar
  100. H.V. Neher, Cosmic rays at high latitudes and altitudes covering four solar maxima J. Geophys. Res. 76, 1637–1651 (1971). doi: 10.1029/JA076i007p01637 ADSGoogle Scholar
  101. H.W. Newton, The Face of the Sun (Penguin Books, Harmondsworth, 1958) Google Scholar
  102. M.J. Owens, R.J. Forsyth, The heliospheric magnetic field. Living Rev. Sol. Phys. 10, 5 (2013). doi: 10.12942/lrsp-2013-5 ADSGoogle Scholar
  103. M.J. Owens, I. Usoskin, M. Lockwood, Heliospheric modulation of galactic cosmic rays during grand solar minima: past and future variations. Geophys. Res. Lett. 39, 19102 (2012). doi: 10.1029/2012GL053151 ADSGoogle Scholar
  104. E.N. Parker, The passage of energetic charged particles through interplanetary space. Planet. Space Sci. 13, 9–49 (1965) ADSGoogle Scholar
  105. M.I. Pishkalo, Reconstruction of the heliospheric current sheet tilts using sunspot numbers. Sol. Phys. 233, 277–290 (2006). doi: 10.1007/s11207-006-1981-5 ADSGoogle Scholar
  106. N.V. Pogorelov, S.T. Suess, S.N. Borovikov, R.W. Ebert, D.J. McComas, G.P. Zank, Three-dimensional features of the outer heliosphere due to coupling between the interstellar and interplanetary magnetic fields. IV. Solar cycle model based on Ulysses observations. Astrophys. J. 772, 2 (2013). doi: 10.1088/0004-637X/772/1/2 ADSGoogle Scholar
  107. M. Potgieter, Solar modulation of cosmic rays. Living Rev. Sol. Phys. 10, 3 (2013). doi: 10.12942/lrsp-2013-3 ADSGoogle Scholar
  108. M.S. Potgieter, R. Strauss, At what rigidity does the solar modulation of galactic cosmic rays begin? in 33rd International Cosmic Ray Conference, Rio de Janeiro, Brazil (2013), p. 156 Google Scholar
  109. M.S. Potgieter, E.E. Vos, M. Boezio, N. De Simone, V. Di Felice, V. Formato, Modulation of galactic protons in the heliosphere during the unusual solar minimum of 2006 to 2009. Sol. Phys. 289, 391–406 (2014). doi: 10.1007/s11207-013-0324-6 ADSGoogle Scholar
  110. D.V. Reames, Particle acceleration at the Sun and in the heliosphere. Space Sci. Rev. 90, 413–491 (1999). doi: 10.1023/A:1005105831781 ADSGoogle Scholar
  111. D.V. Reames, The two sources of solar energetic particles. Space Sci. Rev. 53–92 (2013). doi: 10.1007/s11214-013-9958-9
  112. I.G. Richardson, Geomagnetic activity during the rising phase of solar cycle 24. J. Space Weather Space Clim. 3(26), 260000 (2013). doi: 10.1051/swsc/2013031 Google Scholar
  113. J.D. Richardson, N.A. Schwadron, in The Limits of Our Solar System, ed. by M.A. Barucci, H. Boehnhardt, D.P. Cruikshank, A. Morbidelli, R. Dotson (University of Arizona Press, Tucson, 2008), pp. 443–463 Google Scholar
  114. I.G. Richardson, H.V. Cane, E.W. Cliver, Sources of geomagnetic activity during nearly three solar cycles (1972–2000). J. Geophys. Res. 107, 1187 (2002). doi: 10.1029/2001JA000504 Google Scholar
  115. M.A. Shea, D.F. Smart, A summary of major solar proton events. Sol. Phys. 127, 297–320 (1990) ADSGoogle Scholar
  116. M.A. Shea, D.F. Smart, Significant proton events of solar cycle 22 and a comparison with events of previous solar cycles. Adv. Space Res. 14, 631–638 (1994). doi: 10.1016/0273-1177(94)90518-5 ADSGoogle Scholar
  117. M.A. Shea, D.F. Smart, History of solar proton event observations. Nucl. Phys. B, Proc. Suppl. 39, 16–25 (1995) ADSGoogle Scholar
  118. M.A. Shea, D.F. Smart, Space weather and the ground-level solar proton events of the 23rd solar cycle. Space Sci. Rev. 171, 161–188 (2012). doi: 10.1007/s11214-012-9923-z ADSGoogle Scholar
  119. Y. Shikaze, S. Haino, K. Abe, H. Fuke, T. Hams, K.C. Kim, Y. Makida, S. Matsuda, J.W. Mitchell, A.A. Moiseev, J. Nishimura, M. Nozaki, S. Orito, J.F. Ormes, T. Sanuki, M. Sasaki, E.S. Seo, R.E. Streitmatter, J. Suzuki, K. Tanaka, T. Yamagami, A. Yamamoto, T. Yoshida, K. Yoshimura, Measurements of 0.2 20 GeV/n cosmic-ray proton and helium spectra from 1997 through 2002 with the BESS spectrometer. Astropart. Phys. 28, 154–167 (2007). doi: 10.1016/j.astropartphys.2007.05.001 ADSGoogle Scholar
  120. J.A. Simpson, Cosmic radiation neutron intensity monitor, in Annals of the Int. Geophysical Year IV, Part VII (Pergamon Press, London, 1958), p. 351 Google Scholar
  121. J.A. Simpson, The cosmic ray nucleonic component: the invention and scientific uses of the Neutron Monitor—(keynote lecture). Space Sci. Rev. 93, 11–32 (2000). doi: 10.1023/A:1026567706183 ADSGoogle Scholar
  122. D.F. Smart, M.A. Shea, H.E. Spence, L. Kepko, Two groups of extremely large >30 MeV solar proton fluence events. Adv. Space Res. 37, 1734–1740 (2006). doi: 10.1016/j.asr.2005.09.008 ADSGoogle Scholar
  123. S.K. Solanki, M. Schüssler, M. Fligge, Evolution of the Sun’s large-scale magnetic field since the Maunder minimum. Nature 408, 445–447 (2000) ADSGoogle Scholar
  124. S.K. Solanki, I.G. Usoskin, B. Kromer, M. Schüssler, J. Beer, Unusual activity of the Sun during recent decades compared to the previous 11,000 years. Nature 431, 1084–1087 (2004). doi: 10.1038/nature02995 ADSGoogle Scholar
  125. F. Steinhilber, J.A. Abreu, J. Beer, K.G. McCracken, Interplanetary magnetic field during the past 9300 years inferred from cosmogenic radionuclides. J. Geophys. Res. 115, 01104 (2010). doi: 10.1029/2009JA014193 Google Scholar
  126. E.C. Stone, A.C. Cummings, F.B. McDonald, B.C. Heikkila, N. Lal, W.R. Webber, Voyager 1 explores the termination shock region and the heliosheath beyond. Science 309, 2017–2020 (2005). doi: 10.1126/science.1117684 ADSGoogle Scholar
  127. E.C. Stone, A.C. Cummings, F.B. McDonald, B.C. Heikkila, N. Lal, W.R. Webber, An asymmetric solar wind termination shock. Nature 454, 71–74 (2008). doi: 10.1038/nature07022 ADSGoogle Scholar
  128. E.C. Stone, A.C. Cummings, F.B. McDonald, B.C. Heikkila, N. Lal, W.R. Webber, Voyager 1 observes low-energy galactic cosmic rays in a region depleted of heliospheric ions. Science 341, 150–153 (2013). doi: 10.1126/science.1236408 ADSGoogle Scholar
  129. Y.I. Stozhkov, N.S. Svirzhevsky, G.A. Bazilevskaya, A.N. Kvashnin, V.S. Makhmutov, A.K. Svirzhevskaya, Long-term (50 years) measurements of cosmic ray fluxes in the atmosphere. Adv. Space Res. 44, 1124–1137 (2009). doi: 10.1016/j.asr.2008.10.038 ADSGoogle Scholar
  130. R.D. Strauss, M.S. Potgieter, S.E.S. Ferreira, Modeling ground and space based cosmic ray observations. Adv. Space Res. 49, 392–407 (2012a). doi: 10.1016/j.asr.2011.10.006 ADSGoogle Scholar
  131. R.D. Strauss, M.S. Potgieter, I. Büsching, A. Kopp, Modelling heliospheric current sheet drift in stochastic cosmic ray transport models. Astrophys. Space Sci. 339, 223–236 (2012b). doi: 10.1007/s10509-012-1003-z ADSGoogle Scholar
  132. L. Svalgaard, E.W. Cliver, Heliospheric magnetic field 1835–2009. J. Geophys. Res. 115, 09111 (2010). doi: 10.1029/2009JA015069 Google Scholar
  133. Z. S̆vestka, Proton flares before 1956. Bull. Astron. Inst. Czechoslov. 17, 262–270 (1966) ADSGoogle Scholar
  134. Z. S̆vestka, P. Simon (eds.), Catalog of Solar Particle Events 1955–1969. Astrophysics and Space Science Library, vol. 49 (1975) Google Scholar
  135. N. Thakur, N. Gopalswamy, H. Xie, P. Makelä, S. Yashiro, S. Akiyama, J.M. Davila, Ground level enhancement in the 2014 January 6 solar energetic particle event. Astrophys. J. Lett. 790, 13 (2014) ADSGoogle Scholar
  136. S. Ting, The alpha magnetic spectrometer on the International Space Station. Nucl. Phys. B, Proc. Suppl. 243, 12–24 (2013). doi: 10.1016/j.nuclphysbps.2013.09.028 ADSGoogle Scholar
  137. A. Tylka, W. Dietrich, A new and comprehensive analysis of proton spectra in ground-level enhanced (GLE) solar particle events, in 31th International Cosmic Ray Conference (Universal Academy Press, Lodź, 2009) Google Scholar
  138. A.J. Tylka, M.A. Lee, A model for spectral and compositional variability at high energies in large, gradual solar particle events. Astrophys. J. 646, 1319–1334 (2006). doi: 10.1086/505106 ADSGoogle Scholar
  139. A.J. Tylka, C.M.S. Cohen, W.F. Dietrich, M.A. Lee, C.G. Maclennan, R.A. Mewaldt, C.K. Ng, D.V. Reames, Shock geometry, seed populations, and the origin of variable elemental composition at high energies in large gradual solar particle events. Astrophys. J. 625, 474–495 (2005). doi: 10.1086/429384 ADSGoogle Scholar
  140. I.G. Usoskin, A history of solar activity over millennia. Living Rev. Sol. Phys. 10, 1 (2013). doi: 10.12942/lrsp-2013-1 ADSGoogle Scholar
  141. I.G. Usoskin, G.A. Kovaltsov, Occurrence of extreme solar particle events: assessment from historical proxy data. Astrophys. J. 757, 92 (2012). doi: 10.1088/0004-637X/757/1/92 ADSGoogle Scholar
  142. I.G. Usoskin, H. Kananen, K. Mursula, P. Tanskanen, G.A. Kovaltsov, Correlative study of solar activity and cosmic ray intensity. J. Geophys. Res. 103, 9567–9574 (1998). doi: 10.1029/97JA03782 ADSGoogle Scholar
  143. I.G. Usoskin, K. Mursula, G.A. Kovaltsov, Heliospheric modulation of cosmic rays and solar activity during the Maunder minimum. J. Geophys. Res. 106, 16039–16046 (2001). doi: 10.1029/2000JA000105 ADSGoogle Scholar
  144. I.G. Usoskin, K. Alanko-Huotari, G.A. Kovaltsov, K. Mursula, Heliospheric modulation of cosmic rays: monthly reconstruction for 1951–2004. J. Geophys. Res. 110 (2005). doi: 10.1029/2005JA011250
  145. I.G. Usoskin, S.K. Solanki, G.A. Kovaltsov, Grand minima and maxima of solar activity: new observational constraints. Astron. Astrophys. 471, 301–309 (2007). doi: 10.1051/0004-6361:20077704 ADSGoogle Scholar
  146. I.G. Usoskin, G.A. Bazilevskaya, G.A. Kovaltsov, Solar modulation parameter for cosmic rays since 1936 reconstructed from ground-based neutron monitors and ionization chambers. J. Geophys. Res. 116, 02104 (2011). doi: 10.1029/2010JA016105 Google Scholar
  147. I.G. Usoskin, B. Kromer, F. Ludlow, J. Beer, M. Friedrich, G.A. Kovaltsov, S.K. Solanki, L. Wacker, The AD775 cosmic event revisited: the Sun is to blame. Astron. Astrophys. 552, 3 (2013). doi: 10.1051/0004-6361/201321080 ADSGoogle Scholar
  148. I.G. Usoskin, G. Hulot, Y. Gallet, R. Roth, A. Licht, F. Joos, G.A. Kovaltsov, E. Thébault, A. Khokhlov, Evidence for distinct modes of solar activity. Astron. Astrophys. 562, 10 (2014). doi: 10.1051/0004-6361/201423391 ADSGoogle Scholar
  149. L.E.A. Vieira, S.K. Solanki, Evolution of the solar magnetic flux on time scales of years to millenia. Astron. Astrophys. 509, 100 (2010). doi: 10.1051/0004-6361/200913276 ADSGoogle Scholar
  150. K.P. Wenzel, R.G. Marsden, D.E. Page, E.J. Smith, The ULYSSES mission. Astron. Astrophys. Suppl. Ser. 92, 207–219 (1992) ADSGoogle Scholar
  151. E.W. Wolff, M. Bigler, M.A.J. Curran, J.E. Dibb, M.M. Frey, M. Legrand, J.R. McConnell, The Carrington event not observed in most ice core nitrate records. Geophys. Res. Lett. 39, 08503 (2012). doi: 10.1029/2012GL051603 ADSGoogle Scholar
  152. B. Zieger, M. Opher, N.A. Schwadron, D.J. McComas, G. Tóth, A slow bow shock ahead of the heliosphere. Geophys. Res. Lett. 40, 2923–2928 (2013). doi: 10.1002/grl.50576 ADSGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Galina A. Bazilevskaya
    • 1
  • Edward W. Cliver
    • 2
    • 3
  • Gennady A. Kovaltsov
    • 4
  • Alan G. Ling
    • 5
  • M. A. Shea
    • 6
  • D. F. Smart
    • 6
  • Ilya G. Usoskin
    • 7
    Email author
  1. 1.Lebedev Physics InstituteRussian Academy of ScienceMoscowRussia
  2. 2.Space Vehicles DirectorateAir Force Research LaboratoryKirtland AFBUSA
  3. 3.National Solar ObservatorySunspotUSA
  4. 4.Ioffe Physical-Technical InstituteSt. PetersburgRussia
  5. 5.Atmospheric Environmental ResearchKirtland AFBUSA
  6. 6.SSSRCNashuaUSA
  7. 7.Sodankylä Geophysical Observatory (Oulu unit) and Dept. PhysicsUniversity of OuluFinland

Personalised recommendations